SOTTOSPAZI INVARIANTI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SOTTOSPAZI INVARIANTI"

Transcript

1 2/2 OPERATORI NEGLI SPAZI DI HILBERT FINITODIMENSIONALI 08/09 1 SOTTOSPAZI INVARIANTI Riduzione di un operatore a un sottospazio Se A è un qualunque operatore lineare, H un sottospazio di H e P il proiettore su H, l operatore PAP può dirsi la riduzione di A al sottospazio H. La riduzione PAP è sia un operatore di H sia un operatore di H. La relazione g, PAP f = PA P g, f vale ovviamente per g, f H come vale per g, f qualsiasi in H, e pertanto PA P è il coniugato hermitiano sia di PAP operatore di H sia di PAP operatore di H. Se A è un operatore hermitiano, anche la sua riduzione PAP è hermitiana, sia come operatore di H sia come operatore di H. Sottospazi invarianti Un sottospazio H di H si dice invariante per l applicazione di un operatore lineare A se per ogni u H è anche Au H. I sottospazi impropri H = [0] e H = H sono invarianti per l applicazione di qualsiasi operatore lineare. I sottospazi generati da un qualunque sottoinsieme degli autovettori di un operatore A, cioè gli autospazi, i loro sottospazi e le somme dirette di quelli e questi, sono invarianti per A. Se due operatori A e B commutano ogni autospazio (ma non ogni sottospazio invariante) di uno è invariante per l altro. Infatti, se H è autospazio di A corrispondente all autovalore ā, cioè se A ū = ā ū per tutti e soli gli ū H, allora A(Bū) = BAū = ā(bū) e quindi Bū H. L invarianza di H per un operatore A equivale alla relazione (1) AP = PAP. Se H = H H è il complemento ortogonale di H in H, indicando con P il proiettore su H (con le proprietà P + P = 1, PP = PP = 0), la (1) è equivalente a (2) PAP = 0. La coniugata di questa relazione è (3) PA P = 0, e quindi, se H è invariante per A, H è invariante per il suo coniugato A.

2 2/2 OPERATORI NEGLI SPAZI DI HILBERT FINITODIMENSIONALI 08/09 2 Sottospazi invarianti di un operatore hermitiano o unitario Teorema Sia H un sottospazio invariante di un operatore A hermitiano o unitario in H (finitodimensionale). Allora anche il suo complemento ortogonale H = H H è invariante per A. Dimostrazione Se A è hermitiano, A = A, la (3) diventa (4) PAP = 0 e quindi anche H è invariante per A. Se A è unitario e quindi isometrico e H un suo sottospazio invariante, osserviamo innanzitutto che anche la sua riduzione PAP è isometrica come operatore di H (non è isometrica come operatore di H ), PA P PAP = P. Essendo H finitodimensionale, PAP è anche unitario in H e quindi (5) PAP PA P = P. Applicando P a sinistra e P a destra alla relazione di isometria di A, A A = 1, otteniamo PA P PAP + PA P PAP = 0 cioè, per la (3), PA P PAP = 0 Moltiplicando questa a sinistra per PAP e facendo uso della (5) otteniamo di nuovo la (4) e quindi di nuovo H è invariante per A. Le relazioni (2) e (4) mostrano congiuntamente che (6) A = PAP + PAP, cioè A è uguale alla somma delle sue riduzioni a H e H. Dalla (6) segue immediatamente che A commuta con i due proiettori P e P.

3 2/2 OPERATORI NEGLI SPAZI DI HILBERT FINITODIMENSIONALI 08/09 3 PROBLEMI AGLI AUTOVALORI Esistenza di almeno un autovettore Sia L un operatore lineare in H n. La sua equazione agli autovalori è L u = l u (u 0). Scelta una base ortonormale {e i } in H n questa si scrive L iju j = l u i, (dove u i = e i, u, L ij = e i, L e j ), j cioè (7) (L ij l δ ij ) u j = 0. j Per un qualsiasi l la (7) è un sistema di n equazioni lineari omogenee nelle n incognite u j. La condizione di esistenza di una soluzione {u j } non nulla è L 11 l L L 1n L 21 L 22 l... L 2n det(l ij l δ ij ) = 0, cioè per disteso..... = 0.. L n1 L n2... L nn l Questa è un equazione algebrica di grado n in l che si dice equazione secolare. Gli autovalori sono le radici dell equazione secolare. Poiché un equazione algebrica di grado n ha sempre n radici eventualmente in tutto o in parte coincidenti, esiste sempre almeno un autovalore e un corrispondente autovettore.

