Crittografia a chiave pubblica

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Crittografia a chiave pubblica"

Transcript

1 Crittografia a chiave pubblica Cifrari simmetrici Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno canale insicuro 1 Problemi Gestione delle chiavi Come fanno e a condividere una chiave comune? Uso di un canale privato - un corriere fidato - un incontro faccia a faccia in un posto segreto Uso di una terza parte fidata... - che stabilisce la chiave di sessione e la invia ad entrambi in modo sicuro... 2 In una rete con n utenti ogni coppia di utenti deve condividere una chiave - Ogni utente deve memorizzare n-1 chiavi - Il numero totale delle chiavi segrete e dell ordine di n 2 /2 L aggiunta di un nuovo utente alla rete implica la distribuzione della chiave a tutti i precedenti utenti... Soluzione: cifrari asimmetrici 3

2 Cifrari asimmetrici Cifrari asimmetrici chiave privata di Usano una cassaforte con due lucchetti Con una chiave (pubblica) chiudiamo la cassaforte Con l altra chiave (privata) apriamo la cassaforte m m Public key Private key 4 chiave pubblica di canale insicuro 5 Cifrari asimmetrici Cifratura kpriv kpub kpriv kpub canale insicuro Devo cifrare il messaggio M ed inviarlo ad 6 7

3 kpriv Cifratura kpub canale insicuro C Devo decifrare il messaggio cifrato C Decifratura kpub?? C? Cifratura di M per C CIFRA (kpub, M) 8 9 Decifratura Cifrari asimmetrici kpriv kpub Decifratura di C M DECIFRA (kpriv, C) C Chiunque può cifrare un messaggio per Solo può decifrare un messaggio cifrato per lei Non ci sono chiavi condivise tra gli utenti Ogni utente genera da solo la propria coppia di chiavi (public key, private key) e rende pubblica la chiave pubblica Ogni utente memorizza una sola chiave (privata) 10 11

4 Cifrari simmetrici e asimmetrici Vantaggi della crittografia a chiave pubblica Chiavi private mai trasmesse Possibile la firma digitale Vantaggi della crittografia a Molto più veloce (ad es., DES è 100 volte più veloce di RSA, in hardware tra e volte) Sufficiente in diverse situazioni (ad esempio, applicazioni per singolo utente) kpriv Cifrari ibridi kpub canale insicuro C 1 C 2 Cifratura di M per k genera chiave sessione C 1 CIFRA (kpub, k) C 2 E (k, M) Cifrari ibridi Cifrari asimmetrici kpriv kpub Come realizzarli? Decifratura di C 1,C 2 k DECIFRA (kpriv, C 1 ) M D (k, C 2 ) C 1,C

5 Funzioni one-way Facili da calcolare e difficili da invertire Funzioni one-way trapdoor Facili da calcolare e difficili da invertire a meno che si conosca una trapdoor RSA Chiavi RSA Proposto nel 1978 da Rivest Shamir Adleman (n,d) (n,e) n = pq p,q primi gcd(e, (p-1)(q-1))=1 ed = 1 mod (p-1)(q-1) 18 19

6 Cifratura RSA Cifratura RSA (n,d) (n,e) canale insicuro (n,d) (n,e) canale insicuro C Devo cifrare il messaggio M ed inviarlo ad Cifratura di M per C M e mod n Decifratura RSA Decifratura RSA Devo decifrare il messaggio cifrato C (n,e) C?? C? (n,d) (n,e) Decifratura di C M C d mod n C 22 23

7 Piccolo esempio: Chiavi RSA Piccolo esempio: Cifratura RSA (n=3337, d=1019) (n = 3337, e = 79) 1570 (n = 3337, e = 79) 3337 = p = 47, q = 71 ed = = 1 mod 3220 (p-1)(q-1) = = 3220 Cifratura di M = 688 per mod Piccolo esempio: Decifratura RSA Correttezza decifratura RSA (n=3337, d=1019) (n = 3337, e = 79) Decifratura di C = mod C d mod n = (M e ) d mod n = M ed mod n = M 1+k(p-1)(q-1) mod n = M (M (p-1)(q-1) ) k = M mod n = M Teorema di Eulero M Z n * M (p-1)(q-1) =1 mod n poichè 0 M<n ed = 1 mod (p-1)(q-1) Per Per M Z M Z n /Z n /Z n * n *usa il il teorema cinese cinese del del resto resto 27

8 Efficienza delle computazioni Generazione chiavi RSA utilizza le seguenti computazioni Generazione numeri primi p e q generazione di e Generazione e,d d e -1 mod (p-1)(q-1) Elevazione a potenza modulare Per cifratura e decifratura 1. Input L (lunghezza modulo) 2. Genera 2 primi di di lunghezza L/2 3. n p q q 4. Scegli a caso e 5. If gcd ( e, e, (p-1)(q-1) ) = 1 then d e -1-1 mod (p-1)(q-1) else goto Scelta esponente pubblico Minimizzare operazioni per elevazione a potenza e 3 e decimale binario Generazione chiavi (comunemente usata in pratica) 1. Input L (lunghezza modulo) 2. e 3 oppure e (= (= ) 3. Genera 2 primi di di lunghezza L/2 4. n p q q 5. If gcd ( e, e, (p-1)(q-1) ) = 1 then d e -1-1 mod (p-1)(q-1) else goto

9 RSA Performance Sicurezza di RSA Celeron 850MHz, Windows 2000, Crypto++, 512 bit cifratura millisecondi/ operazione 0,14 Sicurezza della generazione delle chiavi 512 bit decifratura 1, bit cifratura 0, bit 2048 bit decifratura cifratura 10,23 0,89 C Sicurezza della cifratura 2048 bit decifratura 64, Sicurezza generazione chiavi di RSA Conoscendo la chiave pubblica (n,e) vuole calcolare la d=e -1 mod (p-1)(q-1) Attacco 1: fattorizzare n Se potesse fattorizzare n, saprebbe computare d 1. Fattorizza n 2. Computa ϕ(n)=(p-1)(q-1) 3. Computa d e -1 mod (p-1)(q-1) 34 35

