MODULO 1 UNITA DIDATTICA 2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MODULO 1 UNITA DIDATTICA 2"

Transcript

1 MODULO 1 Investimento e rischio di investimento UNITA DIDATTICA 2 Nozioni di base per la valutazione degli investimenti Elementi di distribuzione dei rendimenti e Analisi Rendimento - Rischio per il portafoglio azionario Dispensa a cura della Prof.ssa Anna Maria D Arcangelis Università degli Studi della Tuscia Sistema Qualità Certificato UNI EN ISO 9001 (certificato N IT02/228)

2 Indice 1 La distribuzione normale I parametri fondamentali della distribuzione 5 2 La Moderna Teoria di Portafoglio La stima del rendimento di un singolo titolo La stima del rischio di un singolo titolo La stima del rendimento per un portafoglio di titoli La stima del rischio per un portafoglio di titoli 12 3 I principi fondamentali della teoria di Markowitz Il modello di Markowitz: punti di forza e limiti 21 4La costruzione della frontiera efficiente 27 5 Il modello di Tobin: quale contributo alla MTP? 29 6 Un introduzione alla Capital Market Line 31 7 Sharpe - Il Single Index Model 33 8 Il Capital Asse Pricing Model La CML La SML Limiti del CAPM 40 9 Il modello di Fama-French Il modello del dividendo Modello di crescita costante Modello di crescita a due stadi 44 Rev. 15 VI

3 1. La distribuzione normale La curva normale viene spesso chiamata "distribuzione gaussiana", anche se più precisamente dovrebbe essere citata come "distribuzione di Gauss-LaPlace" (Laplace la utilizzò nel 1783 per descrivere la distribuzione degli errori; nel 1809, Gauss la riprese, impiegandola nell'analisi di dati astronomici). La normale è costruita in modo tale che l'area sottesa alla curva in figura rappresenti la probabilità. Perciò, l'area totale è uguale a 1 (100% probabilità). La distribuzione di probabilità normale trova applicazioni in molteplici discipline, e dunque anche in finanza: in particolare vedremo come, l ipotesi di normalità dei rendimenti azionari (o Rev. 15 VI

4 di log-normalità dei prezzi 1 ) rivesta un ruolo cruciale nel processo di valutazione dei titoli e dei portafogli mobiliari. Ipotizzare che i rendimenti dei titoli azionari si distribuiscano secondo una normale è estremamente utile, perché permette di lavorare esclusivamente con la media (µ) e con la varianza ( 2 ) o deviazione standard (). La gaussiana è descritta completamente dalla media e dalla deviazione standard della distribuzione: µ e. Cerchiamo adesso di introdurre il concetto di distribuzione di probabilità in modo estremamente intuitivo. Faremo in modo di eliminare l utilizzo di formule e di espressioni complesse, precisando però che la trattazione, portata avanti in questo modo, non è certo esaustiva dell argomento. Immaginiamo di voler misurare un oggetto, un numero n di volte e di avere uno strumento con un elevato grado di precisione, che ci consenta di effettuare tali misurazioni. Nonostante la precisione del nostro misuratore, sarà inevitabile commettere degli errori: avremo sempre dei risultati differenti, dovuti all'inevitabile imperfezione del nostro strumento e del 1 Una variabile casuale si distribuisce in modo lognormale se il logaritmo naturale della stessa si distribuisce in modo normale. Se i prezzi azionari St si distribuiscono in modo lognormale, il logaritmo naturale dei prezzi (lnst) si distribuisce in modo normale. ln(s t /S 0 ) = r t N S t = S 0 e rt in cui e rt è il rendimento composto nel continuo. Rev. 15 VI

5 nostro operato, che sono detti errori accidentali. Ebbene, se rappresentassimo le misure che otteniamo in un grafico, e poi facessimo crescere il numero di misurazioni n sempre di più, al limite ad infinito, allora ci accorgeremmo che il grafico si avvicina sempre di più alla curva di Gauss raffigurata sopra. 1.1 I parametri fondamentali della distribuzione f ( x) = 2 1 x µ 1 2 e 2π Vista in questo modo, la formula che esprime la distribuzione normale potrebbe lasciare perplesso chi si avvicina per la prima volta alla modellistica statistico quantitativa alla base della modellistica finanziaria prevalente. Il nostro scopo non è quello di analizzare nello specifico la funzione, ma semplicemente quello di osservare quali sono i parametri che caratterizzano la distribuzione e ne influenzano la forma. Ad una prima osservazione si vede subito come, tranne µ e, le altre grandezze siano delle costanti: e è una costante detta numero di Nepero, già trattato nella dispensa introduttiva al mercato obbligazionario, all incirca pari a 2,7 (2, ); π (pi greco) è Rev. 15 VI

6 invece una costante matematica approssimativamente uguale a 3,14 (3, ) Nella normale µ rappresenta il valore medio della distribuzione, mentre rappresenta la deviazione standard: dare una rappresentazione dei rendimenti azionari tramite una distribuzione caratterizzata esclusivamene da tali parametri è molto semplice. Ed è proprio tale semplicità che giustifica il ricorso all ipotesi di normalità dei rendimenti azionari: significa essere in grado di descrivere interamente le caratteristiche di un titolo facendo uso di soli 2 valori (µ e ), facilmente calcolabili. Ciò significa che, sapendo che i rendimenti giornalieri di un titolo si distribuiscono in modo normale (con deviazione standard e media µ), è possibile calcolare la probabilità, ad esempio, che il rendimento in una certa giornata sia inferiore ad un certo valore Come si evince dalla figura in alto, la media ( X ) è il valore attorno al quale si concentrano il maggior numero di misurazioni effettuate. Rev. 15 VI

7 La normale è simmetrica rispetto alla media: Il 50% della distribuzione è sotto la media, quindi la probabilità di avere dei rendimenti inferiori alla media è 50%. La probabilità di ottenere dei rendimenti compresi nel range media ± una volta la deviazione standard è 0,682 La probabilità di ottenere dei rendimenti compresi nel range media ± due volte la deviazione standard è 0,954 La probabilità di ottenere dei rendimenti compresi nel range media ± tre volte la deviazione standard è 0,998 Tuttavia, non sempre è possibile gestire i titoli o i portafogli di titoli facendo ricorso a tale ipotesi: quando l ipotesi di normalità dei rendimenti viene meno è necessario ricorrere all utilizzo di altri parametri, oltre la media e la varianza, per stimare i rendimenti dei titoli. Asimmetria (Skewness): è un indice statistico che ci dice quanto il baricentro di una distribuzione sia spostato rispetto al suo valore medio (asse delle ordinate); vediamo graficamente cosa comporta un asimmetria a destra (generalmente utilizzata in finanza per rappresentare la distribuzione del rendimento dei titoli). Rev. 15 VI

8 asimmetria a destra Distribuzioni asimmetriche (asimmetria negativa a sinistra; asimmetria positiva a destra) Risp Rispetto alla normale, l asimmetria a destra comporta: - possibilità di piccole perdite con probabilità elevata - possibilità di alti guadagni con probabilità bassa Curtosi: è un indice statistico che ci fornisce indicazioni circa l appiattimento della curva su se stessa; se messa a confronto con una normale, in una distribuzione più ripida della normale (leptocurtica) la parte più consistente dei rendimenti è concentrata intorno al valore medio (è quindi meno probabile andare incontro a rendimenti o troppo negativi o troppo positivi). Una distribuzione più schiacciata rispetto alla normale si dice invece platicurtica ed evidenzia una maggiore probabilità di registrare rendimenti lontani dalla media. La normale ha curtosi pari a 3; una distribuzione leptocurtica ha indice di curtosi maggiore di 3; una distribuzione platicurtica ha curtosi minore di 3. Rev. 15 VI