4 2/2 OPERATORI NEGLI SPAZI DI HILBERT FINITODIMENSIONALI 08/09 4 Completezza degli autovettori di un operatore hermitiano o unitario Sia A un operatore hermitiano o unitario in H n. Se l equazione secolare ha n radici distinte i corrispondenti autovettori sono mutuamente ortogonali e pertanto sono un sistema completo in H n Se le radici dell equazione secolare non sono tutte distinte procediamo nel modo seguente. L operatore A ha certamente un autovalore a 1 e un corrispondente autovettore u 1. Il sottospazio unidimensionale H 1 generato da u 1 è un sottospazio invariante di A come pure H 1 = H n H 1. L operatore P 1 AP 1 ha certamente in H 1 un autovalore a 2 (eventualmente uguale a a 1 ) e un corrispondente autovettore u 2 che è anche autovettore di A e in H n è ortogonale a u 1. Il sottospazio unidimensionale H 2 generato da u 2 è un sottospazio invariante di P 1 AP 1 come pure H 2 = H 1 H 2. L operatore P 2 P 1 AP 1 P 2 = P 2 AP 2 ha certamente in H 2 un autovalore a 3 (eventualmente uguale a a 2 o a a 1 o a entrambi) e un corrispondente autovettore u 3 che è anche autovettore di A e in H n è ortogonale a u 2 e u 1. E così via. In questo modo costruiamo un sistema di n autovettori di A che sono mutuamente ortogonali e pertanto sono un sistema completo in H n. Natura dei sottospazi invarianti Abbiamo già osservato che i sottospazi generati da un qualunque sottoinsieme degli autovettori di un operatore A, sono invarianti per A. Se A è hermitiano o unitario tali sottospazi sono tutti i sottospazi invarianti. Infatti, se H è invariante per A, PAP è hermitiano o unitario in H, gli autovettori ū di PAP in H sono ivi un sistema completo e H è da essi generato. Per la (6) gli autovettori ū sono anche autovettori di A.

5 2/2 OPERATORI NEGLI SPAZI DI HILBERT FINITODIMENSIONALI 08/09 5 Controesempi banali ( ) 0 1 L operatore in l cui corrisponde l unico autospazio ha il solo autovalore 0 ( a 0 ), unidimensionale. ( ) 1 1 L operatore in l 2 ha gli autovalori 1 e cui corrispondono rispettivamente gli autovettori linearmente indipendenti ma non ortogonali. ( ) ( ) a b e, 0 b ( ) 1 0 L operatore (normale) in l 2 ha gli autovalori 1 e i non tutti reali 0 i ( ) ( ) a 0 cui corrispondono rispettivamente gli autovettori e, ortogonali. 0 b ( ) 1 i L operatore (normale) in l 2 ha gli autovalori 1 + i e 1 i complessi i 1 ( ) ( ) a a cui corrispondono rispettivamente gli autovettori e, ortogonali. a a L operatore in l ha il sottospazio invariante dei vettori a b, ma in questo ha solo gli autovettori a 0. 0

6 2/2 OPERATORI NEGLI SPAZI DI HILBERT FINITODIMENSIONALI 08/09 6 Diagonalizzazione simultanea di più operatori Teorema Condizione necessaria e sufficiente affinché gli operatori hermitiani o unitari A, B, C,... abbiano un sistema completo di autovettori comuni è che gli operatori commutino a due a due. Infatti, sia Allora A u ijk...d = a i u ijk...d, B u ijk...d = b j u ijk...d, C u ijk...d = c k u ijk...d, BA u ijk...d = a i B u ijk...d = a i b j u ijk...d = AB u ijk...d e quindi, per la completezza del set u ijk...d, BA = AB. Analogamente per ogni altra coppia di operatori del set. Viceversa, siano A e B hermitiani o unitari con AB = BA. Sia H i l autospazio di A corrispondente all autovalore a i e P i il proiettore su H i. Poiché A e B commutano H i è invariante per l azione di B. Allora P i BP i è hermitiano o unitario in H i e possiede in H i un sistema completo di autovettori che possiamo indicare con u ijd. Evidentemente, al variare di i, j, d, gli u ijd sono un sistema completo in H n. Se poi esiste un terzo operatore hermitiano o unitario C che commuta con A e con B consideriamo il sottospazio H ij......