10 Attacco 2: computare ϕ(n) Se potesse computare ϕ(n)=(p-1)(q-1), saprebbe fattorizzare n n = pq ϕ(n) = (p-1)(q-1) sostituendo p = n/q p 2 -(n-ϕ(n)+1)p + n = 0 Due soluzioni: p,q Attacco 2: computare ϕ(n) Se potesse computare ϕ(n) = (p-1)(q-1), Saprebbe fattorizzare n n = pq ϕ(n) = (p-1)(q-1) sostituendo p = n/q p 2 -(n-ϕ(n)+1)p + n = = pq p p = = (p-1)(q-1) radici: 9539 e Attacco 3: computare d Algoritmo Las Vegas per fattorizzare Se potesse computare d saprebbe fattorizzare n (n,e) Calcola d d Un algoritmo che computa d (con input n,e) può essere usato come oracolo in un algoritmo Las Vegas che fattorizza n con probabilità 1/2 (n,e) Fattorizza n Calcola d (p,q) nessuna risposta prob 1/2 prob 1/

11 Sicurezza generazione chiavi di RSA Fattorizza n Computa d Computa d Fattorizza n Computare d è equivalente a fattorizzare n Fattorizzazione Dato n, calcolare due primi p, q >1 tali che n=pq Per valori grandi di n è un problema ritenuto computazionalmente difficile Complessità di tempo sub-esponenziale in media Running time O(2 o(k) ), dove k è la taglia dell input f(n) f(n)=o(g(n)) se lim = 0 n g(n) Fattorizzazione: un semplice algoritmo Fattorizzazione: complessità algoritmi Calcolo di un fattore primo: Per tutti i primi p in [2, n ] Se p n allora p è fattore di n Complessità caso peggiore Θ( ) = Θ(2 1/2 log n ) (esponenziale nella lunghezza dell input) Se n ha 512 bit allora 256 n 2 n 42 Complessità di tempo sub-esponenziale in media L q [a,c] = O(e (c+o(1))(ln q)a (lnln q) 1-a ) con c > 0 ed 0 < a < 1 Algoritmo basato su curve ellittiche: L n [ 1/2, 1] Quadratic sieve: L n [ 1/2, 1] General number field sieve: L n [ 1/3, 1.923] il più veloce 43

12 Fattorizzazione: sfide Nel 1977 gli inventori di RSA Pubblicarono una sfida Rompere RSA con una chiave di 428 bit, premio 100 $ Stimarono il tempo richiesto: 40 quadrilioni di anni Nel 1994: task force di Internet ha reclamato il premio dopo 9 mesi di lavoro RSA Laboratories Altre sfide con chiavi di varia lunghezza Ultima sfida vinta: chiave con 512 bit Fattorizzazione: progressi 1 mips per anno istruzioni anno numero digit numero bit mips per anno algoritmo QS QS QS QS GNFS GNFS RSA computer per 8 mesi RSA mesi Prossima sfida RSA Che modulo scegliere? $ a chi fattorizza RSA-704 (212 digit) Ad oggi, i numeri più difficili da fattorizzare sono del tipo n = p q con p,q primi della stessa lunghezza e di almeno (per essere tranquilli!) 768 bit per uso personale 1024 bit per le aziende 2048 per chiavi importanti -ad esempio Autorità di Certificazione 46 47

13 Sicurezza cifratura RSA Conoscendo la chiave pubblica (n,e) e il messaggio cifrato C M e mod n vuole calcolare il messaggio M Sicurezza cifratura RSA Se potesse fattorizzare n saprebbe computare M 1. Fattorizza n 2. Computa ϕ(n)=(p-1)(q-1) 3. Computa d e -1 mod (p-1)(q-1) 4. Ricava M decifrando C Sicurezza cifratura RSA Altri attacchi ad RSA Se potesse computare M Importante problema aperto: non si sa se questo sia computazionalmente equivalente a fattorizzare! Attacchi non basati sul problema della fattorizzazione Chosen ciphertext attack Common modulus attack Low exponent attack Attacchi ad implementazioni 50 51

14 Chosen ciphertext attack C 1 = M 1 e mod n (M 1 M 2 ) e = M 1e M 2 e = C 1 C 2 mod n C 2 = M 2 e mod n Proprietà di omomorfismo Common Modulus Attack Stesso modulo n per diverse chiavi pubbliche Chiave : (n,e 1 ), chiave : (n,e 2 ) gcd(e 1,e 2 )=1 Obiettivo: decifrare C (= M e mod n) Decifrazione (d,n) M' = (C') d =(C x e ) d = C d x mod n C' C x e mod n M' (C') d mod n Scelgo x a caso M M' x -1 mod n Stesso messaggio M inviato ai vari utenti Cifratura per : C 1 =M e1 mod n, Cifratura per : C 2 =M e2 mod n E semplice risalire ad M Usa Euclide esteso per calcolare x, y tali che 1=e 1 x+e 2 y C 1x C 2y mod n = (M e1 ) x (M e2 ) y =M e1x+e2y = M Low Exponent Attack RSA: Attacchi ad implementazioni Stesso e per diverse chiavi pubbliche Chiave : (n 1,3), chiave : (n 2,3), chiave Eva: (n 3,3) gcd(n i,n j )=1, i j Stesso messaggio M inviato ai vari utenti Cifratura per : C 1 =M 3 mod n 1 Cifratura per : C 2 =M 3 mod n 2 Cifratura per Eva: C 3 =M 3 mod n 3 E semplice risalire ad M Usa Teorema cinese del resto per calcolare la soluzione di x C 1 mod n 1 x=m 3 mod n 1 n 2 n 3 x C 2 mod n 2 x C poi calcola M=x 1/3 3 mod n 3 54 Timing Attack [Kocher, 97] Ricava i bit di d uno alla volta, analizzando il tempo richiesto per l esponenziazione modulare (decifratura) Power Attack [Kocher, 99] Ricava d analizzando la potenza consumata da una smartcard durante la decifratura Contromisure Ritardo costante (tutte le esponenziazioni richiedono lo stesso tempo) Ritardo casuale (introduce rumore per confondere l avversario) Blinding (moltiplica il cifrato per un numero casuale prima di decifrare) 55

15 Bibliografia Cryptography and Network Security by W. Stallings (2005) cap. 9 (Public-Key Cryptography and RSA) Cryptography: Theory and Practice (I ed.) by D.R. Stinson (1995) cap 5 (The RSA System and Factoring) 56

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci Cifrari simmetrici canale

Dettagli

Firme digitali. Firma Digitale. Firma Digitale. Corso di Sicurezza su Reti Lezione del 17 novembre 2009. Equivalente alla firma convenzionale

Firme digitali. Firma Digitale. Firma Digitale. Corso di Sicurezza su Reti Lezione del 17 novembre 2009. Equivalente alla firma convenzionale Firme digitali Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci Firma Digitale Equivalente alla firma convenzionale

Dettagli

Accordo su chiavi. (key agreement) Alfredo De Santis. Marzo 2015. Dipartimento di Informatica Università di Salerno

Accordo su chiavi. (key agreement) Alfredo De Santis. Marzo 2015. Dipartimento di Informatica Università di Salerno Accordo su chiavi (key agreement) Alfredo De Santis Dipartimento di Informatica Università di Salerno ads@dia.unisa.it http://www.dia.unisa.it/professori/ads Marzo 2015 Accordo su una chiave Alice Bob??