9 Leptocurtica molto più alta rispetto alla normale Platicurtica molto più schiacciata rispetto alla normale 2. La Moderna Teoria di Portafoglio La Modern Portfolio Theory prende le mosse dal modello di Markowitz, elaborato dall autore nel corso degli anni 50. L obiettivo della teoria è quello di individuare le combinazioni più efficienti di asset allocation partendo dall universo dei titoli del mercato. La novità del modello di Markowitz è nella sua capacità di sintetizzare la complessa architettura del mercato in poche variabili quantitative (rendimento e rischio), che inserite in un modello di ottimizzazione permette al gestore di individuare i portafogli ottimi. Per ogni strumento finanziario è necessario, quindi, calcolare una coppia di indicatori che ne definiscono in pieno le caratteristiche: il rendimento atteso e il rischio. Il rendimento atteso - la performance complessiva che un investitore che acquista il titolo può ragionevolmente attendersi dall investimento. Rev. 15 VI

10 Il rischio cioè la futura variabilità di quella performance, la potenziale ampiezza delle sue oscillazioni. Ogni strumento finanziario è quindi descrivibile utilizzando una combinazione di rendimento e rischio. Noti questi due valori ogni investitore sarà in grado di effettuare le proprie scelte. Infatti - a parità di rischio, ogni investitore sceglierà gli investimenti che presentano il maggior rendimento atteso - a parità di rendimento atteso, ogni investitore sceglierà gli investimenti che presentano il minor rischio Rend atteso A B D C Rischio Fra A e B, a parità di rendimento atteso, l investitore razionale sceglierà il titolo A (meno rischioso) Fra B e C, a parità di rischio l investitore sceglierà il titolo B (rendimento atteso più elevato) Fra A e C, l investitore razionale sceglierà facilmente il titolo A (rendimento atteso più elevato e rischio inferiore) Il problema è scegliere tra D e B: la scelta dipende dalla propensione al rischio dell investitore; vedremo più avanti come effettuare tale selezione. Rev. 15 VI

11 2.1 La stima del rendimento di un singolo titolo Tale stima può essere effettuata utilizzando una serie storica. Il rendimento atteso del periodo t per il titolo Generali è: dove: R Gen, t = P Gen, t P P Gen, t 1 Gen, t 1 + D P Gen, t 1 Gen, t 1 P Gen, t = prezzo del titolo Generali al tempo t P = prezzo del titolo Generali al tempo t-1 Gen, t 1 D Gen, t 1 = dividendo staccato dal titolo Generali tra t-1 e t 2.2 La stima del rischio di un singolo titolo Il rischio di un titolo è la variabilità collegata ai suoi rendimenti: pertanto il rischio può essere calcolato facendo riferimento al concetto di varianza dei rendimenti: 2 GEN = n t= 1 ( R Gen R n 1 medio ) 2 Spesso si lavora con la radice quadrata della varianza: la deviazione standard. Gen = n t= 1 ( R Gen R n 1 medio ) 2 Rev. 15 VI

12 2.3 La stima del rendimento per un portafoglio di titoli Il rendimento di portafoglio è semplice da calcolare. Il rendimento è, infatti, una funzione additiva: il rendimento di un portafoglio è la somma (ponderata per i pesi con cui i titoli partecipano all aggregato) dei rendimenti dei titoli che compongono il portafoglio: R n p, t = x ir i,t i= 1 Per due titoli (Generali e Telecom) in un portafoglio equiponderato si ha: R p = x R + x R = 0,50 R + 0, 50 Gen Gen Tel Tel Gen R Tel 2.4 La stima del rischio per un portafoglio di titoli Diversamente dal rendimento, il rischio di un portafoglio è legato, oltre che al rischio dei singoli titoli, anche al legame tra gli stessi. In altri termini, il rischio di un portafoglio dipende - dai rischi specifici dei singoli titoli (misurati dalle loro varianze) - dal rischio sistematico complessivo, che deriva dal legame (misurato dalla covarianza) fra le coppie dei rendimenti dei titoli presi a due a due Rev. 15 VI

13 E d uso sintetizzare il rischio nella matrice di varianze e covarianze, che riporta tutte le varianze e le covarianze rilevanti ai fini del portafoglio. Per 4 titoli A, B, C, D la matrice varianze covarianze assume la seguente forma 2 A BA CA DA AB 2 B CB DB AC BC 2 C DC AD BD CD 2 D Sulla diagonale principale ci sono le n=4 varianze 2 i ( Reff R = n 1 med ) 2 Fuori dalla diagonale principale ci sono, invece, le n (n-1) covarianze: i, j ( Ri Rmedio i )( R = n 1 R i j j medio j ) La covarianza è un indicatore che esprime il legame (positivo, negativo o nullo) fra le variabili. Tale indicatore varia da meno infinito a più infinito. Ragionando su due titoli A e B: - se i titoli A e B sono legati positivamente in modo perfetto (se A sale dell 1%, B sistematicamente il 100% Rev. 15 VI

14 delle volte- sale anch esso), la covarianza assume valore positivo massimo pari a +1 - se i titoli A e B sono legati positivamente in modo non perfetto (se A sale dell 1%, anche B tende a salire dell 1%, ma non sistematicamente), la covarianza assume valore positivo inferiore a 1 - se i titoli A e B sono legati negativamente in modo perfetto (se A sale dell 1%, B sistematicamente scende dell 1%), la covarianza assume valore negativo pari a -1 - e i titoli A e B sono legati negativamente in modo non perfetto (se A sale dell 1%, B scende dell 1%, ma non sistematicamente), la covarianza assume valore negativo superiore a -1 - se i titoli A e B sono indipendenti (se A sale dell 1%, B talvolta sale, talvolta scende, talvolta non si muove), la covarianza ha valore nullo E usuale riferirsi alla correlazione piuttosto che alla covarianza. ρ = ij i ij j Il vantaggio della correlazione è che tale indicatore si muove entro un range definito da +1 a -1, ciò dipende dal fatto che diversamente dalla covarianza (il cui valore dipende dal legame positivo o negativo fra i titoli e dall entità dei singoli scarti Rev. 15 VI

15 rispetto alla media [(Ri R medio,i) e (Rj R medio,j)], la correlazione dipende unicamente dal legame fra gli asset che può essere perfetto (correlazione +1 o -1), blando (correlazione < +1 o > -1) o nullo (correlazione 0). - se i titoli A e B sono legati positivamente in modo perfetto (se A sale dell 1%, B sistematicamente sale dell 1%), la correlazione assume valore +1 - se i titoli A e B sono legati positivamente in modo non perfetto (se A sale dell 1%, anche B tende a salire dell 1%, ma non sistematicamente), la correlazione assume valore tra +1 e 0 - se i titoli A e B sono legati negativamente in modo perfetto (se A sale dell 1%, B sistematicamente scende dell 1%), la correlazione assume valore -1 - se i titoli A e B sono legati negativamente in modo non perfetto (se A sale dell 1%, B scende dell 1%, ma non sistematicamente), la correlazione assume valore tra 0 e -1 - se i titoli A e B sono indipendenti (se A sale dell 1%, B talvolta sale, talvolta scende, talvolta non si muove), la correlazione assume valore 0 Se si tiene conto di tutte le varianze e covarianze, il rischio (varianza) di un portafoglio è quindi data da: Rev. 15 VI

16 La somma delle varianze (pesate) dei singoli titoli (attenzione, i pesi sono elevati a quadrato) n 2 2 x i i 1 La somma delle covarianze (pesate) delle diverse coppie di titoli i j x ix j i, j oppure, usando le correlazioni e ricordando che si arriva i, j = ρi, j i j x ρ, i j x i j i j i j In sintesi, la varianza del portafoglio è: 2 p 2 2 = i i i + x x i j ix j i, j versione con covarianze + 2 = 2 2 p x i i i x i j i x jρi, j versione con correlazioni i j Dalla formula della varianza di portafoglio si passa a quella della deviazione standard semplicemente applicando la radice quadrata. 2 2 i i + 2 = x x versione con covarianze p x i i j i j i, j + 2 = 2 2 p x i i i x i j i x jρi, j i j versione con correlazioni Rev. 15 VI