7 2/2 OPERATORI NEGLI SPAZI DI HILBERT FINITODIMENSIONALI 08/09 7 Funzioni di un sistema di operatori commutanti Conosciamo finora le funzioni di un sistema di operatori che si possono costruire con l algebra degli operatori. Nel caso di un sistema di operatori (hermitiani o unitari) commutanti il concetto di funzione può essere esteso a una funzione arbitraria. Sia A u ijkd = a i u ijkd, B u ijkd = b j u ijkd, C u ijkd = c k u ijkd. Allora, considerata una funzione arbitraria di tre variabili f(a, b, c), definiamo f(a, B, C) come l operatore lineare tale che f(a, B, C) u ijkd = f(a i, b j, c k ) u ijkd. È facile mostrare che, se f(a, b, c) è una funzione algebrica, il concetto di funzione ora introdotto coincide con quello che proviene dall algebra degli operatori. Esponenziazione di un operatore hermitiano Sia S un operatore hermitiano e sia f(s) = exp(ics) con c numero reale non nullo. Allora l operatore f(s) = exp(ics) è un operatore unitario.

8 2/2 OPERATORI NEGLI SPAZI DI HILBERT FINITODIMENSIONALI 08/09 8 Sistemi esaurienti di operatori commutanti Diciamo che un sistema di operatori A, B, C,... (hermitiani o unitari) commutanti è esauriente se in corrispondenza di ogni sistema di autovalori esiste un solo autovettore linearmente indipendente, cioè se il problema agli autovalori simultaneo del sistema di operatori non presenta degenerazione. Terminologia Il termine più comunemente usato è completo invece di esauriente. Aggiunta a un sistema esauriente di operatori commutanti Sia A, B, C un sistema esauriente di operatori (hermitiani o unitari) commutanti, A u ijk = a i u ijk, B u ijk = b j u ijk, C u ijk = c k u ijk. Se G è un ulteriore operatore (hermitiano o unitario) che commuta con A, B e C, gli operatori A, B, C, G hanno un sistema completo di autovettori comuni e gli autovettori di G sono necessariamente i vettori u ijk. Sia G u ijk = g ijk u ijk. Allora, posto è f(a i, b j, c k ) = g ijk, G = f(a, B, C) cioè G è funzione di A, B, C.

PROBLEMA AGLI AUTOVALORI DI UN OPERATORE LINEARE

PROBLEMA AGLI AUTOVALORI DI UN OPERATORE LINEARE 2/2 OPERATORI NEGLI SPAZI DI HILBERT FINITODIMENSIONALI 11/12 1 PROBLEMA AGLI AUTOVALORI DI UN OPERATORE LINEARE Esistenza di almeno una coppia autovalore autovettore Sia L un operatore lineare nello spazio

Dettagli

11/3 IRRIDUCIBILITÀ NELLO SPAZIO DI HILBERT 10/11 1 IRRIDUCIBILITÀ

11/3 IRRIDUCIBILITÀ NELLO SPAZIO DI HILBERT 10/11 1 IRRIDUCIBILITÀ 11/3 IRRIDUCIBILITÀ NELLO SPAZIO DI HILBERT 10/11 1 IRRIDUCIBILITÀ Sistemi irriducibili di operatori in uno spazio di Hilbert Un insieme o sistema di operatori {A, B,...} in uno spazio di Hilbert H si

Dettagli

λ : autovalore di ĵ 2, H λ : corrispondente autospazio di ĵ 2.

λ : autovalore di ĵ 2, H λ : corrispondente autospazio di ĵ 2. 6/ TEORIA GENERALE DEL MOMENTO ANGOLARE 9/ TEORIA GENERALE DEL MOMENTO ANGOLARE In un qualsiasi spazio di Hilbert H, siano ĵ x ĵ, ĵ y ĵ 2 e ĵ z ĵ 3 tre operatori autoaggiunti con il significato di componenti

Dettagli

Appendice 3. Rotazioni

Appendice 3. Rotazioni Appendice 3. Rotazioni Indice 1 Tensori ortogonali 2 2 Rotazioni e simmetrie in uno spazio di dimensione 2 2 3 Tensori ortogonali in uno spazio di dimensione 3 4 4 Rotazioni in uno spazio di dimensione

Dettagli

0. Introduzione al linguaggio matematico

0. Introduzione al linguaggio matematico Prof. Lidia Angeleri Università di Verona, 2013/14 Algebra Lineare ed Elementi di Geometria (Programma aggiornato in data 23 gennaio 2014) 0. Introduzione al linguaggio matematico 1. Insiemi 1.1 Esempi

Dettagli

0. Introduzione al linguaggio matematico

0. Introduzione al linguaggio matematico Prof. Lidia Angeleri Università di Verona, 2012/13 Algebra Lineare ed Elementi di Geometria Programma svolto nel Modulo Algebra Lineare 0. Introduzione al linguaggio matematico 1. Insiemi 1.1 Esempi 1.2

