Il Metodo Branch and Bound

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il Metodo Branch and Bound"

Transcript

1 Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale Università di Pisa A.A. 2014/15 L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 1 / 18

2 Metodi risolutivi per la PLI Metodi esatti (garanzia soluzione ottima) metodi poliedrali Branch and bound programmazione dinamica metodi ad hoc Metodi euristici greedy ricerca locale metodi ad hoc L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 2 / 18

3 L albero di enumerazione totale Consideriamo un problema di PLI max c T x Ax b x Z n (P) in cui la regione ammissibile Ω è limitata. Metodo naïf Si calcola la funzione obiettivo in tutte le soluzioni ammissibili (che sono in numero finito) e si trova l ottimo confrontando i valori ottenuti. Per esplorare la regione ammissibile si costruisce l albero di enumerazione totale. L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 3 / 18

4 L albero di enumerazione totale Albero di enumerazione totale Ha per radice il problema P. Facendo una partizione di Ω in due o più sottoinsiemi Ω 1,...,Ω n si ottengono i nodi al primo livello, che corrispondono ai sottoproblemi di P aventi come regioni ammissibili gli insiemi Ω 1,...,Ω n. Il resto dell albero viene generato allo stesso modo, fino ad arrivare alle foglie che corrispondono a sottoproblemi aventi la regione ammissibile vuota o costituita da un solo elemento. L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 4 / 18

5 L albero di enumerazione totale Esempio max 5x 1 +6x 2 3x 1 +4x 2 7 x 0 x Z 2 I vincoli impongono che x 1 {0,1,2}. Partizioniamo Ω in tre sottoinsiemi: Ω = (Ω {x 1 = 0}) (Ω {x 1 = 1}) (Ω {x 1 = 2}), che sull albero di enumerazione totale corrispondono a tre figli del nodo radice: P x 1 = 0 x 1 = 1 x 1 = 2 P 1 P 2 P 3 L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 5 / 18

6 L albero di enumerazione totale Esempio (segue) max 5x 1 +6x 2 3x 1 +4x 2 7 x 0 x Z 2 Analogamente si ha x 2 {0,1}, quindi ogni nodo al primo livello dell albero ha a sua volta due figli (x 2 = 0 e x 2 = 1). L albero di enumerazione totale è: x 1 = 0 x 1 = 1 P x 1 = 2 P 1 P 2 P 3 x 2 = 0 x 2 = 1 x 2 = 0 x 2 = 1 x 2 = 0 x 2 = 1 P 4 P 5 P 6 P 7 P 8 P 9 amm. amm. amm. amm. amm. NON amm. val. 0 val. 6 val. 5 val. 11 val. 10 ottimo L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 6 / 18

7 Il metodo naïf trova una soluzione ottima, ma è impraticabile perché il numero delle soluzioni ammissibili cresce in modo esponenziale rispetto al numero delle variabili del problema. Il metodo Branch and Bound esplora l albero di enumerazione totale senza enumerare esplicitamente tutte le foglie. Notazioni v(p) = valore ottimo di P v I (P) = valutazione inferiore del valore ottimo di P: v I (P) v(p) v S (P) = valutazione superiore del valore ottimo di P: v S (P) v(p) P i = sottoproblema corrispondente ad un nodo dell albero di enumerazione totale L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 7 / 18

8 Per ottenere v I (P) si usano metodi euristici per trovare una soluzione ammissibile. Infatti, se x è ammissibile per P allora c T x = v I (P) si risolve una restrizione di P, cioè un problema ottenuto da P aggiungendo uno o più vincoli Per ottenere v S (P) si risolve un rilassamento di P: continuo: sostituire x i Z con x i R per eliminazione: eliminare uno o più vincoli surrogato: sostituire due o più vincoli con la loro somma pesata lagrangiano (che vedremo in seguito) L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 8 / 18