17 Dalla formula del rischio si deduce che il concetto di CORRELAZIONE assume un ruolo rilevante In particolare si deduce facilmente che è possibile ridurre il rischio di un portafoglio scegliendo azioni che hanno andamenti non perfettamente correlati in modo positivo. 3. I principi fondamentali della teoria di Markowitz Il principio base che governa la teoria di Markowitz è che per costruire un portafoglio efficiente occorre individuare una combinazione di titoli tale da massimizzare il rendimento e minimizzare il rischio complessivo scegliendo titoli correlati il meno possibile. Gli assunti fondamentali della teoria di portafoglio secondo Markowitz sono i seguenti: Gli investitori intendono massimizzare la ricchezza finale e sono avversi al rischio. Il periodo di investimento è unico (per Markowitz il tempo non è una variabile rilevante I costi di transazione e le imposte sono nulli, le attività sono perfettamente divisibili. Il valore atteso e la deviazione standard sono gli unici parametri che guidano la scelta. Rev. 15 VI

18 Il mercato è perfettamente concorrenziale. Un assunzione basilare del mondo markowitziano riguarda la distribuzione delle probabilità dei rendimenti, la quale si ipotizza essere normale. Ciò significa considerare che i prezzi siano generati da un processo casuale che esprime un valore medio atteso uguale a µ e una varianza pari a 2. Tale ipotesi è molto utile dato che le variabili casuali distribuite normalmente sono descritte interamente dai soli parametri di media e varianza; ciò implica che il processo di ottimizzazione che porta ai portafogli efficienti è decisamente semplificato. Vediamo cosa accade limitando l analisi a due titoli A e B: Rend 15% 10% Rischio Il rendimento di portafoglio è comunque il 12,5% 0,50 * 0,10 + 0,50 * 0,15 = 12,50% Rev. 15 VI

19 Il rischio del portafoglio varia in funzione della correlazione: p = x 1 + x 2 + 2x 1 2 1x2ρ Caso di correlazione perfettamente positiva ρ =1: p = 0,50 *0,1 + 0,50 *0,2 + 2*0,5*0,5*0,1*0,2* 1 = 15% Se la correlazione fra i titoli è positiva e perfetta (ρ = +1), il rischio del portafoglio è la media ponderata (in questo caso aritmetica) dei rischi dei singoli titoli. Caso di correlazione nulla (ρ = 0) p = 0,50 *0,1 + 0,50 * 0,2 + 2*0,5*0,5* 0,1* 0,2* 0 = 11,18% Si nota come, con la discesa della correlazione, il rischio del portafoglio scende. Nel caso di correlazione nulla, il rischio del portafoglio è di poco superiore a quello del titolo meno rischioso (10%) Caso di correlazione perfettamente negativa (ρ = -1) p = 0,50 *0,1 + 0,50 * 0,2 2*0,5* 0,5*0,1* 0,2* (-1) + = 5% In questo caso, il rischio del portafoglio scende in misura ancora più incisiva. Nel caso di correlazione perfetta negativa, il rischio del portafoglio è minimo. In questo particolare caso (pesi Rev. 15 VI

20 50% e 50%), il rischio è 5%, nettamente inferiore a quello del titolo A, meno rischioso (10%). L impiego del modello di Markowitz richiede l utilizzo di due tipi di dati: Il vettore degli n rendimenti attesi per le attività da includere nel portafoglio (queste possono essere indici rappresentativi di un categoria oppure singoli strumenti finanziari) La matrice delle (n x n) varianze e covarianze, di cui n sono varianze e (n 2 n) sono covarianze Per il calcolo del vettore di rendimenti attesi le possibili soluzioni pratiche sono: L utilizzo dei rendimenti medi storici come proxy dei rendimenti attesi L impiego di previsioni ricavate da modelli econometrici o da analisi qualitative L utilizzo di previsioni fornite da istituti specializzati o da Uffici Studi di altri intermediari Le misure di rischio vengono generalmente stimate in modo soddisfacente dai dati storici. Occorre tenere presente che le soluzioni di asset allocation presentano una sensitività maggiore agli errori di stima dei rendimenti attesi rispetto agli errori nella valutazione delle misure di rischiosità. Rev. 15 VI

21 3.1 Il modello di Markowitz: punti di forza e limiti Prima di continuare, è opportuno sintetizzare i concetti principali del lavoro di Harry Markowitz: 1. la creazione di portafogli efficienti in ottica media varianza dipende dalle caratteristiche di rischio rendimento dei titoli e dalla relazione esistente fra gli stessi titoli. Se il rendimento di un portafoglio è la somma ponderata dei rendimenti dei singoli titoli, il suo rischio dipende dalla varianza dei rendimenti di ciascun asset e dalla covarianza fra i rendimenti degli asset presi a due a due. 2. Un punto cruciale della Modern Portfolio Theory è la possibilità di potente riduzione del rischio di portafoglio, attraverso la selezione di titoli poco correlati (se la correlazione è positiva) o molto correlati in negativo. 3. Quando si introduce un titolo in un portafoglio ciò che rileva è il suo contributo alla rischiosità totale (in altri termini, se aumenta o fa scendere il rischio medio dell aggregato). 4. la frontiera che individua le combinazioni di n asset rischiosi è concava (salvo il caso limite di frontiera lineare per attività correlate in modo perfettamente positivo). La parte superiore della frontiera (al di sopra del minimum variance portfolio) isola le combinazioni efficienti mean Rev. 15 VI

22 variance (dato il livello di rischio, hanno il massimo rendimento atteso). 5. L investitore razionale sceglierà pertanto il suo portafoglio lungo la frontiera in funzione della sua personale attitudine al rischio. Il forte contributo del modello è quello di essere stato pioneristico per l analisi dei portafogli mobiliari; fino ad allora l analisi dei money manager era prevalentemente incentrata sui singoli titoli, e il portafoglio inteso come entità sintetica del rendimento e del rischio delle attività detenute non era percepito come essenziale. Ciò implica che il mercato professionale di fatto ignorava l esistenza della correlazione tra le variabili e, con essa, i benefici della diversificazione. Il modello di Markowitz è quindi un modello normativo che detta le regole per la corretta rappresentazione delle opportunità di investimento e per la selezione di portafogli efficienti. Il punto di forza del contributo di Markowitz è l aver stabilito una relazione tra rischio e rendimento atteso, l aver concepito la figura dell investitore razionale nell obiettivo di massimizzazione dell utilità attesa e l aver identificato l obiettivo finale di realizzazione dei portafogli efficienti. Le ipotesi alla base del modello non sono particolarmente stringenti né irrealistiche (investitori razionali, che massimizzano l utilità attesa, beni perfettamente divisibili, assenza di costi di Rev. 15 VI

23 negoziazione od imposte), e sono funzionali all obiettivo di ottimizzazione. Il modello, nella forma iniziale proposta da Markowitz, ha presentato, tuttavia, ben presto degli evidenti punti di debolezza, il cui limite è emerso prevalentemente dagli anni più recenti, in cui l industria del risparmio gestito ha avuto una spinta particolarmente forte. I limiti dell approccio markowiziano standard sono sintetizzati dai seguenti punti: Elevata sensibilità dell output ai dati di input utilizzati. Il risultato ottenuto (il portafoglio ottimo) è fortemente instabile, in quanto legato a doppio filo ai dati storici utilizzati per la stima del rendimento atteso e del rischio degli asset presenti nel mercato. Una lieve modifica di tali dati (aggiornamento delle serie storiche utilizzate, o inserimento di altri titoli) determina una fluttuazione considerevole degli asset da inserire nel portafoglio ottimo e dei loro pesi nell aggregato. Generazione di soluzioni estreme. Spesso l ottimizzazione alla Markowitz fornisce soluzioni d angolo: se l obiettivo unico è ottimizzare, il calcolatore tende naturalmente a selezionare poche attività, in genere due, una migliore e una peggiore in ottica rendimento/rischio. Identificati i due asset, il software markowitziano venderà allo scoperto una quota enorme del titolo inefficiente (basso rendimento atteso in relazione Rev. 15 VI