Dettagli

PROPRIETÀ GENERALI. L equazione di Schrödinger, per una particella che si muove in un campo di forze corrispondente all energia potenziale V (x, t),

PROPRIETÀ GENERALI. L equazione di Schrödinger, per una particella che si muove in un campo di forze corrispondente all energia potenziale V (x, t), 1/3 STUDIO PRELIMINARE DELL EQUAZIONE DI SCHRÖDINGER 10/11 1 PROPRIETÀ GENERALI L equazione di Schrödinger, per una particella che si muove in un campo di forze corrispondente all energia potenziale V

Dettagli

0. Introduzione al linguaggio matematico

0. Introduzione al linguaggio matematico Prof. Lidia Angeleri Università di Verona, 2009/2010 Algebra Lineare ed Elementi di Geometria Programma svolto nel Modulo Algebra Lineare 0. Introduzione al linguaggio matematico 1. Insiemi 1.1 Esempi

Dettagli

Il Teorema Spettrale. 0.1 Applicazioni lineari simmetriche ed hermitiane

Il Teorema Spettrale. 0.1 Applicazioni lineari simmetriche ed hermitiane 0.1. APPLICAZIONI LINEARI SIMMETRICHE ED HERMITIANE 1 Il Teorema Spettrale In questa nota vogliamo esaminare la dimostrazione del Teorema Spettrale e studiare le sue conseguenze per quanto riguarda i prodotti

Dettagli

Applicazioni lineari e diagonalizzazione

Applicazioni lineari e diagonalizzazione Applicazioni lineari e diagonalizzazione Autospazi Autovettori e indipendenza lineare Diagonalizzabilità e autovalori 2 2006 Politecnico di Torino 1 Esempio (1/6) Utilizzando un esempio già studiato, cerchiamo

Dettagli

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA 3/7 GENERALIZZAZIONI E SVILUPPI 09/10 1 VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA Forma unificata dei risultati già ottenuti I risultati ottenuti nei fascicoli 3/3, 3/5 e 3/6 sulle grandezze

Dettagli

VETTORI. Finora abbiamo considerato uno spazio di Hilbert H con elementi f, g,... tra i quali è definito un prodotto scalare indicato con il simbolo,.

VETTORI. Finora abbiamo considerato uno spazio di Hilbert H con elementi f, g,... tra i quali è definito un prodotto scalare indicato con il simbolo,. 2/6 NOTAZIONE DI DIRAC 11/12 1 VETTORI Finora abbiamo considerato uno spazio di Hilbert H con elementi f, g,... tra i quali è definito un prodotto scalare indicato con il simbolo,. È possibile costruire

Dettagli

Esame di Geometria e Algebra Lineare

Esame di Geometria e Algebra Lineare Esame di Geometria e Algebra Lineare Esame scritto: 28 Luglio 2014 Esame orale: Cognome: Nome: Matricola: Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof FPodestà, aa 003-004 Sia V uno spazio vettoriale e sia f : V V una applicazione lineare una tale applicazione da uno spazio vettoriale in se stesso è chiamata

Dettagli

Complemento ortogonale e proiezioni

Complemento ortogonale e proiezioni Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali

Dettagli

2/1 SPAZI DI HILBERT 08/09 1 SPAZI DI HILBERT

2/1 SPAZI DI HILBERT 08/09 1 SPAZI DI HILBERT 2/1 SPAZI DI HILBERT 08/09 1 SPAZI DI HILBERT Uno spazio H è uno spazio di Hilbert se gode delle seguenti proprietà: 1) è uno spazio vettoriale, cioè sono definite, con risultato in H, l addizione f +

Dettagli

Diagonalizzabilità di endomorfismi

Diagonalizzabilità di endomorfismi Capitolo 16 Diagonalizzabilità di endomorfismi 16.1 Introduzione Nei capitoli precedenti abbiamo definito gli endomorfismi su uno spazio vettoriale E. Abbiamo visto che, dato un endomorfismo η di E, se

Dettagli

Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 2018/2019 Canali A C, L Pa, Pb Z

Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 2018/2019 Canali A C, L Pa, Pb Z Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 8/9 Canali A C, L Pa, Pb Z Durata: ore e 3 minuti Alessandro D Andrea Simone Diverio Paolo Piccinni Riccardo Salvati Manni 5 giugno

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

Autovalori e autovettori di una matrice quadrata

Autovalori e autovettori di una matrice quadrata Autovalori e autovettori di una matrice quadrata Data la matrice A M n (K, vogliamo stabilire se esistono valori di λ K tali che il sistema AX = λx ammetta soluzioni non nulle. Questo risulta evidentemente

Dettagli

13 febbraio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

13 febbraio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI febbraio 0 - Soluzione esame di geometria - Ing. gestionale - a.a. 0-0 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati

Dettagli

Autovalori, Autovettori, Diagonalizzazione.