Dettagli

Sicurezza nelle applicazioni multimediali: lezione 4, crittografia asimmetrica. Crittografia asimmetrica (a chiave pubblica)

Sicurezza nelle applicazioni multimediali: lezione 4, crittografia asimmetrica. Crittografia asimmetrica (a chiave pubblica) Crittografia asimmetrica (a chiave pubblica) Problemi legati alla crittografia simmetrica Il principale problema della crittografia simmetrica sta nella necessità di disporre di un canale sicuro per la

Dettagli

Introduzione alla crittografia. Il crittosistema RSA e la sua sicurezza

Introduzione alla crittografia. Il crittosistema RSA e la sua sicurezza Introduzione alla crittografia. Il crittosistema RSA e la sua sicurezza Prof. Massimiliano Sala MINICORSI 2011. Crittografia a chiave pubblica: oltre RSA Università degli Studi di Trento, Lab di Matematica

Dettagli

Cifrari simmetrici. Crittografia a chiave pubblica. Problemi. Gestione delle chiavi

Cifrari simmetrici. Crittografia a chiave pubblica. Problemi. Gestione delle chiavi Crittografia a chiave pubblica Cifrari simmetrici Alfredo De Santis Dipartimento di Informatica ed Applicazioni Università di Salerno ads@dia.unisa.it http://www.dia.unisa.it/professori/ads Marzo 2012

Dettagli

Cifratura a chiave pubblica Sicurezza nelle reti di TLC - Prof. Marco Listanti - A.A. 2008/2009

Cifratura a chiave pubblica Sicurezza nelle reti di TLC - Prof. Marco Listanti - A.A. 2008/2009 Cifratura a chiave pubblica Crittografia a chiave privata Chiave singola Crittografia simmetrica La stessa chiave è utilizzata sia per la cifratura che per la decifratura dei messaggi La chiave rappresenta

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Alfredo De Santis Dipartimento di Informatica Università di Salerno ads@unisa.it http://www.dia.unisa.it/professori/ads Marzo 2017 Sommario! RSA! Descrizione! Generazione

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Barbara Masucci Dipartimento di Informatica Università di Salerno bmasucci@unisa.it http://www.di.unisa.it/professori/masucci Cifrari simmetrici canale insicuro Bob 1 Distribuzione

Dettagli

Firma Digitale. Firma Digitale. Firma digitale. Firma digitale. Firma Digitale A?? Equivalente alla firma convenzionale

Firma Digitale. Firma Digitale. Firma digitale. Firma digitale. Firma Digitale A?? Equivalente alla firma convenzionale firma irma Digitale Equivalente alla firma convenzionale firma irma Digitale Equivalente alla firma convenzionale Soluzione naive: incollare firma digitalizzata irma Digitale 0 irma Digitale 1 Soluzione

Dettagli

Scambio delle chiavi. mercoledì 7 dicembre 2011

Scambio delle chiavi. mercoledì 7 dicembre 2011 Scambio delle chiavi 1 mercoledì 7 dicembre 2011 Distribuzione della chiave Dati due terminali A e B, si possono avere varie alternative per la distribuzione delle chiavi. 1. A sceglie una chiave e la

Dettagli

Robustezza crittografica della PEC

Robustezza crittografica della PEC Robustezza crittografica della PEC Prof. Massimiliano Sala Università degli Studi di Trento, Lab di Matematica Industriale e Crittografia Trento, 21 Novembre 2011 M. Sala (Università degli Studi di Trento)

Dettagli

Un po di teoria dei numeri

Un po di teoria dei numeri Un po di teoria dei numeri Applicazione alla crittografia RSA Christian Ferrari Liceo di Locarno Matematica Sommario 1 L aritmetica modulare di Z n Le congruenze L anello Z n Le potenze in Z n e algoritmo

Dettagli

Introduzione alla Crittografia

Introduzione alla Crittografia Liceo Scientifico N. Tron, 6 febbraio 2006 Riassunto Dato n > 1, la funzione di Eulero ϕ(n) è il numero di elementi < n e coprimi con n. Riassunto Dato n > 1, la funzione di Eulero ϕ(n) è il numero di

Dettagli

Seminario Sull Algoritmo R.S.A.

Seminario Sull Algoritmo R.S.A. Alessandrini Cristian Sicurezza 2003 Introduzione Seminario Sull Algoritmo R.S.A. L algoritmo R.S.A. fa parte degli algoritmi definiti a chiave pubblica oppure asimmetrici. Fu progettato nel 1976/77 da

Dettagli

Cifratura Asimmetrica

Cifratura Asimmetrica Cifratura Asimmetrica CIFRATURA ASIMMETRICA Algoritmo di Cifratura E() c = E(k 1, m) la cifratura del messaggio in chiaro m con la chiave k 1 produce il testo cifrato c Algoritmo di Decifratura D() m =

Dettagli

Cifrari asimmetrici. Cifratura. Cifratura. Crittosistema ElGamal. file pubblico utente chiave pubblica. Alice. file pubblico utente chiave pubblica

Cifrari asimmetrici. Cifratura. Cifratura. Crittosistema ElGamal. file pubblico utente chiave pubblica. Alice. file pubblico utente chiave pubblica Crittosistema ElGamal lfredo De Santis Dipartimento di Informatica ed pplicazioni Università di Salerno Marzo 2012 ads@dia.unisa.it http://www.dia.unisa.it/professori/ads Cifrari asimmetrici kpriv kpub

Dettagli

! La crittoanalisi è invece la scienza che cerca di aggirare o superare le protezioni crittografiche, accedendo alle informazioni protette

! La crittoanalisi è invece la scienza che cerca di aggirare o superare le protezioni crittografiche, accedendo alle informazioni protette Crittografia Cenni Damiano Carra Università degli Studi di Verona Dipartimento di Informatica La crittografia! Scienza che si occupa di proteggere l informazione rendendola sicura, in modo che un utente

Dettagli

Crittografia a chiave pubblica - Un invito a RSA

Crittografia a chiave pubblica - Un invito a RSA Crittografia a chiave pubblica - Un invito a RSA Francesco Pappalardi 15 Novembre, 2001 0-0 Crittografia a chiave pubblica - Un invito a RSA Pescara, 29.11.2001 1 I due diversi tipi di Crittografia Chiave