9 Teorema (regole per potare l albero di enumerazione) Sia x una soluzione ammissibile e v I (P) = c T x. 1. Se la regione ammissibile di P i è vuota, allora in P i non esistono soluzioni ammissibili migliori di x e quindi si chiude il nodo P i 2. Se v S (P i ) v I (P) allora si chiude il nodo P i 3. Se v S (P i ) > v I (P) e l ottimo x del rilassamento di P i è ammissibile per P, allora si aggiorna la soluzione ammissibile con x e si chiude il nodo P i Dimostrazione 1. Ovvio 2. v(p i ) v S (P i ) v I (P) = c T x 3. c T x = v S (P i ) > v I (P) = c T x, cioè x è migliore di x e in P i non ci sono soluzioni ammissibili migliori di x L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 9 / 18

10 Esempio max x 1 +3x 2 x 1 +5x x 1 +2x 2 35 x 0 x Z 2 L ottimo del rilassamento continuo è (7/2,7/2), quindi v S (P) = 14. (P) Arrotondando per difetto le componenti di tale soluzione, otteniamo la soluzione ammissibile (3,3) che fornisce v I (P) = ,14 P L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 10 / 18

11 Esempio (segue) Esploriamo l albero di enumerazione totale istanziando la variabile x 1 perché ha un valore frazionario nella soluzione ottima del rilassamento continuo. Distinguiamo due casi: x 1 3 oppure x 1 4 in modo che (7/2,7/2) non sia ottima per nessuno dei rilassamenti continui dei nodi al primo livello. x x 1 L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 11 / 18

12 Esempio (segue) Vicino ad ogni nodo P i indichiamo nell ordine i valori v I (P) e v S (P i ). 12,14 P x 1 3 x ,13 12,8 P 1 P 2 La soluzione ottima del rilassamento continuo di P 1 è (3, 18 5 ) di valore 13.8, quindi v S (P 1 ) = 13.8 = 13 > 12 = v I (P), pertanto P 1 rimane aperto. La soluzione ottima del rilassamento continuo di P 2 è (4, 3 2 ) di valore 8.5, quindi v S (P 2 ) = 8 < 12 = v I (P), quindi chiudiamo P 2. L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 12 / 18

13 Esempio (segue) L ottimo del rilassamento continuo di P 1 è (3, 18 5 ) quindi dal nodo P 1 istanziamo la variabile x 2 : 12,14 P 12,13 12,8 P 1 P 2 x 2 3 x 2 4 x 1 3 x 1 4 P 3 P 4 L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 13 / 18

14 Esempio (segue) 12,14 P x 1 3 x ,13 P 1 x 2 3 x ,12 13,13 12,8 P 2 P 3 P 4 L ottimo del rilassamento continuo di P 3 è (3,3), quindi v S (P 3) = 12 = v I (P), pertanto chiudiamo P 3. L ottimo del rilassamento continuo di P 4 è (1,4), quindi v S (P 4) = 13 > 12 = v I (P), ma (1, 4) è ammissibile. Aggiorniamo la soluzione ammissibile (3, 3) con la nuova (1, 4), poniamo v I (P) = 13 e chiudiamo P 4. Tutti i nodi dell albero sono chiusi, quindi la soluzione ottima è (1, 4). L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 14 / 18

15 L implementazione del metodo Branch and Bound dipende da: come si trova una soluzione ammissibile iniziale (cerco una soluzione buona e veloce da trovare) bound: quale rilassamento si sceglie per P e per i sottoproblemi P i (cerco rilassamenti buoni e veloci da risolvere) branch: quale partizione si sceglie per ogni sottoproblema P i (cerco una partizione in modo che l ottimo del rilassamento dei nodi figli di P i sia diverso dall ottimo del rilassamento di P i) in quale ordine si esaminano i nodi dell albero: in ampiezza: prima i nodi del livello più alto, poi quelli del livello successivo... in profondità: se un nodo è aperto, il nodo successivo è il primo dei suoi figli; mentre se un nodo è chiuso, si ritorna indietro verso il nodo radice fino a quando si trova un nodo che ha un figlio non ancora esaminato. Con questa scelta si cerca di rendere minimo il numero dei nodi aperti ancora da esaminare (spazio di memoria occupato). in qualità: tra i nodi aperti viene scelto il più promettente, cioè quello con il massimo valore di v S (P i). Con questa scelta si cerca di rendere minimo il numero totale di nodi esaminati. L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 15 / 18