Autovalori, Autovettori, Diagonalizzazione. Autovalori Autovettori Diagonalizzazione Autovalori e Autovettori Definizione Sia V uno spazio vettoriale sul campo K = R o C e sia T : V V un endomorfismo Un vettore non nullo v V \ {O} si dice autovettore

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

GEOMETRIA 1 Autovalori e autovettori

GEOMETRIA 1 Autovalori e autovettori GEOMETRIA 1 Autovalori e autovettori Gilberto Bini - Anna Gori - Cristina Turrini 2018/2019 Gilberto Bini - Anna Gori - Cristina Turrini (2018/2019) GEOMETRIA 1 1 / 28 index Matrici rappresentative "semplici"

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

Complementi di Algebra e Fondamenti di Geometria

Complementi di Algebra e Fondamenti di Geometria Complementi di Algebra e Fondamenti di Geometria Capitolo 3 Forma canonica di Jordan M. Ciampa Ingegneria Elettrica, a.a. 29/2 Capitolo 3 Forma canonica di Jordan Nel Capitolo si è discusso il problema

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio Algebra lineare Laboratorio di programmazione e calcolo CdL in Chimica Pierluigi Amodio Dipartimento di Matematica Università di Bari pierluigi.amodio@uniba.it http://dm.uniba.it/ amodio A.A. 2016/17 P.

Dettagli

Matrici simili. Matrici diagonalizzabili.

Matrici simili. Matrici diagonalizzabili. Matrici simili. Matrici diagonalizzabili. Definizione (Matrici simili) Due matrici quadrate A, B si dicono simili se esiste una matrice invertibile P tale che B = P A P. () interpretazione: cambio di base.

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

Sottospazi vettoriali

Sottospazi vettoriali Capitolo 6 Sottospazi vettoriali 6.1 Introduzione Riprendiamo un argomento già studiato ampiamente nel corso di Geometria, i sottospazi vettoriali di uno spazio vettoriale. Ci limiteremo a darne la definizione,

Dettagli

Parte 8. Prodotto scalare, teorema spettrale

Parte 8. Prodotto scalare, teorema spettrale Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,

Dettagli

Lezione del 5 dicembre. Sottospazi vettoriali.

Lezione del 5 dicembre. Sottospazi vettoriali. Lezione del 5 dicembre. Sottospazi vettoriali. 1. Sottospazi vettoriali. Identificato lo spazio con R 3 tramite un sistema di riferimento cartesiano ortogonale, consideriamo un piano passante per l origine

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

15 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

15 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

NOME COGNOME MATRICOLA CANALE

NOME COGNOME MATRICOLA CANALE NOME COGNOME MATRICOLA CANALE Fondamenti di Algebra Lineare e Geometria Proff. R. Sanchez - T. Traetta - C. Zanella Ingegneria Gestionale, Meccanica e Meccatronica, dell Innovazione del Prodotto, Meccatronica

Dettagli

Capitolo Diagonalizzazione e Triangolazione. Esercizio Diagonalizzare la matrice A =

Capitolo Diagonalizzazione e Triangolazione. Esercizio Diagonalizzare la matrice A = Capitolo 8 8 Diagonalizzazione e Triangolazione Esercizio 8 Diagonalizzare la matrice A = 3 3 Svolgimento Il polinomio caratteristico della matrice è dato da ( + t) p A (t) = ( + t) = (t + 3) (t 3) 3 3

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

OPERAZIONI SU SPAZI DI HILBERT. Nel seguito introdurremo i concetti di prodotto diretto e somma diretta di due spazi di Hilbert.