Dettagli

Firma digitale e PEC: aspetti crittografici e sicurezza

Firma digitale e PEC: aspetti crittografici e sicurezza Firma digitale e PEC: aspetti crittografici e sicurezza Prof. Massimiliano Sala Università degli Studi di Trento, Lab di Matematica Industriale e Crittografia Trento, 17 Febbraio 2012 M. Sala (Università

Dettagli

Introduzione alla crittografia con OpenPGP

Introduzione alla crittografia con OpenPGP Introduzione alla crittografia con OpenPGP D avide Cerri dav ide@ linux.it Crittografia Per proteggere le comunicazioni su Internet si utilizza la crittografia. La crittografia è la scienza che si occupa

Dettagli

Crittografia e Sicurezza Informatica

Crittografia e Sicurezza Informatica Corso di Sistemi di Elaborazione delle Inforazioni Corso di Laurea in Infermieristica Corso di Laurea in Tecniche di Radiologia Medica, per Immagini e Radioterapia Università degli Studi di Messina Anno

Dettagli

Accordo su chiavi (key agreement)

Accordo su chiavi (key agreement) Accordo su chiavi (key agreement) Accordo su una chiave Alfredo De Santis Dipartimento di Informatica ed Applicazioni Università di Salerno ads@dia.unisa.it http://www.dia.unisa.it/professori/ads Marzo

Dettagli

Sistemi di Elaborazione delle Informazioni

Sistemi di Elaborazione delle Informazioni Sistemi di Elaborazione delle Informazioni prof. Salvatore Siracusa ssiracusa@gmail.com ww2.unime.it/sei Che cos'è la crittografia? Che cos'è la crittografia? La crittografia (dal greco kryptos, nascosto,

Dettagli

Cifratura Asimmetrica

Cifratura Asimmetrica Cifratura Asimmetrica CIFRATURA ASIMMETRICA Algoritmo di Cifratura E() c = E(k 1, m) la cifratura del messaggio in chiaro m con la chiave k 1 produce il testo cifrato c Algoritmo di Decifratura D() m =

Dettagli

A.A. 2010/2011 Corso di Laurea Magistrale in Matematica Teoria dell Informazione 1 Timing Attack ad RSA

A.A. 2010/2011 Corso di Laurea Magistrale in Matematica Teoria dell Informazione 1 Timing Attack ad RSA AA 010/011 Corso di Laurea Magistrale in Matematica Teoria dell Informazione 1 Timing Attack ad RSA Marco Calderini 15 maggio 011 Sommario In questo breve e semplice articolo descriveremo il timing attack

Dettagli

Analisi di programmi: Crittografia

Analisi di programmi: Crittografia Analisi di programmi: Crittografia Come caso concreto di sistema, proviamo ad abbozzare e a vedere una prima implementazione di un sistema di crittografia a chiave pubblica La crittografia studia le tecniche

Dettagli

Sommario. Introduzione alla Sicurezza Web

Sommario. Introduzione alla Sicurezza Web Sommario Introduzione alla Sicurezza Web Considerazioni generali IPSec Secure Socket Layer (SSL) e Transport Layer Security (TLS) Secure Electronic Transaction (SET) Introduzione alla crittografia Introduzione

Dettagli

Sicurezza nei Sistemi Distribuiti

Sicurezza nei Sistemi Distribuiti Sicurezza nei Sistemi Distribuiti Aspetti di Sicurezza La sicurezza nei sistemi distribuiti deve riguardare tutti i componenti del sistema e coinvolge due aspetti principali: Le comunicazioni tra utenti

Dettagli

Sicurezza nei Sistemi Distribuiti

Sicurezza nei Sistemi Distribuiti Sicurezza nei Sistemi Distribuiti Aspetti di Sicurezza La sicurezza nei sistemi distribuiti deve riguardare tutti i componenti del sistema e coinvolge due aspetti principali: Le comunicazioni tra utenti

Dettagli

Argomenti Crittografia Firma digitale e certificati Certification Authority e PKI La normativa

Argomenti Crittografia Firma digitale e certificati Certification Authority e PKI La normativa Argomenti Crittografia Firma digitale e certificati Certification Authority e PKI La normativa Il crittanalista.... il secondo mestiere più vecchio del mondo! Crittografia Attenzione! Asterix ci ascolta!

Dettagli

Digital Signature Standard. Corso di Sicurezza A.A. 2006/2007 Luca Palumbo

Digital Signature Standard. Corso di Sicurezza A.A. 2006/2007 Luca Palumbo Digital Signature Standard Corso di Sicurezza A.A. 2006/2007 Luca Palumbo La storia Digital Signature Standard (DSS) è uno standard che descrive un protocollo di crittografia a chiave pubblica per la firma

Dettagli

Cenni di crittografia. Luca Anselma anselma@di.unito.it

Cenni di crittografia. Luca Anselma anselma@di.unito.it Cenni di crittografia Luca Anselma anselma@di.unito.it 1 Cos è la crittografia Dal greco κρυπτός e γράφειν, scrittura nascosta È la tecnica di nascondere informazioni Due tipi di cifratura: Simmetrica

Dettagli

Corso di Network Security a.a. 2012/2013. Soluzione dei quesiti sulla prima parte del corso

Corso di Network Security a.a. 2012/2013. Soluzione dei quesiti sulla prima parte del corso Università degli Studi di Parma Dipartimento di Ingegneria dell Informazione Corso di Network Security a.a. 2012/2013 Soluzione dei quesiti sulla prima parte del corso 1) Si consideri un semplice cifrario

Dettagli

Capitolo 8 La sicurezza nelle reti

Capitolo 8 La sicurezza nelle reti Capitolo 8 La sicurezza nelle reti Reti di calcolatori e Internet: Un approccio top-down 4 a edizione Jim Kurose, Keith Ross Pearson Paravia Bruno Mondadori Spa 2008 Capitolo 8: La sicurezza nelle reti

Dettagli

PRIMAVERA IN BICOCCA

PRIMAVERA IN BICOCCA PRIMAVERA IN BICOCCA 1. Numeri primi e fattorizzazione Una delle applicazioni più rilevanti della Teoria dei Numeri si ha nel campo della crittografia. In queste note vogliamo delineare, in particolare,

Dettagli

Cifratura. Decifratura. Cifratura. Decifratura. Crittografia a chiave pubblica ed a chiave privata. Corso di Sicurezza su Reti 1