16 Nell esempio precedente: soluzione ammissibile è ottenuta per arrotondamento a partire dall ottimo del rilassamento di P bound: rilassamento continuo per P e P i branch: binario su una variabile frazionaria dell ottimo del rilassamento di P i esplorazione dell albero in ampiezza L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 16 / 18

17 Esercizio Consideriamo un problema di PLI di massimo. In figura è riportato l albero di branch and bound, in cui per alcuni nodi è indicata la valutazione superiore ottenuta risolvendo un rilassamento. Per il problema è nota una soluzione ammissibile di valore P 90 P 1 93 P 2 84 P 3 P 4 88 P 5 P 6 a) In quale intervallo è compreso il valore ottimo? Indicare l intervallo più stringente. b) È possibile chiudere alcuni nodi dell albero? Se sì, quali? c) È possibile avere v S (P 3) = 91? Perché? L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 17 / 18

18 Esercizio (segue) Consideriamo un problema di PLI di massimo. In figura è riportato l albero di branch and bound, in cui per alcuni nodi è indicata la valutazione superiore ottenuta risolvendo un rilassamento. Per il problema è nota una soluzione ammissibile di valore P 90 P 1 93 P 2 84 P 3 P 4 88 P 5 P 6 d) È possibile avere v S(P 6) = 89? Perché? e) Dopo aver risolto il rilassamento del problema P 3, è possibile chiudere tutti i nodi dell albero? Se sì, in quali casi? f) Dopo aver risolto il rilassamento del problema P 6, è possibile chiudere tutti i nodi dell albero? Se sì, in quali casi? L. Galli Corso di Ricerca Operativa 2 - Laurea Magistrale in Ingegneria Gestionale Università di Pisa 18 / 18

Problemi di localizzazione impianti

Problemi di localizzazione impianti Problemi di localizzazione impianti Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 2 Dicembre 2014 Ricerca Operativa 2 Laurea

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Algoritmi enumerativi

Algoritmi enumerativi Capitolo 7 Algoritmi enumerativi Come abbiamo visto, né gli algoritmi greedy né quelli basati sulla ricerca locale sono in grado, in molti casi, di garantire l ottimalità della soluzione trovata. Nel caso

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore ITTS Vito Volterra Progetto ABACUS Ottimizzazione combinatoria Il problema del commesso viaggiatore Studente: Davide Talon Esame di stato 2013 Anno scolastico 2012-2013 Indice 1. Introduzione........................................

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

Appunti di Ricerca Operativa

Appunti di Ricerca Operativa Appunti di Ricerca Operativa 0/0 Prefazione La Ricerca Operativa è un campo in continua evoluzione, il cui impatto sulle realtà aziendali ed organizzative è in costante crescita. L insegnamento di questa

Dettagli

3.4 Metodo di Branch and Bound

3.4 Metodo di Branch and Bound 3.4 Metodo di Branch and Bound Consideriamo un generico problema di Ottimizzazione Discreta dove X è la regione ammissibile. (P ) z = max{c(x) : x X} Metodologia generale di enumerazione implicita (Land

Dettagli

Algoritmo di Branch & Bound

Algoritmo di Branch & Bound Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Algoritmo di Branch & Bound Docente: Renato Bruni bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

montagna ai trasporti internazionali Luca Bertazzi

montagna ai trasporti internazionali Luca Bertazzi Il problema dello zaino: dalla gita in montagna ai trasporti internazionali Luca Bertazzi 0 Il problema dello zaino Zaino: - capacità B Oggetti (items): - numero n - indice i =1,2,...,n - valore p i -

Dettagli

Modelli di Programmazione Lineare. PRTLC - Modelli

Modelli di Programmazione Lineare. PRTLC - Modelli Modelli di Programmazione Lineare PRTLC - Modelli Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo Rilassamento continuo - generazione