OPERAZIONI SU SPAZI DI HILBERT. Nel seguito introdurremo i concetti di prodotto diretto e somma diretta di due spazi di Hilbert. 2/7 OPERAZIONI SU SPAZI DI HILBERT 11/12 1 OPERAZIONI SU SPAZI DI HILBERT Dati due spazi di Hilbert H (1) e H (2) si possono definire su di essi operazioni il cui risultato è un nuovo spazio di Hilbert

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Corso di Studi in Fisica. Geometria e Algebra Lineare II Prova scritta del 6 luglio 2009

Corso di Studi in Fisica. Geometria e Algebra Lineare II Prova scritta del 6 luglio 2009 Corso di Studi in Fisica Geometria e Algebra Lineare II Prova scritta del 6 luglio 009 Esercizio 1. Si considerino le matrici 3 1 1 3 1 1 A = 0 4 0, B = 3 1 3 1 1 3 0 a. (4 punti) Dimostrare che A e B

Dettagli

Soluzione: La matrice M cercata è quella formata dagli autovettori di A. Il polinomio caratteristico di A è: p t (A) = (t 1)(t 3) 0 4 V 1 = Ker

Soluzione: La matrice M cercata è quella formata dagli autovettori di A. Il polinomio caratteristico di A è: p t (A) = (t 1)(t 3) 0 4 V 1 = Ker Compito di Algebra Lineare - Ingegneria Biomedica 4 luglio 7 IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non si può

Dettagli

Appendice 1. Spazi vettoriali

Appendice 1. Spazi vettoriali Appendice. Spazi vettoriali Indice Spazi vettoriali 2 2 Dipendenza lineare 2 3 Basi 3 4 Prodotto scalare 3 5 Applicazioni lineari 4 6 Applicazione lineare trasposta 5 7 Tensori 5 8 Decomposizione spettrale

Dettagli

Autovalori e autovettori

Autovalori e autovettori Autovalori e autovettori Definizione 1 (per endomorfismi). Sia V uno spazio vettoriale su di un campo K e f : V V un suo endomorfismo. Si dice autovettore per f ogni vettore x 0 tale che f(x) = λx, per

Dettagli

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi.

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi. 1 Esercizi 1.1 Spazi vettoriali Studiare gli insiemi definiti di seguito, e verificare quali sono spazi vettoriali e quali no. Per quelli che non lo sono, dire quali assiomi sono violati. x 1, x 2, x 3

Dettagli

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 27/28 Canali A C, e L Pa Durata: 2 ore e 3 minuti Simone Diverio Alessandro D Andrea Paolo Piccinni 7 settembre

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2012 Rossi Algebra Lineare 2012 1 / 59 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

Spazi vettoriali. Indipendenza lineare.

Spazi vettoriali. Indipendenza lineare. Spazi vettoriali Indipendenza lineare Nel piano vettoriale G 2, fissato un punto O ed identificati i vettori con i segmenti orientati con origine in O, informalmente si puo dire che che due vettori sono

Dettagli

Operatori antisimmetrici

Operatori antisimmetrici Operatori antisimmetrici F. Pugliese November 9, 2011 Abstract In questa breve nota ricordiamo le principali proprietà degli endomorfismi antisimmetrici di uno spazio vettoriale euclideo. Nel caso di spazi

Dettagli

[Si può fare una dimostrazione valida per ogni scelta di u, che sfrutti solo la linearità del prodotto scalare]

[Si può fare una dimostrazione valida per ogni scelta di u, che sfrutti solo la linearità del prodotto scalare] Università di Bergamo Anno accademico 20182019 Primo anno di Ingegneria Foglio 7 Geometria e Algebra Lineare Sottospazi, basi e dimensione Esercizio 7.1. Sia u = (1, 1, 1) e si consideri il sottoinsieme

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

Geometria analitica: curve e superfici

Geometria analitica: curve e superfici Geometria analitica: curve e superfici geometriche algebriche e matrici e isometrie Riduzione Invarianti Studio di coniche Intersezione con rette e tangenti in forma parametrica 006 Politecnico di Torino

Dettagli

UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI ESERCITAZIONI SEMINARI Anno accademico 2012/13

UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI ESERCITAZIONI SEMINARI Anno accademico 2012/13 REGISTRO DELLE LEZIONI ESERCITAZIONI SEMINARI Anno accademico 2012/13 Cognome e Nome BISI FULVIO Qualifica RICERCATORE CONFERMATO MAT/07 Insegnamento di GEOMETRIA E ALGEBRA (500473) Impartito presso: FACOLTA'

Dettagli

Lezione Diagonalizzazione ortogonale per matrici simmetriche

Lezione Diagonalizzazione ortogonale per matrici simmetriche Lezione 22 22. Diagonalizzazione ortogonale per matrici simmetriche La Proposizione 2. afferma che ogni matrice simmetrica reale è diagonalizzabile su R: ilrisultatoprincipalediquestasezioneèchelamatricechediagonalizzapuò

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

La forma normale di Schur

La forma normale di Schur La forma normale di Schur Dario A Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi alla forma normale di Schur, alle sue proprietà e alle sue applicazioni