Cifratura. Decifratura. Cifratura. Decifratura. Crittografia a chiave pubblica ed a chiave privata. Corso di Sicurezza su Reti 1 Crittosistema a chiave pubblica Cifratura chiave privata kpriv kpub kpub Devo cifrare il messaggio M ed inviarlo ad Crittografia a Chiave Pubblica 0 iagio Crittografia a Chiave Pubblica 1 Cifratura Decifratura

Dettagli

Firme digitali. Firma Digitale. Firma Digitale. Firma Digitale. Equivalente alla firma convenzionale. Equivalente alla firma convenzionale

Firme digitali. Firma Digitale. Firma Digitale. Firma Digitale. Equivalente alla firma convenzionale. Equivalente alla firma convenzionale irme digitali irma Digitale Barbara asucci Dipartimento di Informatica ed Applicazioni Università di Salerno firma Equivalente alla firma convenzionale masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci

Dettagli

RSA. Chiavi RSA. Firma Digitale. Firma Digitale. Firma Digitale. Desiderata per la Firma Digitale. Corso di Sicurezza su Reti 1

RSA. Chiavi RSA. Firma Digitale. Firma Digitale. Firma Digitale. Desiderata per la Firma Digitale. Corso di Sicurezza su Reti 1 firma Firma Digitale Equivalente alla firma convenzionale firma Firma Digitale Equivalente alla firma convenzionale Soluzione naive: incollare firma digitalizzata Firma Digitale 0 Firma Digitale 1 firma

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Barbara Masucci Dipartimento di Informatica Università di Salerno bmasucci@unisa.it http://www.di.unisa.it/professori/masucci Costruzioni Vedremo alcune costruzioni basate

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Barbara Masucci Dipartimento di Informatica Università di Salerno bmasucci@unisa.it http://www.di.unisa.it/professori/masucci Sicurezza CCA In un attacco CCA, è capace di

Dettagli

Crittografia e sicurezza delle reti

Crittografia e sicurezza delle reti Crittografia e sicurezza delle reti Crittografia a chiave pubblica 1. One way Trapdoor Functions 2. RSA Public Key CryptoSystem 3. Diffie-Hellman 4. El Gamal RSA: Frammenti dall articolo (1978) The era

Dettagli

La crittografia a chiave pubblica per giocare e imparare: il gioco del codice RSA (parte prima)

La crittografia a chiave pubblica per giocare e imparare: il gioco del codice RSA (parte prima) La crittografia a chiave pubblica per giocare e imparare: il gioco del codice RSA (parte prima) Franco Eugeni, Raffaele Mascella, Daniela Tondini Premessa. Tra i saperi di interesse per tutte le età scolari

Dettagli

metodi crittografici 2006-2007 maurizio pizzonia sicurezza dei sistemi informatici e delle reti

metodi crittografici 2006-2007 maurizio pizzonia sicurezza dei sistemi informatici e delle reti metodi crittografici 1 sommario richiami di crittografia e applicazioni hash crittografici crittografia simmetrica crittografia asimmetrica attacchi e contromisure attacchi tipici key rollover generatori

Dettagli

Crittografia. Primalità e Fattorizzazione. Corso di Laurea Specialistica. in Informatica

Crittografia. Primalità e Fattorizzazione. Corso di Laurea Specialistica. in Informatica Crittografia Corso di Laurea Specialistica in Informatica Primalità e Fattorizzazione Alberto Leporati Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano Bicocca

Dettagli

Altri cifrari a blocchi

Altri cifrari a blocchi Altri cifrari a blocchi Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci RC2 [1989] IDEA (International

Dettagli

Crittografia e Protocolli di Sicurezza

Crittografia e Protocolli di Sicurezza Crittografia e Protocolli di Sicurezza Ing. Emilio Spinicci 07/04/2004 1 Argomenti della lezione Introduzione Principi di Crittografia Protocolli di Sicurezza Attacchi ai Protocolli di Sicurezza 07/04/2004

Dettagli

SISTEMI E RETI. Crittografia. Sistemi distribuiti e configurazione architetturale delle applicazioni WEB.

SISTEMI E RETI. Crittografia. Sistemi distribuiti e configurazione architetturale delle applicazioni WEB. SISTEMI E RETI Crittografia. Sistemi distribuiti e configurazione architetturale delle applicazioni WEB. CRITTOGRAFIA La crittografia è una tecnica che si occupa della scrittura segreta in codice o cifrata

Dettagli

RETI DI CALCOLATORI. Crittografia. La crittografia

RETI DI CALCOLATORI. Crittografia. La crittografia RETI DI CALCOLATORI Crittografia La crittografia La crittografia è la scienza che studia la scrittura e la lettura di messaggi in codice ed è il fondamento su cui si basano i meccanismi di autenticazione,

Dettagli

LICEO STATALE ENRICO MEDI CON INDIRIZZI:

LICEO STATALE ENRICO MEDI CON INDIRIZZI: Verbale del primo incontro con gli studenti: Martedì 12 Novembre 2013, ore 13:45 16:45 Dopo una breve introduzione alle finalità del Progetto dal titolo Crittografia e crittanalisi, viene illustrato con

Dettagli

Crittografia. Crittografia Definizione. Sicurezza e qualità dei servizi su internet. 2009 Università degli Studi di Pavia, C.

Crittografia. Crittografia Definizione. Sicurezza e qualità dei servizi su internet. 2009 Università degli Studi di Pavia, C. Definizione La crittografia è la scienza che utilizza algoritmi matematici per cifrare e decifrare i dati. La criptoanalisi è la scienza che analizza e decifra i dati crittografati senza conoscerne a priori

Dettagli

Aspetti Crittografici nel Cloud Computing

Aspetti Crittografici nel Cloud Computing Aspetti Crittografici nel Cloud Computing Prof. Massimiliano Sala Università di Trento Trento, 10 Maggio 2013 Prof. Sala (Università di Trento) Trust and Cloud Computing Trento, 10 Maggio 2013 1 / 20 Introduzione

Dettagli

Crittografia e sicurezza delle reti. Alberto Marchetti Spaccamela

Crittografia e sicurezza delle reti. Alberto Marchetti Spaccamela Crittografia e sicurezza delle reti Alberto Marchetti Spaccamela Crittografia e sicurezza Sicurezza e crittografia sono due concetti diversi Crittografia tratta il problema della segretezza delle informazioni

Dettagli

Aspetti crittografici dell online banking

Aspetti crittografici dell online banking Aspetti crittografici dell online banking Prof. Massimiliano Sala Università degli Studi di Trento, Lab di Matematica Industriale e Crittografia Trento, 27 Febbraio 2012 M. Sala (Università degli Studi