24 al rischio elevato) e investirà tutto in quello efficiente (esempio: -785% nell attività A e + 885% nell attività B). Si comprende facilmente che tale soluzione estrema è fortemente instabile: l aggiornamento giornaliero dei dati facilmente modificherà la identificazione del migliore e del peggiore e quindi determinerà una radicale modifica del portafoglio ottimo che risulterà essere sempre una soluzione d angolo che lavora su due/quattro asset, diversi da quelli precedenti. Il problema determinato dall utilizzo non coerente del modello matematico non vincolato ad obiettivi diversi dall ottimizzazione pura è a questo punto evidente: il gestore si troverebbe davanti a soluzioni pseudo-ottime, che cambiamo radicalmente anche a distanza di pochi giorni e che non rispondono all obiettivo primario della diversificazione. Si tratta di limiti eccessivi, poco giustificabili anche nei confronti della clientela. Problematiche evidenti nella selezione dei dati. Dal punto precedente, emerge una problematica evidente di scelta delle serie storiche e di campionamento; una cattiva scelta ha effetti negativi importanti sulle funzioni previsive dei rendimenti attesi che non possono essere corretti attraverso l intervento del gestore, a causa della rigidità della soluzione di ottimizzazione. Assenza di un livello di confidenza dei rendimenti attesi. Il modello non fornisce, infatti, alcun livello di Rev. 15 VI

25 confidenza che possa fornire indicazioni in merito ai possibili scostamenti dai valori attesi. Limite dell indicatore di rischio deviazione standard. L utilizzo della varianza o della deviazione standard non è ottimale, ma si rivela prevalentemente una scelta di comodo. La deviazione standard, infatti, non è una buona misura del rischio finanziario, in quanto fornisce solo la volatilità del rendimento atteso. Una migliore misura del rischio di chi investe in attività finanziarie è, invece, quella che definisce un livello di perdita massimo o un riferimento alla probabilità di un movimento negativo o positivo dei rendimenti. Quantità dei dati da gestire in ottimizzazione. Il numero dei parametri da stimare cresce con la dimensione del portafoglio, in maniera molto più che proporzionale. Lavorando su n titoli si devono gestire n medie, n varianze e n(n-1)/2 covarianze. Volendo lavorare, ad esempio, sui 40 titoli del piccolo FTSE-MIB i parametri da gestire sarebbero già 860! Assenza di diversificazione. A differenza di quello che credono i più, l ottimizzazione alla Markowitz NON restituisce sempre portafogli diversificati, come esplicitato in un punto precedente. La soluzione classica è quella di determinare portafogli poco diversificati. Questo accade perché l algoritmo ha come obiettivo unico quello di massimizzare la redditività a parità di rischio, e per far Rev. 15 VI

26 questo identifica le asset class migliori, e riempe i portafogli di questi mercati. Il modello genera, quindi, soluzioni di portafoglio concentrato su poche attività estreme, e non un portafoglio diversificato tra i principali segmenti del mercato finanziario. Esclusione di attività valide. La logica dell ottimizzazione spinta tende ad escludere totalmente asset o mercati di poco meno redditizi (a parità di rischio) di altri, già selezionati: se A è l asset efficiente (massimizza il rendimento con il minimo rischio), l ottimizzatore punterà tutto su tale asset ed escluderà un eventuale mercato B, che a parità di rischio presenti un rendimento atteso di poco inferiore. Massimizzazione degli errori di stima. L ottimizzazione alla Markowitz produce la massimizzazione dei rendimenti, ma essa porta inevitabilmente con sé la massimizzazione degli errori di stima. L allocazione dei portafogli, come specificato in un punto precedente, cambia drasticamente a seguito di piccole variazioni dei parametri di stima (problema degli errori di stima. A tali limiti risponderanno modelli successivi, che affronterete in un diverso momento del vostro percorso. Una ulteriore precisazione sul modello di Markowitz è opportuna. Si precisa, e si vuole sottolineare a chi legge che non si tratta, infatti, di un modello di equilibrio, in grado di delineare Rev. 15 VI

27 il rendimento congruo di ogni asset caratterizzato da un determinato grado di rischio. Partendo dal lavoro di Markowitz, altri economisti cominciarono a occuparsi di analisi dei portafogli con l obiettivo principale di individuare un modello di equilibrio per il mercato azionario (o più in generale per il mercato degli asset rischiosi). Il primo fondamentale contributo fu quello di Tobin, che introdusse nell analisi, accanto alle attività rischiose, un attività senza rischio (risk-free). 4. La costruzione della frontiera efficiente La costruzione della frontiera efficiente è il tentativo di dare una rappresentazione grafica ai concetti appena espressi. Si definisce frontiera efficiente l'insieme di quei portafogli, cosiddetti dominanti, che a parità di rendimento sono i meno rischiosi oppure che a parità di rischio sono quelli più redditizi. La figura seguente riporta quattro diversi casi di frontiera efficiente (ρ=+1, frontiera lineare continua e a seguire, nell ordine, ρ = +0.5, ρ = +0, ρ = -0,5) Rev. 15 VI

28 Classicamente (correlazione diversa da +1 e -1), la frontiera è concava come nella figura che segue. R p A B p La frontiera è un insieme infinito di portafogli ottimali, nel senso che ognuno di essi ottimizza il rapporto rendimento/rischio. Con riferimento alla figura precedente, pertanto, si riconosce che la scelta del portafoglio A piuttosto che B dipende dalla propensione al rischio dell'investitore. Rev. 15 VI

29 Un investitore maggiormente propenso al rischio si ritroverà a scegliere il portafoglio B, perché esprime un rendimento atteso maggiore, mentre per un investitore meno propenso al rischio la scelta ricadrà, presumibilmente, sul portafoglio A. Introduciamo adesso un'attività priva di rischio: la frontiera efficiente deve tenere conto del punto Rf sull'asse delle ordinate. L attività risk free ha rendimento certo (R f ), rischio nullo, e non è correlata con le altre attività rischiose. Nelle pagine seguenti, si potrà verificare che l introduzione dell attività R f fa sì che la frontiera diventi lineare. 5. Il modello di Tobin: quale contributo alla Moderna Teoria di Portafoglio? Tobin introduce nel modello di Markowitz la possibilità di investire anche nei titoli a reddito fisso, che offrono un rendimento privo di rischio pari a rf. L introduzione dell attività senza rischio (punto R f sull'asse delle ordinate) fa sì che la frontiera diventi una retta tangente alla frontiera efficiente ricavata per le attività rischiose. Rev. 15 VI

30 R p P R f p La differenza tra il rendimento privo di rischio e il rendimento espresso dall'attività rischiosa è denominato premio al rischio. E possibile comporre dei portafogli contenenti mix di titoli rischiosi e di risk-free. Sul piano rischio-rendimento (vedi figura sopra) il titolo risk free (essendo caratterizzato da varianza del rendimento nulla) si posiziona certamente sull asse delle ordinate. Il luogo dei portafogli composti da un qualsiasi fondo di titoli rischiosi (ad esempio P) e dal titolo a reddito fisso è rappresentato dal segmento rf P. Nel caso in cui sia possibile indebitarsi al tasso rf (= vendere allo scoperto il titolo a reddito fisso), si può procedere anche sulla linea retta oltre il punto P. Rev. 15 VI