Dettagli

Parte 7. Autovettori e autovalori

Parte 7. Autovettori e autovalori Parte 7. Autovettori e autovalori A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Endomorfismi, 2 Cambiamento di base, 3 3 Matrici simili, 6 4 Endomorfismi diagonalizzabili, 7 5 Autovettori

Dettagli

4. Sottospazi vettoriali Piani e rette in E 3 O

4. Sottospazi vettoriali Piani e rette in E 3 O Indice Prefazione i Capitolo 0. Preliminari 1 1. Insiemistica e logica 1 1.1. Insiemi 1 1.2. Insiemi numerici 2 1.3. Logica matematica elementare 5 1.4. Ancora sugli insiemi 7 1.5. Funzioni 10 1.6. Composizione

Dettagli

Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 2018/2019 Canali A C, L Pa, Pb Z

Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 2018/2019 Canali A C, L Pa, Pb Z Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 208/209 Canali A C, L Pa, Pb Z Durata: 2 ore e 30 minuti Alessandro D Andrea Simone Diverio Paolo Piccinni Riccardo Salvati Manni 2

Dettagli

Algebra lineare e geometria AA Appunti sul cambio di base in uno spazio vettoriale

Algebra lineare e geometria AA Appunti sul cambio di base in uno spazio vettoriale Algebra lineare e geometria AA. -7 Appunti sul cambio di base in uno spazio vettoriale Matrice di un applicazione lineare Siano V e W due spazi vettoriali su un campo K {R, C}, entrambi finitamente generati,

Dettagli

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1.

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1. LEZIONE 16 16.1. Autovalori, autovettori ed autospazi di matrici. Introduciamo la seguente definizione. Definizione 16.1.1. Siano k = R, C e A k n,n. Un numero λ k si dice autovalore di A su k) se rka

Dettagli

Qualche nota sui metodi di link analysis

Qualche nota sui metodi di link analysis Qualche nota sui metodi di link analysis 17 aprile 2009 1 Nozioni utili di algebra lineare Definizione 1 Una matrice reale U di dimensioni n n è ortogonale quando Uv = v per ogni v R n L effetto della

Dettagli

Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010

Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010 Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010 In quetsa dispensa: V è uno spazio vettoriale di dimensione d sul campo complesso C generato dai vettori v 1,..., v d. Le variabili m,

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari Siano X 1,, X n indeterminate Un equazione lineare (o di primo grado) nelle incognite X 1,, X n a coefficienti nel campo K è della forma a 1 X 1 + + a n X n = b, a i, b K,

Dettagli

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof Fabio Perroni 5 Rango Definizione 1 Sia A M m,n (K) una matrice m n a coefficienti nel campo K Il rango

Dettagli

5 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI

5 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici

Dettagli

GEOMETRIA CORREZIONE DELLE PROVE D ESAME

GEOMETRIA CORREZIONE DELLE PROVE D ESAME GEOMETRIA CORREZIONE DELLE PROVE D ESAME 1. Prova del 27 settembre 2011 - A Esercizio 1.1. Si trovino i valori del parametro reale k per cui il sistema lineare (k + 1)x + (k 4)y + z = k (k + 2)x + (k 2)y

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2016-2017 Richiami Algebra Lineare Spazio normato Uno spazio lineare X si dice normato se esiste una funzione

Dettagli

Punti di massimo o di minimo per funzioni di n variabili reali

Punti di massimo o di minimo per funzioni di n variabili reali Punti di massimo o di minimo per funzioni di n variabili reali Dati f : A R n R ed X 0 A, X 0 si dice : punto di minimo assoluto se X A, f ( x ) f ( X 0 ) punto di massimo assoluto se X A, f ( x ) f (

Dettagli

Geometria A. Università degli Studi di Trento Corso di laurea in Matematica A.A. 2017/ Maggio 2018 Prova Intermedia

Geometria A. Università degli Studi di Trento Corso di laurea in Matematica A.A. 2017/ Maggio 2018 Prova Intermedia Geometria A Università degli Studi di Trento Corso di laurea in Matematica A.A. 7/8 Maggio 8 Prova Intermedia Il tempo per la prova è di ore. Durante la prova non è permesso l uso di appunti e libri. Esercizio

Dettagli

Geometria e algebra lineare 7/2/2018 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione

Geometria e algebra lineare 7/2/2018 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione Geometria e algebra lineare 7//08 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione A Esercizio A Siano r la retta passante per i punti A = (0,, 0) e B = (,, ) ed s la retta