Dettagli

Principi di crittografia Integrità dei messaggi Protocolli di autenticazione Sicurezza nella pila di protocolli di Internet: PGP, SSL, IPSec

Principi di crittografia Integrità dei messaggi Protocolli di autenticazione Sicurezza nella pila di protocolli di Internet: PGP, SSL, IPSec Crittografia Principi di crittografia Integrità dei messaggi Protocolli di autenticazione Sicurezza nella pila di protocolli di Internet: PGP, SSL, IPSec Elementi di crittografia Crittografia: procedimento

Dettagli

E necessaria la chiave segreta? RSA. Funzioni One-way con Trapdoor. Un secondo protocollo

E necessaria la chiave segreta? RSA. Funzioni One-way con Trapdoor. Un secondo protocollo E necessaria la chiave segreta? RSA Rivest, Shamir, Adelman A manda a B lo scrigno chiuso con il suo lucchetto. B chiude lo scrigno con un secondo lucchetto e lo rimanda ad A A toglie il suo lucchetto

Dettagli

Sicurezza nelle applicazioni multimediali: lezione 8, sicurezza ai livelli di rete e data-link. Sicurezza ai livelli di rete e data link

Sicurezza nelle applicazioni multimediali: lezione 8, sicurezza ai livelli di rete e data-link. Sicurezza ai livelli di rete e data link Sicurezza ai livelli di rete e data link Sicurezza a livello applicativo Ma l utilizzo di meccanismi di cifratura e autenticazione può essere introdotto anche ai livelli inferiori dello stack 2 Sicurezza

Dettagli

La sicurezza nelle reti di calcolatori

La sicurezza nelle reti di calcolatori La sicurezza nelle reti di calcolatori Contenuti del corso La progettazione delle reti Il routing nelle reti IP Il collegamento agli Internet Service Provider e problematiche di sicurezza Analisi di traffico

Dettagli

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Funzioni Hash e Network Security

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Funzioni Hash e Network Security Universita' di Ferrara Dipartimento di Matematica e Informatica Algoritmi e Strutture Dati Funzioni Hash e Network Security Vedi: A.S. Tanenbaum, Computer Networks, 4th ed., Prentice Hall: sez. 8, pagg.

Dettagli

Crittografia. Una Panoramica

Crittografia. Una Panoramica Crittografia Una Panoramica 1 Aspetti della Sicurezza Confidenzialità I dati ed iservizi non devono fornire informazioni sensibili a persone non autorizzate Integrità Deve essere evidente l eventuale manomissione

Dettagli

Confidenzialità e crittografia simmetrica. Contenuto. Scenario tipico. Corso di Sicurezza su Reti Uso della crittografia simmetrica

Confidenzialità e crittografia simmetrica. Contenuto. Scenario tipico. Corso di Sicurezza su Reti Uso della crittografia simmetrica Confidenzialità e crittografia simmetrica Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci Contenuto Uso

Dettagli

PRINCIPI DI COMPUTER SECURITY. Andrea Paoloni

PRINCIPI DI COMPUTER SECURITY. Andrea Paoloni PRINCIPI DI COMPUTER SECURITY Andrea Paoloni 2 Cade il segreto dei codici cifrati Corriere della Sera 26 febbraio 2008 3 Gli hacker sono utili? 4 Safety vs Security SAFETY (salvezza): protezione, sicurezza

Dettagli

Sicurezza dei sistemi informatici Firma elettronica E-commerce

Sicurezza dei sistemi informatici Firma elettronica E-commerce Sicurezza dei sistemi informatici Firma elettronica E-commerce Il contesto applicativo Commercio elettronico Quanti bit ho guadagnato!! Marco Mezzalama Politecnico di Torino collegamenti e transazioni

Dettagli

Vendere online. Andrea Marin. Università Ca Foscari Venezia SVILUPPO INTERCULTURALE DEI SISTEMI TURISTICI SISTEMI INFORMATIVI PER IL TURISMO

Vendere online. Andrea Marin. Università Ca Foscari Venezia SVILUPPO INTERCULTURALE DEI SISTEMI TURISTICI SISTEMI INFORMATIVI PER IL TURISMO Andrea Marin Università Ca Foscari Venezia SVILUPPO INTERCULTURALE DEI SISTEMI TURISTICI SISTEMI INFORMATIVI PER IL TURISMO a.a. 2013/2014 Section 1 Introduzione Parliamo di acquisti online quando a seguito

Dettagli

Numeri Primi e Applicazioni crittografiche

Numeri Primi e Applicazioni crittografiche Numeri Primi e Applicazioni crittografiche Andrea Previtali Dipartimento di Matematica e Fisica Università dell Insubria-Como http://www.unico.it/matematica/previtali andrea.previtali@uninsubria.it Corsi

Dettagli

La sicurezza nelle comunicazioni fra PC. Prof. Mauro Giacomini A.A. 2008-2009

La sicurezza nelle comunicazioni fra PC. Prof. Mauro Giacomini A.A. 2008-2009 La sicurezza nelle comunicazioni fra PC Prof. Mauro Giacomini A.A. 2008-2009 Sommario Cosa significa sicurezza? Crittografia Integrità dei messaggi e firma digitale Autenticazione Distribuzione delle chiavi

Dettagli

ALGORITMI CRITTOGRAFICI E FIRMA DIGITALE

ALGORITMI CRITTOGRAFICI E FIRMA DIGITALE ALGORITMI CRITTOGRAFICI E FIRMA DIGITALE LA SICUREZZA INFORMATICA...2 Classificazione dei meccanismi di sicurezza...3 TECNICHE DI SICUREZZA DEI DATI...4 LA CRITTOGRAFIA...4 Che cos è la Crittografia? E

Dettagli

Firma digitale e PEC: facili e sicure

Firma digitale e PEC: facili e sicure Firma digitale e PEC: facili e sicure Trento, 23 Novembre 2012 Ing. Andrea Gelpi Commissione Ingegneria dell'informazione Ordine degli Ingegneri della Provincia di Trento Firma Digitale La Firma digitale

Dettagli

Sicurezza nell'utilizzo di Internet

Sicurezza nell'utilizzo di Internet Sicurezza nell'utilizzo di Internet 1 Sicurezza Definizioni Pirati informatici (hacker, cracker): persone che entrano in un sistema informatico senza l autorizzazione per farlo Sicurezza: protezione applicata

Dettagli

Stream cipher. Cifrari simmetrici. Stream cipher. Stream cipher. I cifrari simmetrici possono essere:! Cifrari a blocchi: !