31 La retta cosi determinata è la frontiera fra Rf e il singolo titolo P. La condizione perché la frontiera sia lineare è che esistano due attività, una rischiosa e una risk free. La condizione perché la frontiera sia di mercato è che mixi l attività senza rischio con tutte le attività di mercato. La condizione aggiuntiva, che nasce da questi due vincoli, è che oltre a R f, esista una sola attività rappresentativa dell intero mercato dei titoli rischiosi. Questa è il portafoglio M, che contiene tutti i titoli del mercato, con pesi ottimali in funzione della capitalizzazione. In pratica, M è un indice che contiene tutti i titoli rischiosi. La nuova frontiera è nota come Capital Market Line (CML). La CML rappresenta l insieme dei portafogli efficienti che possono essere individuati investendo nel titolo risk free e nel portafoglio di mercato (che contiene tutti i titoli rischiosi) 6. Un introduzione alla Capital Market Line E(R M ) M R f M Rev. 15 VI

32 L equazione della CML è: R p = R f + E( R M ) M R f p Entità del rischio Tutti i portafogli hanno rendimento pari almeno al tasso senza rischio Premio per il rischio per unità di rischio La CML in pratica serve ad individuare il rendimento di equilibrio dei portafogli rischiosi. Si ipotizzi, ad esempio, di avere i seguenti dati: R f = 2% E(R m ) = 8% m = 10% e di voler trovare il rendimento di equilibrio di un portafoglio con deviazione standard pari al 15%. Applicando la formula della CML si ottiene: E(R p ) = 2% + [(8%-2%)/10%] * 15% = 11% Possiamo concludere che, nel caso in cui la deviazione standard sia pari al 15%: Il portafoglio sarà collocato sulla CML se il rendimento è 11% Il portafoglio sarà collocato sopra la CML se il rendimento è maggiore dell 11% Il portafoglio sarà collocato sotto la CML se il rendimento è inferiore all 11%. Rev. 15 VI

33 7. Sharpe. Il Single Index Model Una delle maggiori critiche che si pone al modello di Markowitz è quella relativa ai costi computazionali del processo di ottimizzazione effettuato su n rendimenti, n varianze e (n 2 -n) coefficienti di correlazione: Il modello di Sharpe offre una drastica riduzione dei dati necessari alla valutazione dei portafogli efficienti Cerchiamo di comprendere perché ciò accade. Tramite il modello di Sharpe si può scindere il rischio in due parti: Il rischio sistematico che esprime quella parte di variabilità dei rendimenti determinata dai fattori sistematici. Il rischio non sistematico o specifico che esprime quella parte di variabilità dei rendimenti determinata dai fattori aziendali e specifici. La riduzione del rischio non sistematico si attua con la diversificazione naif (incremento del numero di titoli in portafoglio), il rischio sistematico, invece, non è diversificabile, può essere coperto unicamente attraverso operazioni di copertura in derivati. Rev. 15 VI

34 Il rendimento di un titolo è scindibile in: RENDIMENTO SISTEMATICO SPECIFICO Dipende dal rendimento del mercato Rm, ed è legato ad esso tramite il parametro β α + errore RGen = α Gen + βgen * RM + errore Il rischio di un titolo è scindibile in: VARIANZA SISTEMATICA SPECIFICA β TITOLO * MERCATO ERRORE Partendo dal presupposto che la covarianza positiva fra le diverse coppie di azioni deriva dal comune legame con il mercato, il modello di Sharpe tenta di risparmiare calcolando la covarianza fra singolo titolo e mercato e dividendola per la varianza del mercato. L indicatore cosi costruito è il coefficiente beta. Rev. 15 VI

35 il coefficiente beta è calcolato rapportando la covarianza fra titolo e mercato e la varianza del mercato. Per il titolo Generali, si calcola la covarianza fra i rendimenti di Generali e i rendimenti di un indice (ad es. il FTSE MIB40) e si rapporta il tutto alla varianza dell indice. β GEN = cov ( RGEN, Rindice ) ( R ) var indice - se la covarianza titolo/mercato è in linea con la varianza del mercato, il beta tende ad uno (titolo neutrale, tende a replicare le performance dell indice) - se la covarianza titolo/mercato è superiore alla varianza del mercato, il beta è maggiore di 1 (titolo aggressivo, tende ad amplificare le performance dell indice) - se la covarianza titolo/mercato è inferiore alla varianza del mercato, il beta è inferiore ad 1 (titolo difensivo, tende a smorzare le performance del mercato) - Il portafoglio di mercato ha ß=1, in quanto la varianza fra mercato e mercato è la varianza del mercato, che divisa per la varianza del mercato dà il valore 1. L esistenza di due rischi distinti (quello sistematico e quello specifico) permette una trattazione separata degli stessi, cioè consente di scindere la gestione dell alfa (strategie di rischio specifico) da quella del beta (strategie di rischio sistematico). Rev. 15 VI

36 8. Il Capital Asset Pricing Model Il Capital Asset Pricing Model è un modello di equilibrio che permette di individuare il rendimento equo di un portafoglio dato il suo profilo di rischio. La versione base del CAPM è la Capital Market Line, vista in un paragrafo precedente. Le ipotesi di base della CML sono: - Il periodo di investimento è unico - Il rendimento atteso e la varianza sono gli unici parametri che influenzano la scelta - Le attività sono perfettamente divisibili - C è assenza di costi transazione - Tutti gli investitori hanno la medesima possibilità di investire - Le informazioni sono liberamente e istantaneamente trasferibili - Gli investitori hanno aspettative omogenee - Il tasso privo di rischio è unico per tutti gli investitori 8.1 La CML Tobin, introducendo l attività priva di rischio, dimostra che la frontiera efficiente è lineare; il portafoglio ottimo si trova sulla frontiera, ed è il risultato dell intersezione tra l attività Rf e la tangente all insieme concavo. Tale frontiera lineare, come abbiamo visto, prende il nome di Rev. 15 VI

37 Capital Market Line: La Capital Market Line fornisce il rendimento atteso di equilibrio di un portafoglio efficiente. E( Rp) = R f + E( R m ) R m f p La CML afferma che in equilibrio, il rendimento di un titolo rischioso dipende dal rischio. Si noti che il premio di rischio (R m - R f ) / M che remunera ogni unità di deviazione standard è il premio di rischio di mercato. Poiché il portafoglio di mercato è perfettamente diversificato (in senso naif) esso contiene solo rischio sistematico (la diversificazione naif annulla, infatti, il rischio specifico). Il punto ha una rilevanza chiave: la CML premia solo l assunzione di rischio sistematico, diversificare diventa un obbligo. Il rischio si misura con la deviazione standard, ma questa coincide con il rischio sistematico solo per portafogli diversificati. La relazione rendimento rischio CML, di Rev. 15 VI

38 conseguenza, vale solo per portafogli perfettamente diversificati e gestiti passivamente (per essi, infatti, P = SIST ). La limitazione del modello risiede nel fatto che non considera né i portafogli inefficienti né i singoli titoli. Per tutti gli altri portafogli, è necessario utilizzare una relazione diversa, la Security Market Line (SML). 8.2 La SML In un portafoglio diversificato in senso naif (contenente un numero n di titoli elevato), il rischio coincide con la varianza sistematica. Se si usa il modello dell indice singolo, la varianza sistematica si stima come β e la deviazione β TIT M. 2 2 TIT M Se prendiamo la CML E( Rp) = R f E( Rm ) R f + e sostituiamo a P l espressione β M, m p E( Rp) = R f + E( R m ) R m f β P M si semplifica in E( Rp) [ ] P = Rf + E( R m ) R La relazione è la SML. La relazione afferma che il rendimento di equilibrio dipende dal tasso risk free e dal premio per il rischio per unità di beta moltiplicato per il beta. f β Rev. 15 VI