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

Capitolo IX DIAGONALIZZAZIONE DI MATRICI SIMMETRICHE

Capitolo IX DIAGONALIZZAZIONE DI MATRICI SIMMETRICHE Capitolo IX DIAGONALIZZAZIONE DI MATRICI SIMMETRICHE 1. Matrici ortogonali Ricordiamo che, nel Cap. VII, abbiamo studiato le matrici di cambio di base in un R spazio vettoriale. In tale occasione, abbiamo

Dettagli

AUTOVALORI. NOTE DI ALGEBRA LINEARE

AUTOVALORI. NOTE DI ALGEBRA LINEARE AUTOVALORI. NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 GENNAIO 2011 1. Il polinomio minimo Sia f : V V un endomorfismo lineare di uno spazio vettoriale di dimensione finita sul campo K. Per ogni

Dettagli

3. Elementi di Algebra Lineare.

3. Elementi di Algebra Lineare. CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari 3. Elementi di Algebra Lineare. 1 Sistemi lineari Sia A IR m n, x IR n di n Ax = b è un vettore di m componenti.

Dettagli

p(ϕ) = a 0 Id + a 1 ϕ + + a n ϕ n,

p(ϕ) = a 0 Id + a 1 ϕ + + a n ϕ n, 1. Autospazi e autospazi generalizzati Sia ϕ: V V un endomorfismo. Allora l assegnazione x ϕ induce un morfismo di anelli ρ: K[x] End K (V ). Più esplicitamente, al polinomio p dato da viene associato

Dettagli

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Esame scritto di Geometria I

Esame scritto di Geometria I Esame scritto di Geometria I Università degli Studi di Trento Corso di laurea in Fisica A.A. 26/27 Appello di febbraio 27 Esercizio Sia f h : R R l applicazione lineare definita da f h (e ) = 2e + (2 h)e

Dettagli

Corso di Matematica Discreta. Anno accademico Appunti sulla diagonalizzazione.

Corso di Matematica Discreta. Anno accademico Appunti sulla diagonalizzazione. Corso di Matematica Discreta. Anno accademico 2008-2009 Appunti sulla diagonalizzazione. Autovalori e autovettori di un endomorfismo lineare. Sia T : V V una applicazione lineare da uno spazio vettoriale

Dettagli

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale CONTROLLI AUTOMATICI LS Ingegneria Informatica Analisi modale Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 5 9334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/~cmelchiorri

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

(c) Determinare per quali valori di k lo spazio delle soluzioni ha dimensione 2:

(c) Determinare per quali valori di k lo spazio delle soluzioni ha dimensione 2: CORSO DI GEOMETRIA E ALGEBRA Cognome e Nome: Corso di Laurea: 7 luglio 2017 Matricola: Anno di corso: x y 1. (8 pt Si consideri il sistema lineare AX = B, dove X = z è il vettore delle t incognite, A e

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A MODELLI e METODI MATEMATICI della FISICA Programma dettagliato del corso - A.A. 2018-19 Lezione 1, 25 febbraio 2019: Organizzazione del corso. Introduzione ai numeri complessi. Rappresentazione cartesiana

Dettagli

Analisi dei dati corso integrato - Algebra lineare, e a b c 0. le soluzioni del sistema lineare omogeneo x d e f 2. a b c.

Analisi dei dati corso integrato - Algebra lineare, e a b c 0. le soluzioni del sistema lineare omogeneo x d e f 2. a b c. Analisi dei dati corso integrato - Algebra lineare 4.3.8 e 5.3.8-1 1. Nella lezione precedente abbiamo definito lo spazio nullo e lo spazio delle colonne di una matrice; ora definiamo lo spazio delle righe

Dettagli

GE210 Geometria e algebra lineare 2 A.A. 2018/2019

GE210 Geometria e algebra lineare 2 A.A. 2018/2019 GE210, I Semestre, Crediti 9 GE210 Geometria e algebra lineare 2 A.A. 2018/2019 Prof. Angelo Felice Lopez 1. Forme bilineari e forme quadratiche Forme bilineari, simmetriche ed antisimmetriche. Esempi:

Dettagli

20 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

20 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 0 gennaio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 7 GIUGNO 06 MATTEO LONGO Ogni versione del compito contiene solo due tra i quattro esercizi 6-7-8-9. Esercizio. Considerare

Dettagli

Prima prova scritta di Geometria 1, 26 gennaio 2018

Prima prova scritta di Geometria 1, 26 gennaio 2018 Prima prova scritta di Geometria 1, 26 gennaio 2018 1. Dimostrare che M A B : Hom(V,W) M(m n,k) è un isomorfismo (lineare, iniettivo e suriettivo), dove M A B associa a un applicazione lineare f : V W

Dettagli