Dettagli

Un esempio di applicazione della programmazione lineare intera all ingegneria del software: stima del worst-case execution time di un programma

Un esempio di applicazione della programmazione lineare intera all ingegneria del software: stima del worst-case execution time di un programma Un esempio di applicazione della programmazione lineare intera all ingegneria del software: stima del worst-case execution time di un programma Corso di Ricerca Operativa per il Corso di Laurea Magistrale

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

Soluzione dei problemi di Programmazione Lineare Intera

Soluzione dei problemi di Programmazione Lineare Intera Fondamenti di Ricerca Operativa T-A a.a. 2015-2016 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Paolo Tubertini, Daniele Vigo rev. 2. ottobre 2016 Fondamenti di

Dettagli

Un problema di Capital Budgeting

Un problema di Capital Budgeting LABORATORIO RICERCA OPERATIVA Un problema di Capital Budgeting Laura Palagi Dipartimento di Ingegneria informatica automatica e gestionale A. Ruberti Sapienza Universita` di Roma Capital Budgeting (Pianificazione

Dettagli

Sommario della lezione

Sommario della lezione Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/36 Sommario della lezione Ulteriori esempi di applicazione della Programmazione Dinamica Esempio di applicazione

Dettagli

1 Breve introduzione ad AMPL

1 Breve introduzione ad AMPL 1 Breve introduzione ad AMPL Il primo passo per risolvere un problema reale attraverso strumenti matematici consiste nel passare dalla descrizione a parole del problema al modello matematico dello stesso.

Dettagli

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 33. Docente: Laura Palagi

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 33. Docente: Laura Palagi Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 33 Docente: Laura Palagi Homework in Ricerca Operativa gruppo n 33 Turni del Personale Martina Conti

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

Soluzione dei problemi di Programmazione Lineare Intera

Soluzione dei problemi di Programmazione Lineare Intera Fondamenti di Ricerca Operativa T-A a.a. 2014-2015 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Daniele Vigo rev. 1.1.a ottobre 2014 Fondamenti di Ricerca Operativa

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

Esame di Ricerca Operativa - 20 settembre 2007 Facoltà di Architettura - Udine - CORREZIONE -

Esame di Ricerca Operativa - 20 settembre 2007 Facoltà di Architettura - Udine - CORREZIONE - Esame di Ricerca Operativa - settembre 7 Facoltà di rchitettura - Udine - CORREZIONE - Problema ( punti): Un azienda pubblicitaria deve svolgere un indagine di mercato per lanciare un nuovo prodotto. L

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione

Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione Versione 11/03/2004 Contenuto e scopo esercitazione Contenuto esempi di problema di programmazione

Dettagli

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio Il Concetto Intuitivo di Calcolatore Fondamenti di Informatica A Ingegneria Gestionale Università degli Studi di Brescia Docente: Prof. Alfonso Gerevini I Problemi e la loro Soluzione Problema: classe

Dettagli

Il risolutore. Docente: M. Sechi - Elementi di informatica e programmazione Università degli studi di Brescia D.I.M.I - A.A.

Il risolutore. Docente: M. Sechi - Elementi di informatica e programmazione Università degli studi di Brescia D.I.M.I - A.A. Università degli Studi di Brescia Elementi di informatica e Dipartimento di Ingegneria Meccanica e Industriale Dipartimento di Ingegneria Meccanica e Industriale Programmazione EXCEL Docente: Marco Sechi

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

Altri metodi di indicizzazione

Altri metodi di indicizzazione Organizzazione a indici su più livelli Altri metodi di indicizzazione Al crescere della dimensione del file l organizzazione sequenziale a indice diventa inefficiente: in lettura a causa del crescere del

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni CARLO MANNINO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

16.3.1 Alberi binari di ricerca

16.3.1 Alberi binari di ricerca 442 CAPITOLO 16. STRUTTURE DI DATI DINAMICHE root 7 5 11 2 8 13 10 Figura 16.11 Esempio di albero binario: ogni nodo contiene il dato da immagazzinare e tre puntatori che definiscono le sue relazioni di