Stream cipher. Cifrari simmetrici. Stream cipher. Stream cipher. I cifrari simmetrici possono essere:! Cifrari a blocchi: ! Stream cipher Alfredo De Santis Dipartimento di Informatica ed Applicazioni Università di Salerno Marzo 2012 ads@dia.unisa.it http://www.dia.unisa.it/professori/ads Cifrari simmetrici I cifrari simmetrici

Dettagli

Metodologie Informatiche Applicate al Turismo 7. Aspetti di sicurezza nell reti

Metodologie Informatiche Applicate al Turismo 7. Aspetti di sicurezza nell reti Metodologie Informatiche Applicate al Turismo 7. Aspetti di sicurezza nell reti Paolo Milazzo Dipartimento di Informatica, Università di Pisa http://www.di.unipi.it/~milazzo/ milazzo di.unipi.it Corso

Dettagli

da chi proviene un messaggio?

da chi proviene un messaggio? da chi proviene un messaggio? in un crittosistema simmetrico solo Alice e Bob conoscono la chiave se Bob riceve un messaggio di Alice e la decifratura del messaggio ha senso, il messaggio proviene certamente

Dettagli

Accordo su chiavi. Accordo su una chiave. Diffie-Hellman [1976] Accordo su chiavi. Diffie-Hellman [1976] Diffie-Hellman [1976] ??

Accordo su chiavi. Accordo su una chiave. Diffie-Hellman [1976] Accordo su chiavi. Diffie-Hellman [1976] Diffie-Hellman [1976] ?? Accordo su chiavi Accordo su una chiave Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci K K 1 Accordo su

Dettagli

Generatori. Accordo su una chiave. Diffie-Hellman [1976] Diffie-Hellman [1976] Diffie-Hellman [1976] Potenze in Z 19. iagio nnarella. nnarella.

Generatori. Accordo su una chiave. Diffie-Hellman [1976] Diffie-Hellman [1976] Diffie-Hellman [1976] Potenze in Z 19. iagio nnarella. nnarella. Accordo su una chiave Diffie-Hellman [] di Z p K K Diffie-Hellman 0 Diffie-Hellman Generatori a a a a a Potenze in Z a a a a a 0 a a a a a a a a g è generatore di di Z p se {g i p se {g i i p-} = Z p 0

Dettagli

ALGORITMI CRITTOGRAFICI E FIRMA DIGITALE

ALGORITMI CRITTOGRAFICI E FIRMA DIGITALE ALGORITMI CRITTOGRAFICI E FIRMA DIGITALE LA SICUREZZA INFORMATICA...2 Classificazione dei meccanismi di sicurezza...3 TECNICHE DI SICUREZZA DEI DATI...4 LA CRITTOGRAFIA...4 Che cos è la Crittografia? E

Dettagli

Progetto Lauree Scientifiche - Matematica

Progetto Lauree Scientifiche - Matematica Progetto Lauree Scientifiche - Matematica p. 1/1 Progetto Lauree Scientifiche - Matematica Università degli Studi di Perugia Liceo Donatelli - Terni Quarto Incontro 7 marzo 2007 Progetto Lauree Scientifiche

Dettagli

Sicurezza su Reti. Per Favore. Informazioni sul Corso. Come contattarmi. Matricole dispari. Orario lezioni: Fine lezione (o nella pausa)

Sicurezza su Reti. Per Favore. Informazioni sul Corso. Come contattarmi. Matricole dispari. Orario lezioni: Fine lezione (o nella pausa) Sicurezza su Reti Per Favore Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci 1 Informazioni sul Corso Come

Dettagli

UNIVERSITÀ DEGLI STUDI DI TRENTO DOCUMENTO ELETTRONICO, FIRMA DIGITALE E SICUREZZA IN RETE.

UNIVERSITÀ DEGLI STUDI DI TRENTO DOCUMENTO ELETTRONICO, FIRMA DIGITALE E SICUREZZA IN RETE. UNIVERSITÀ DEGLI STUDI DI TRENTO DOCUMENTO ELETTRONICO, FIRMA DIGITALE E SICUREZZA IN RETE. INTRODUZIONE ALL ARGOMENTO. A cura di: Eleonora Brioni, Direzione Informatica e Telecomunicazioni ATI NETWORK.

Dettagli

Crittografia. Appunti a cura del prof. Ing. Mario Catalano

Crittografia. Appunti a cura del prof. Ing. Mario Catalano Crittografia Appunti a cura del prof. Ing. Mario Catalano La crittografia La crittografia è la scienza che studia la scrittura e la lettura di messaggi in codice. Solitamente, i meccanismi crittografici

Dettagli

SSL: applicazioni telematiche SSL SSL SSL. E-commerce Trading on-line Internet banking... Secure Socket Layer

SSL: applicazioni telematiche SSL SSL SSL. E-commerce Trading on-line Internet banking... Secure Socket Layer : applicazioni telematiche Secure Socket Layer E-commerce Trading on-line Internet banking... Protocollo proposto dalla Netscape Communications Corporation Garantisce confidenzialità e affidabilità delle

Dettagli

Lezione 7 Sicurezza delle informazioni

Lezione 7 Sicurezza delle informazioni Lezione 7 Sicurezza delle informazioni Sommario Concetti generali Meccanismi per la sicurezza IT: Crittografia Hash Firma digitale Autenticazione 1 Concetti generali Availability Confidentiality Integrity

Dettagli

Crittografia. Ringraziamenti. Scopo della crittografia. Privatezza

Crittografia. Ringraziamenti. Scopo della crittografia. Privatezza Crittografia Ringraziamenti prof. Francesco Dalla Libera Corso di Commercio Elettronico, Dipartimento di Informatica, Università Ca' Foscari di Venezia. Moreno Marzolla Dipartimento di Informatica Università

Dettagli

RC4 RC4. Davide Cerri. Davide Cerri CEFRIEL - Politecnico di Milano cerri@cefriel.it http://www.cefriel.it/~cerri/

RC4 RC4. Davide Cerri. Davide Cerri CEFRIEL - Politecnico di Milano cerri@cefriel.it http://www.cefriel.it/~cerri/ POLITECNICO DI MILANO CEFRIEL - Politecnico di Milano cerri@cefriel.it http://www.cefriel.it/~cerri/ è un cifrario a flusso progettato da Ron Rivest (la R di RSA) nel 1987. Era un segreto commerciale della

Dettagli

La Sicurezza delle Reti. La Sicurezza delle Reti. Il software delle reti. Sistemi e tecnologie per la multimedialità e telematica.