39 Mentre la CML esprime la relazione rischio-rendimento per portafogli efficienti e perfettamente diversificati, la Security Market Line esprime la medesima relazione per qualsiasi titolo o portafoglio di titoli. Il Capital Asset Pricing Model (CAPM) è un modello che: - Misura il rendimento atteso del singolo titolo, in funzione del rischio dell investimento; l investitore, come sottolinea Sharpe, si trova di fronte due prezzi: il price of time, o tasso di interesse puro, e il price of risk ossia il prezzo del rischio relativo a ciascuna unità di rendimento atteso addizionale. - Propone la linearità fra rischio e rendimento; in equilibrio, il rendimento atteso di ogni titolo è misurato dal risk free più un premio per il rischio addizionale in proporzione al contributo marginale che il titolo apporta alla rischiosità del portafoglio. Rev. 15 VI

40 - Il premio è una forma di remunerazione del solo rischio sistematico e non del rischio totale, in linea con la CML. 8.3 Limiti del CAPM - Gli investitori sono price takers, in un mercato concorrenziale nessuno di loro riesce ad influire sul prezzo. - L orizzonte di investimento è uniperiodale - Si può negoziare qualsiasi quantità di titoli: ipotesi poco realistica - Assenza di tasse e costi di transazione - Tutti gli investitori analizzano i titoli nello stesso modo con le stesse stime probabilistiche - Distribuzione normale dei rendimenti: la realtà spesso smentisce tale ipotesi - Per il CAPM il beta è l unico fattore in grado di spiegare i rendimenti 9. Il modello di Fama- French Nel corso degli anni il CAPM ha subito numerose critiche e l idea che il beta non fosse l unico fattore in grado di spiegare i rendimenti dei titoli azionari, ha preso sempre più corpo. Rev. 15 VI

41 French e Fama hanno argomentato (e statisticamente dimostrato sul mercato azionario USA) che le variabili sfruttabili sul mercato azionario per calibrare i rendimenti attesi di portafoglio sono tre 1) Il premio per il rischio di mercato 2) La dimensione media delle società oggetto d'investimento 3) Il grado di sovra-sottovalutazione delle società oggetto d'investimento, misurato dal rapporto BE/ME (rapporto tra valore contabile e valore di mercato) R BE = α + β1 RM + β2dimensione( ME) + β ME p 3 La prima variabile è la stessa contemplata nel CAPM. In base alla seconda variabile, i rendimenti dei portafogli tendono a diminuire man mano che aumenta la dimensione media delle società oggetto d'investimento: in questo modo sarebbe possibile lucrare un extrarendimento rispetto al premio per il rischio globale del mercato azionario privilegiando investimenti in società piccole e medie. Le ragioni del fenomeno sarebbero le seguenti: a. opportunità di crescita superiori delle small-middle cap rispetto alle large cap, in quanto più spesso appartenenti a settori emergenti; Rev. 15 VI

42 b. le società minori - quando confrontate con quelle maggiori dello stesso settore - sfrutterebbero i maggiori spazi di crescita loro consentiti. La terza variabile è espressa dalla valutazione delle società quotate. 10. Il modello del dividendo Uno degli scopi principali dell analisi finanziaria consiste nell individuare i titoli non correttamente prezzati e di conseguenza nel fornire delle indicazioni circa i titoli da acquistare o vendere. Tali modelli si fondano su una teoria economica comunemente accettata che afferma che se il mercato è efficiente, i prezzi azionari riflettono, nel lungo periodo, la somma dei valori attualizzati di tutti i proventi futuri, ad un tasso di attualizzazione proporzionale al rischio. I modelli basati sull attualizzazione dei dividendi possono essere impiegati sia per stimare il valore teorico dei titoli azionari sia per scegliere quali titoli comprare e quali vendere. Se non c è coincidenza fra prezzo teorico e prezzo di mercato, per l operatore bene informato esiste la possibilità di realizzare dei profitti : Rev. 15 VI

43 vendendo i titoli che in base al modello di valutazione risultano sopra-quotati acquistando quelli sotto-quotati. Esistono più versioni del modello a seconda delle ipotesi sul tasso di crescita dei dividendi modello di crescita costante modello a due stadi di crescita 10.1 Modello di crescita costante Valore titolo = D 1 / (k g) dove: D 1 = dividendo dell anno successivo k = tasso di rendimento richiesto g = tasso di crescita costante (perpetuo) dei dividendi Input necessari alla costruzione del modello: tasso di crescita costante e perpetuo dei dividendi (g) tasso di rendimento richiesto (k) k = R F + β x (premio per il rischio) premio per il rischio = [E(R M R F )] Rev. 15 VI

44 Tasso di crescita g + Tasso di rendimento K - Dividendo D 1 + Pregi del modello Di semplice applicazione Limiti del modello: Può essere utilizzato nella valutazione di imprese mature che crescono a un tasso costante assimilabile a quello dell economia e hanno politiche di distribuzione dei dividendi consolidate E un modello estremamente sensibile alla differenza (k g); al convergere di k a g, il valore tende all infinito 10.2 Modello di crescita a due stadi Il modello ipotizza due fasi: una iniziale di crescita straordinaria (g 1 ) una in cui il tasso di crescita (g 2 ) è stabile nel lungo termine Valore titolo S t = D (1 + g 1 ) t / (1 + k) t +D n+1/(1+ k) n (k g 2 ) Rev. 15 VI

45 dove: g 1 = tasso di crescita del periodo straordinario n = durata periodo straordinario g 2 = tasso di crescita perpetuo dall anno n+1 in poi Limiti del modello Difficoltà nella stima della durata del periodo di valutazione (n) Sensibilità pronunciata alla differenza tra k e g 2 Rev. 15 VI

Rischio e rendimento degli strumenti finanziari

Rischio e rendimento degli strumenti finanziari Finanza Aziendale Analisi e valutazioni per le decisioni aziendali Rischio e rendimento degli strumenti finanziari Capitolo 15 Indice degli argomenti 1. Analisi dei rendimenti delle principali attività

Dettagli

Indice. Le curve di indifferenza sulla frontiera di Markowitz UNIVERSITA DI PARMA FACOLTA DI ECONOMIA

Indice. Le curve di indifferenza sulla frontiera di Markowitz UNIVERSITA DI PARMA FACOLTA DI ECONOMIA UNIVERSITA DI PARMA FACOLTA DI ECONOMIA Corso di pianificazione finanziaria A.a. 2003/2004 1 Indice La Capital Market Theory di Markowitz Il Teorema della separazione di Tobin e la Capital Market Line

Dettagli

LEZIONE 4. Il Capital Asset Pricing Model. Professor Tullio Fumagalli Corso di Finanza Aziendale Università degli Studi di Bergamo.