Dettagli

Ottimizzazione in ECLiPSe

Ottimizzazione in ECLiPSe OTTIMIZZAZIONE In molte applicazioni non siamo interessati a soluzioni ammissibili, ili, ma alla soluzione ottima rispetto a un certo criterio. ENUMERAZIONE trova tutte le soluzioni ammissibili scegli

Dettagli

1. Classificazione delle risorse

1. Classificazione delle risorse 1. Classificazione delle risorse Classificazione delle risorse in base alla disponibilità. - Risorse rinnovabili Sono risorse utilizzate per l esecuzione di una attività per tutta la sua durata, ma sono

Dettagli

La programmazione con vincoli in breve. La programmazione con vincoli in breve

La programmazione con vincoli in breve. La programmazione con vincoli in breve Obbiettivi Introdurre la nozione di equivalenza di CSP. Dare una introduzione intuitiva dei metodi generali per la programmazione con vincoli. Introdurre il framework di base per la programmazione con

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Dr Maria Federico Programmazione dinamica Solitamente usata per risolvere problemi di ottimizzazione il problema ammette

Dettagli

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 28 novembre 2005 SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno Cognome : XXXXXXXXXXXXXXXXX Nome : XXXXXXXXXXXXXX VALUTAZIONE

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione La Codifica dell informazione (parte 1) Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Docente:

Dettagli

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 1.7 Servizi informatici. Un negozio di servizi informatici stima la richiesta di ore di manutenzione/consulenza per i prossimi cinque mesi: mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 All inizio

Dettagli

Management Sanitario. Modulo di Ricerca Operativa

Management Sanitario. Modulo di Ricerca Operativa Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di

Dettagli

LABORATORIO DI ANALISI DEI SISTEMI

LABORATORIO DI ANALISI DEI SISTEMI LABORATORIO DI ANALISI DEI SISTEMI Si utilizzerà, come strumento di lavoro, un foglio elettronico, il più diffuso Excel o anche quello gratuito di OpenOffice (www.openoffice.org). Tale scelta, pur non

Dettagli

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Problemi combinatorici (Gennaio 2006)

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Problemi combinatorici (Gennaio 2006) Claudio Arbib Universitàdi L Aquila Ricerca Operativa Problemi combinatorici (Gennaio 2006) Sommario Problemi combinatorici Ottimizzazione combinatoria L algoritmo universale Il metodo greedy Problemi

Dettagli

CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA

CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA Molto spesso i risultati che si desidera ottenere come soluzione di un problema di programmazione lineare sono numeri interi, ad es. il numero di vagoni ferroviari

Dettagli

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale di Francesco Maria Milizia francescomilizia@libero.it Model Checking vuol dire cercare di stabilire se una formula è vera

Dettagli

0 A B I C O L M P E Q R F G D H N *

0 A B I C O L M P E Q R F G D H N * UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Modelli di Sistemi di Produzione I scritti d'esame appelli 2004/05 e 2005/06 Esercizio 1 job 3: I (M 1, 3) L (M 2, 4) M (M 3, 11)

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

Minimo Albero Ricoprente

Minimo Albero Ricoprente Minimo lbero Ricoprente Pag. 1/20 Minimo lbero Ricoprente Il problema della definizione di un Minimo lbero Ricoprente trova applicazione pratica in diverse aree di studio, quali ad esempio la progettazione

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati Strumenti della Teoria dei Giochi per l Informatica AA 2009/10 Lecture 22: 1 Giugno 2010 Meccanismi Randomizzati Docente Vincenzo Auletta Note redatte da: Davide Armidoro Abstract In questa lezione descriveremo

Dettagli

STRUTTURE NON LINEARI

STRUTTURE NON LINEARI PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo

Dettagli

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi Problemi di soddisfacimento di vincoli Maria Simi a.a. 2014/2015 Problemi di soddisfacimento di vincoli (CSP) Sono problemi con una struttura particolare, per cui conviene pensare ad algoritmi specializzati