La Sicurezza delle Reti. La Sicurezza delle Reti. Il software delle reti. Sistemi e tecnologie per la multimedialità e telematica. Sistemi e tecnologie per la multimedialità e telematica Fabio Burroni Dipartimento di Ingegneria dell Informazione Università degli Studi di Siena burronif@unisi unisi.itit La Sicurezza delle Reti La presentazione

Dettagli

Sicurezza nelle applicazioni multimediali: lezione 7, sicurezza dei protocolli. Sicurezza dei protocolli (https, pop3s, imaps, esmtp )

Sicurezza nelle applicazioni multimediali: lezione 7, sicurezza dei protocolli. Sicurezza dei protocolli (https, pop3s, imaps, esmtp ) Sicurezza dei protocolli (https, pop3s, imaps, esmtp ) Stack di protocolli nella trasmissione della posta elettronica 2 Sicurezza a livello applicativo Ma l utilizzo di meccanismi di cifratura e autenticazione

Dettagli

CRITTOGRAFIA E FIRMA DIGITALE A. LANGUASCO A. PERELLI. 1. Crittografia

CRITTOGRAFIA E FIRMA DIGITALE A. LANGUASCO A. PERELLI. 1. Crittografia This is the last preprint. The final paper appeared in Matematica, rte, Tecnologia, Cinema, Bologna 2000, ed. da M.Emmer e M.Manaresi, Springer Verlag Italia, 2002, 99-106. CRITTOGRFI E FIRM DIGITLE. LNGUSCO.

Dettagli

Certificati digitali con CAcert Un'autorità di certificazione no-profit

Certificati digitali con CAcert Un'autorità di certificazione no-profit Certificati digitali con CAcert Un'autorità di certificazione no-profit Davide Cerri Associazione di Promozione Sociale LOLUG Gruppo Utenti Linux Lodi davide@lolug.net 11 novembre 2008 Crittografia asimmetrica:

Dettagli

Quasar Sistemi S.r.l.

Quasar Sistemi S.r.l. La Firma Digitale Quasar Sistemi S.r.l. Via San Leonardo, 52 84131 Salerno Telefono 089.3069802-803 Fax 089.332989 E-Mail: info@quasar.it Web http://www.quasar.it Documento Elettronico (D.E.) Un documento

Dettagli

La crittografia a curve elittiche e applicazioni

La crittografia a curve elittiche e applicazioni La crittografia a curve elittiche e applicazioni Dott. Emanuele Bellini Torino 2011. Crittografia a chiave pubblica: oltre RSA Università degli Studi di Trento, Lab di Matematica Industriale e Crittografia

Dettagli

Firma digitale aspetti tecnologici

Firma digitale aspetti tecnologici Firma digitale aspetti tecnologici Gianni Bianchini Firenze Linux User Group giannibi@firenze.linux.it Firenze, Palazzo Vecchio, 14 Giugno 2003 Copyright c 2003 Gianni Bianchini La copia letterale integrale

Dettagli

Il sistema di crittografia NTRU

Il sistema di crittografia NTRU Il sistema di crittografia NTRU Stefano Vaccari 2148 061247 Relazione per il corso di Sistemi Informativi II Tecnologie per la Sicurezza Luglio 2003 1 Crittografia a chiave pubblica Tra i sistemi di protezione

Dettagli

RSA: Rivest, Shamir, Adelman

RSA: Rivest, Shamir, Adelman Funzioni One-way con Trapdoor RSA: Rivest, Shamir, Adelman Ozalp Babaoglu Un lucchetto è una funzione one-way con trapdoor Tutti possono chiudere il lucchetto pur senza possedere la chiave Nessuno può

Dettagli

Sicurezza nei Sistemi Informativi

Sicurezza nei Sistemi Informativi Laurea Specialistica in Ingegneria Informatica A.A. 2009/2010 Sicurezza nei Sistemi Informativi Ing. Orazio Tomarchio Orazio.Tomarchio@diit.unict.it Dipartimento di Ingegneria Informatica e delle Telecomunicazioni

Dettagli

La matematica dell orologio

La matematica dell orologio La matematica dell orologio Un aritmetica inusuale: I numeri del nostro ambiente sono: 0,1,2,...,11 e corrispondono alle ore di un nostro orologio Le operazioni sono intese in questo modo: 1 somma: a+b

Dettagli

Approfondimento di Marco Mulas

Approfondimento di Marco Mulas Approfondimento di Marco Mulas Affidabilità: TCP o UDP Throughput: banda a disposizione Temporizzazione: realtime o piccoli ritardi Sicurezza Riservatezza dei dati Integrità dei dati Autenticazione di

Dettagli

Crittografia per la sicurezza dei dati

Crittografia per la sicurezza dei dati Crittografia per la sicurezza dei dati Esigenza di sicurezza in rete significa: -garanzia di riservatezza dei dati in rete (e-mail) -garanzia di transazioni sicure (e-commerce, home banking) La crittografia

Dettagli

UNIVERSITÀ CA FOSCARI VENEZIA

UNIVERSITÀ CA FOSCARI VENEZIA UNIVERSITÀ CA FOSCARI VENEZIA Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica (Triennale) Tesi di Laurea Crittografia basata su Curve Ellittiche Laureando: Gianluca Salvalaggio

Dettagli

Crittografia a chiave pubblica. Cenni alla teoria dei numeri

Crittografia a chiave pubblica. Cenni alla teoria dei numeri Crittografia a chiave pubblica Cenni alla teoria dei numeri Numeri Primi I numeri primi hanno come divisori solo se stessi e l unità Non possono essere ottenuti dal prodotto di altri numeri eg. 2,3,5,7

Dettagli

Protezione dei Dati Digitali: Scenari ed Applicazioni

Protezione dei Dati Digitali: Scenari ed Applicazioni Protezione dei Dati Digitali: Scenari ed Applicazioni 1 Sommario Parte I : Scenari Parte II : La Teoria Parte III: La Pratica 2 Parte I: Scenari 3 Applicazioni quotidiane (1/2) Transazioni finanziarie

Dettagli

Crittografia con OpenSSL crittografia asimmetrica

Crittografia con OpenSSL crittografia asimmetrica Crittografia con OpenSSL crittografia asimmetrica Laboratorio del corso Sicurezza dei sistemi informatici (03GSD) Politecnico di Torino AA 2014/15 Prof. Antonio Lioy preparata da: Cataldo Basile (cataldo.basile@polito.it)

Dettagli