LEZIONE 4. Il Capital Asset Pricing Model. Professor Tullio Fumagalli Corso di Finanza Aziendale Università degli Studi di Bergamo. LEZIONE 4 Il Capital Asset Pricing Model 1 Generalità 1 Generalità (1) Il Capital Asset Pricing Model è un modello di equilibrio dei mercati che consente di individuare una precisa relazione tra rendimento

Dettagli

Le curve di indifferenza sulla frontiera di Markowitz

Le curve di indifferenza sulla frontiera di Markowitz UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA Corso di pianificazione finanziaria da Markowitz al teorema della separazione e al CAPM Le curve di indifferenza sulla frontiera di Markowitz Markowitz

Dettagli

LA VALUTAZIONE DI PORTAFOGLIO. Giuseppe G. Santorsola 1

LA VALUTAZIONE DI PORTAFOGLIO. Giuseppe G. Santorsola 1 LA VALUTAZIONE DI PORTAFOGLIO Giuseppe G. Santorsola 1 Rendimento e rischio Rendimento e rischio di un singolo titolo Rendimento e rischio di un portafoglio Rendimento ex post Media aritmetica dei rendimenti

Dettagli

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI Docente: Prof. Massimo Mariani 1 SOMMARIO Il rendimento di un attività finanziaria: i parametri rilevanti Rendimento totale, periodale e medio Il market

Dettagli

Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti

Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti ipotesi: Gli investitori sono avversi al rischio; Gli investitori

Dettagli

Finanza Aziendale. Lezione 12. Analisi del rischio

Finanza Aziendale. Lezione 12. Analisi del rischio Finanza Aziendale Lezione 12 Analisi del rischio Obiettivi i della lezione I rendimenti e la loro misurazione I rendimenti medi ed il loro rischio La misurazione del rischio e l effetto diversificazione

Dettagli

FINANZA AZIENDALE AVANZATO

FINANZA AZIENDALE AVANZATO FINANZA AZIENDALE AVANZATO La diversificazione di portafoglio e il CAPM Lezione 3 e 4 1 Scopo della lezione Illustrare il modello logico-teorico più utilizzato nella pratica per stimare il rendimento equo

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE.

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. Lezione 5 Castellanza, 17 Ottobre 2007 2 Summary Il costo del capitale La relazione rischio/rendimento

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

GUIDA ALLA LETTURA DELLE SCHEDE FONDI

GUIDA ALLA LETTURA DELLE SCHEDE FONDI GUIDA ALLA LETTURA DELLE SCHEDE FONDI Sintesi Descrizione delle caratteristiche qualitative con l indicazione di: categoria Morningstar, categoria Assogestioni, indice Fideuram. Commenti sulla gestione

Dettagli

Non esiste un investimento perfetto in assoluto, esiste invece un investimento ottimale per ognuno di noi.

Non esiste un investimento perfetto in assoluto, esiste invece un investimento ottimale per ognuno di noi. ANALISI DEGLI INVESTIMENTI Non esiste un investimento perfetto in assoluto, esiste invece un investimento ottimale per ognuno di noi. Come un comodo abito ogni investimento deve essere fatto su misura.

Dettagli

CAPIRE E GESTIRE I RISCHI FINANZIARI Interrelazioni rischio rendimento e misure RAPM

CAPIRE E GESTIRE I RISCHI FINANZIARI Interrelazioni rischio rendimento e misure RAPM CAPIRE E GESTIRE I RISCHI FINANZIARI Interrelazioni rischio rendimento e misure RAPM Prof. Marco Oriani Università Cattolica del Sacro Cuore di Milano 17 ottobre 2011 - Sala Convegni S.A.F. SCUOLA DI ALTA

Dettagli

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1 1 PORTAFOGLIO Portafoglio Markowitz (2 titoli) (rischiosi) due titoli rendimento/varianza ( μ 1, σ 1 ), ( μ 2, σ 2 ) Si suppone μ 1 > μ 2, σ 1 > σ 2 portafoglio con pesi w 1, w 2 w 1 = w, w 2 = 1- w 1

Dettagli

Nella prima parte del corso l attenzione è venuta appuntandosi sui problemi inerenti la valutazione di investimenti aziendali e di strumenti

Nella prima parte del corso l attenzione è venuta appuntandosi sui problemi inerenti la valutazione di investimenti aziendali e di strumenti Nella prima parte del corso l attenzione è venuta appuntandosi sui problemi inerenti la valutazione di investimenti aziendali e di strumenti finanziari in un contesto di flussi finanziari certi, tuttavia

Dettagli

Sommario. Prefazione XI PARTE I INTRODUZIONE 1. Capitolo 1 Arbitraggio e decisioni finanziarie 3

Sommario. Prefazione XI PARTE I INTRODUZIONE 1. Capitolo 1 Arbitraggio e decisioni finanziarie 3 Sommario Prefazione XI PARTE I INTRODUZIONE 1 Capitolo 1 Arbitraggio e decisioni finanziarie 3 1.1 Valutazione dei costi e benefici 4 Utilizzo dei prezzi di mercato per determinare valori monetari 4 Quando

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Indice della lezione. Per fare scelte coerenti in termini di Finanza Aziendale. La finanza aziendale. La stima del costo del capitale

Indice della lezione. Per fare scelte coerenti in termini di Finanza Aziendale. La finanza aziendale. La stima del costo del capitale UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA Corso di pianificazione finanziaria Il costo del capitale è un tasso di attualizzazione Quale tasso di attualizzazione? Il Wacc La stima del costo del

Dettagli

Capitolo 25: Lo scambio nel mercato delle assicurazioni

Capitolo 25: Lo scambio nel mercato delle assicurazioni Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel

Dettagli

Tecniche di stima del costo e delle altre forme di finanziamento

Tecniche di stima del costo e delle altre forme di finanziamento Finanza Aziendale Analisi e valutazioni per le decisioni aziendali Tecniche di stima del costo e delle altre forme di finanziamento Capitolo 17 Indice degli argomenti 1. Rischio operativo e finanziario

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

Capitolo 25: Lo scambio nel mercato delle assicurazioni

Capitolo 25: Lo scambio nel mercato delle assicurazioni Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel

Dettagli

Analisi di bilancio: redditività e finanza

Analisi di bilancio: redditività e finanza Analisi di bilancio: redditività e finanza Analisi di bilancio: redditività e finanza Redditività finale per i proprietari: gli effetti della finanza gli effetti delle imposte e delle rettifiche : la teoria

Dettagli

Valutazione d Azienda Lezione 5

Valutazione d Azienda Lezione 5 Valutazione d Azienda Lezione 5 1 Le prospettive di valutazione [P.I.V. I.7] Generico operatore partecipante al mercato Specifico soggetto 2 I partecipanti al mercato Si tratta della generalità dei potenziali

Dettagli

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1 23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari In uno schema uniperiodale e in un contesto di analisi media-varianza, si consideri un mercato

Dettagli

rendimento PROGRAMMA 0. Introduzione 1. Valore. 2. Valutazione del rischio: Introduzione a rischio e rendimento; Teoria del portafoglio e CAPM;

rendimento PROGRAMMA 0. Introduzione 1. Valore. 2. Valutazione del rischio: Introduzione a rischio e rendimento; Teoria del portafoglio e CAPM; PROGRAMMA 0. Introduzione 1. Valore.. Valutazione del rischio: Introduzione a rischio e rendimento; Teoria del portafoglio e CAPM; Rischio e capital budgeting Introduzione a rischio e rendimento 3. Decisioni

Dettagli

Finanza Aziendale. Lezione 13. Introduzione al costo del capitale

Finanza Aziendale. Lezione 13. Introduzione al costo del capitale Finanza Aziendale Lezione 13 Introduzione al costo del capitale Scopo della lezione Applicare la teoria del CAPM alle scelte di finanza d azienda 2 Il rischio sistematico E originato dalle variabili macroeconomiche

Dettagli

Dividendi e valore delle azioni

Dividendi e valore delle azioni Dividendi e valore delle azioni La teoria economica sostiene che in ultima analisi il valore delle azioni dipende esclusivamente dal flusso scontato di dividendi attesi. Formalmente: V = E t=0 1 ( ) t

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

TECNICHE DI STIMA DEL COSTO DEL CAPITALE AZIONARIO. Docente: Prof. Massimo Mariani

TECNICHE DI STIMA DEL COSTO DEL CAPITALE AZIONARIO. Docente: Prof. Massimo Mariani TECNICHE DI STIMA DEL COSTO DEL CAPITALE AZIONARIO Docente: Prof. Massimo Mariani 1 SOMMARIO Il costo del capitale: la logica di fondo Le finalità del calcolo del costo del capitale Il costo del capitale

Dettagli

Capitolo 23: Scelta in condizioni di incertezza

Capitolo 23: Scelta in condizioni di incertezza Capitolo 23: Scelta in condizioni di incertezza 23.1: Introduzione In questo capitolo studiamo la scelta ottima del consumatore in condizioni di incertezza, vale a dire in situazioni tali che il consumatore

Dettagli

Il rischio di un portafoglio

Il rischio di un portafoglio Come si combinano in un portafoglio i rischi di 2 titoli? dipende dai pesi e dal valore delle covarianze covarianza a a ρ a b ρ a b ρ b b ρ coefficiente di correlazione = cov / ² p = a² ² + b² ² + 2 a

Dettagli

Processo che consente di identificare la ripartizione ottimale di medio-lungo periodo delle risorse finanziarie tra le diverse classi di attività.