Dettagli

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11 Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005 Docente: Ugo Vaccaro Lezione 11 In questa lezione vedremo alcune applicazioni della tecnica greedy al progetto di algoritmi on-line. Vediamo

Dettagli

METODI DELLA RICERCA OPERATIVA

METODI DELLA RICERCA OPERATIVA Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco (mdifrance@unica.it) i i Dott.ing. Maria Ilaria Lunesu (ilaria.lunesu@unica.it)

Dettagli

Ottimizzazione topologica di reti di tipo Internet Protocol con il metodo del Local Branching

Ottimizzazione topologica di reti di tipo Internet Protocol con il metodo del Local Branching POLITECNICO DI TORINO I Facoltà di Ingegneria Corso di Laurea in Matematica per le Scienze dell Ingegneria Tesi di Laurea Ottimizzazione topologica di reti di tipo Internet Protocol con il metodo del Local

Dettagli

Ottimizazione vincolata

Ottimizazione vincolata Ottimizazione vincolata Ricordiamo alcuni risultati provati nella scheda sulla Teoria di Dini per una funzione F : R N+M R M di classe C 1 con (x 0, y 0 ) F 1 (a), a = (a 1,, a M ), punto in cui vale l

Dettagli

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 1) In un problema multiattributo i pesi assegnati ai vari obiettivi ed i risultati che essi assumono in corrispondenza alle varie alternative

Dettagli

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa XI Nota degli autori 1 Capitolo 1 Introduzione alla ricerca operativa 1 1.1 Premessa 1 1.2 Problemi di ottimizzazione 6 1.3 Primi approcci ai modelli di ottimizzazione 13 1.4 Uso del risolutore della Microsoft

Dettagli

Sintesi di reti combinatorie. Sommario. Motivazioni. Sommario. Funzioni Espressioni. M. Favalli

Sintesi di reti combinatorie. Sommario. Motivazioni. Sommario. Funzioni Espressioni. M. Favalli Sommario Sintesi di reti combinatorie Funzioni Espressioni 1 Teorema di espansione di Shannon (Boole) M. Favalli Engineering Department in Ferrara 2 Forme canoniche 3 Metriche per il costo di una rete

Dettagli

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11 Modelli dei Sistemi di Produzione Modelli e lgoritmi della Logistica 00- Scheduling: Macchina Singola CRLO MNNINO Saienza Università di Roma Diartimento di Informatica e Sistemistica Il roblema /-/ w C

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra quelle riportate). Se

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

3. Gli algoritmi di ottimizzazione.

3. Gli algoritmi di ottimizzazione. Marcello Salmeri - Progettazione Automatica di Circuiti e Sistemi Elettronici Capitolo 3-3. Gli algoritmi di ottimizzazione. I grafi. La teoria dei grafi è un comodo strumento per la definizione e la formalizzazione

Dettagli

Informatica 3. LEZIONE 23: Indicizzazione. Modulo 1: Indicizzazione lineare, ISAM e ad albero Modulo 2: 2-3 trees, B-trees e B + -trees

Informatica 3. LEZIONE 23: Indicizzazione. Modulo 1: Indicizzazione lineare, ISAM e ad albero Modulo 2: 2-3 trees, B-trees e B + -trees Informatica 3 LEZIONE 23: Indicizzazione Modulo 1: Indicizzazione lineare, ISAM e ad albero Modulo 2: 2-3 trees, B-trees e B + -trees Informatica 3 Lezione 23 - Modulo 1 Indicizzazione lineare, ISAM e

Dettagli

Teoria dei Giochi. Teoria dei Giochi

Teoria dei Giochi. Teoria dei Giochi Teoria dei Giochi E uno strumento decisionale, utile per operare previsioni sul risultato quando un decisore deve operare in concorrenza con altri decisori. L ipotesi principale su cui si basa la TdG è

Dettagli

Corso di Analisi Matematica. Successioni e serie numeriche

Corso di Analisi Matematica. Successioni e serie numeriche a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Successioni e serie numeriche Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Fondamenti di Ricerca Operativa

Fondamenti di Ricerca Operativa Politecnico di Milano Anno Accademico 2010/2011 Fondamenti di Ricerca Operativa Corso del Prof. Edoardo Amaldi Stefano Invernizzi Facoltà di Ingegneria dell Informazione Corso di Laurea Magistrale in Ingegneria

Dettagli

UNIVERSITA DEGLI STUDI DI GENOVA Facoltà di Scienze M. F. N.

UNIVERSITA DEGLI STUDI DI GENOVA Facoltà di Scienze M. F. N. ARGOMENTO DELLA LEZIONE N.1 Infiniti e infinitesimi Definizioni confronto. ARGOMENTO DELLA LEZIONE N.2 Ordine di infinitesiomo e di infinito Formula di Taylor con resto di Peano Addì 28.2.11 Addì 3.3.11

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

Computational Game Theory

Computational Game Theory Computational Game Theory Vincenzo Bonifaci 24 maggio 2012 5 Regret Minimization Consideriamo uno scenario in cui un agente deve selezionare, più volte nel tempo, una decisione tra un insieme di N disponibili:

Dettagli

Ricerca euristica. Funzioni di valutazione euristica. Esempi di euristica. Strategia best-first: esempio. Algoritmo di ricerca Best-First 03/03/15

Ricerca euristica. Funzioni di valutazione euristica. Esempi di euristica. Strategia best-first: esempio. Algoritmo di ricerca Best-First 03/03/15 Ricerca euristica Ricerca euristica Maria Simi a.a. 2014/2015 La ricerca esaustiva non è praticabile in problemi di complessità esponenziale Noi usiamo conoscenza del problema ed esperienza per riconoscere

Dettagli

Scopo intervento. Integrazione scorte e distribuzione. Indice. Motivazioni

Scopo intervento. Integrazione scorte e distribuzione. Indice. Motivazioni Scopo intervento Integrazione scorte e distribuzione Modelli a domanda costante Presentare modelli e metodi utili per problemi di logistica distributiva Indicare limiti degli stessi e come scegliere tra

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down

Dettagli

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Esercizio n.1 Un agenzia finanziaria deve investire 1000000 di euro di un suo cliente in fondi di investimento. Il mercato offre cinque

Dettagli

Sistemi di Numerazione Binaria NB.1

Sistemi di Numerazione Binaria NB.1 Sistemi di Numerazione Binaria NB.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

Algoritmo proposto. Maria Silvia Pini, Francesca Rossi, K. Brent Venable. Dipartimento di Matematica Pura e Applicata Università di Padova

Algoritmo proposto. Maria Silvia Pini, Francesca Rossi, K. Brent Venable. Dipartimento di Matematica Pura e Applicata Università di Padova Algoritmo proposto Maria Silvia Pini, Francesca Rossi, K. Brent Venable Dipartimento di Matematica Pura e Applicata Università di Padova Algoritmo proposto L agoritmo che proponiamo Parte da una soluzione

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie TEORIA RELAZIONALE: INTRODUZIONE 1 Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

Esercizio 1: Automobili

Esercizio 1: Automobili Esercizio 1: Automobili Le variabili decisionali sono i quattro pesi da attribuire alle quattro caratteristiche. Si tratta di variabili intere maggiori o uguali a 1, minori o uguali a 5, che sommate devono

Dettagli

Problemi di Programmazione Lineare Intera

Problemi di Programmazione Lineare Intera Capitolo 4 Problemi di Programmazione Lineare Intera La Programmazione Lineare Intera (PLI) tratta il problema della massimizzazione (minimizzazione) di una funzione di più variabili, soggetta a vincoli

Dettagli

INTRODUZIONE AL CONTROLLO OTTIMO

INTRODUZIONE AL CONTROLLO OTTIMO INTRODUZIONE AL CONTROLLO OTTIMO Teoria dei Sistemi Ingegneria Elettronica, Informatica e TLC Prof. Roberto Zanasi, Dott. Giovanni Azzone DII - Università di Modena e Reggio Emilia AUTOLAB: Laboratorio

Dettagli