Processo che consente di identificare la ripartizione ottimale di medio-lungo periodo delle risorse finanziarie tra le diverse classi di attività. Glossario finanziario Asset Allocation Consiste nell'individuare classi di attività da inserire in portafoglio al fine di allocare in maniera ottimale le risorse finanziarie, dati l'orizzonte temporale

Dettagli

Strategie α nella costruzione di portafoglio. 03 Maggio 2012

Strategie α nella costruzione di portafoglio. 03 Maggio 2012 Strategie α nella costruzione di portafoglio 03 Maggio 2012 AGENDA La costruzione di portafoglio Le strategie alpha Il portafoglio con strategie alpha LA COSTRUZIONE DI UN PORTAFOGLIO FINANZIARIO Un portafoglio

Dettagli

Economia Intermediari Finanziari 1

Economia Intermediari Finanziari 1 Economia Intermediari Finanziari Il rischio, inteso come possibilità che il rendimento atteso da un investimento in strumenti finanziari, sia diverso da quello atteso è funzione dei seguenti elementi:

Dettagli

Risparmio, investimenti e sistema finanziario

Risparmio, investimenti e sistema finanziario Risparmio, investimenti e sistema finanziario Una relazione fondamentale per la crescita economica è quella tra risparmio e investimenti. In un economia di mercato occorre individuare meccanismi capaci

Dettagli

La Massimizzazione del profitto

La Massimizzazione del profitto La Massimizzazione del profitto Studio del comportamento dell impresa, soggetto a vincoli quando si compiono scelte. Ora vedremo un modello per analizzare le scelte di quantità prodotta e come produrla.

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Capitolo 26: Il mercato del lavoro

Capitolo 26: Il mercato del lavoro Capitolo 26: Il mercato del lavoro 26.1: Introduzione In questo capitolo applichiamo l analisi della domanda e dell offerta ad un mercato che riveste particolare importanza: il mercato del lavoro. Utilizziamo

Dettagli

Modelli di portafoglio

Modelli di portafoglio Università Bicocca - Milano Anno Accademico 2007 / 2008 Modelli di portafoglio Corso di Risk Management Milano, 26 Marzo 2008 Perchè stimare EL e UL: un esempio Actual Portfolio Loss 2.00% 1.80% 1.60%

Dettagli

Finanza Aziendale. Rischio e Valutazione degli

Finanza Aziendale. Rischio e Valutazione degli Teoria della Finanza Aziendale Rischio e Valutazione degli investimenti 9 1-2 Argomenti trattati Costo del capitale aziendale e di progetto Misura del beta Costo del capitale e imprese diversificate Costo

Dettagli

www.cicliemercati.it Tutti i diritti riservati Pag. 1

www.cicliemercati.it Tutti i diritti riservati Pag. 1 LA MATRICE DEI MERCATI DESCRIZIONE E UTILIZZO PER L INVESTITORE DESCRIZIONE La Matrice è basata su un algoritmo genetico proprietario che permette di individuare e visualizzare, a seconda delle preferenze

Dettagli

Separazione in due fondi Security Market Line CAPM

Separazione in due fondi Security Market Line CAPM Separazione in due fondi Security Market Line CAPM Eduardo Rossi Economia dei mercati monetari e finanziari A.A. 2002/2003 1 Separazione in due fondi Un vettore di rendimenti er può essere separato in

Dettagli

Risparmio e Investimento

Risparmio e Investimento Risparmio e Investimento Risparmiando un paese ha a disposizione più risorse da utilizzare per investire in beni capitali I beni capitali a loro volta fanno aumentare la produttività La produttività incide

Dettagli

Firenze, 30 maggio 2012

Firenze, 30 maggio 2012 Firenze, 30 maggio 2012 specchio Specchio, specchio delle mie brame, chi è il fondo più bello del reame? Come selezionate i fondi dei vostri clienti? Quali parametri usate per selezionare i fondi? I rendimenti

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009 Le obbligazioni: misure di rendimento e rischio Economia degli Intermediari Finanziari 4 maggio 009 A.A. 008-009 Agenda 1. Introduzione ai concetti di rendimento e rischio. Il rendimento delle obbligazioni

Dettagli

RISCHIO E CAPITAL BUDGETING

RISCHIO E CAPITAL BUDGETING RISCHIO E CAPITAL BUDGETING Costo opportunità del capitale Molte aziende, una volta stimato il loro costo opportunità del capitale, lo utilizzano per scontare i flussi di cassa attesi dei nuovi progetti

Dettagli

Aspettative, consumo e investimento

Aspettative, consumo e investimento Aspettative, consumo e investimento In questa lezione: Studiamo come le aspettative di reddito e ricchezza futuro determinano le decisioni di consumo e investimento degli individui. Studiamo cosa determina

Dettagli

Indice. Presentazione

Indice. Presentazione Presentazione di Pier Luigi Fabrizi pag. XIII 1 LÕeconomia del mercato mobiliare di Pier Luigi Fabrizi È 1 1.1 Premessa È 1 1.2 LÕesercizio semantico È 1 1.3 La collocazione della disciplina È 4 Bibliografia

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

Quesiti livello Application

Quesiti livello Application 1 2 3 4 Se la correlazione tra due attività A e B è pari a 0 e le deviazioni standard pari rispettivamente al 4% e all 8%, per quali dei seguenti valori dei loro pesi il portafoglio costruito con tali

Dettagli

SELEZIONE DI UN PORTAFOGLIO EFFICIENTE DI ATTIVITÀ MOBILIARI E IMMOBILIARI

SELEZIONE DI UN PORTAFOGLIO EFFICIENTE DI ATTIVITÀ MOBILIARI E IMMOBILIARI UNIVERSITA' DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE Corso di laurea in Statistica, Economia e Finanza TESI DI LAUREA SELEZIONE DI UN PORTAFOGLIO EFFICIENTE DI ATTIVITÀ MOBILIARI E IMMOBILIARI

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Prefazione. Parte prima - La funzione finanziaria nel management delle imprese 1

Prefazione. Parte prima - La funzione finanziaria nel management delle imprese 1 Indice Prefazione Autori XI XV Parte prima - La funzione finanziaria nel management delle imprese 1 Capitolo 1 Compiti ed evoluzione della funzione finanziaria 3 1.1 Compiti e finalità della funzione finanziaria

Dettagli

Contenuti. Fatti stilizzati microeconomici. L evidenza empirica è in contrasto con le previsioni del teorema Modigliani Miller.

Contenuti. Fatti stilizzati microeconomici. L evidenza empirica è in contrasto con le previsioni del teorema Modigliani Miller. Contenuti L evidenza empirica è in contrasto con le previsioni del teorema Modigliani Miller. ECONOMIA MONETARIA E FINANZIARIA (7) Esistono quindi delle imperfezioni dei mercati. Le imperfezioni dei mercati

Dettagli

Finanza Aziendale. Misura e valutazione del

Finanza Aziendale. Misura e valutazione del Teoria della Finanza Aziendale Misura e valutazione del rischio 7 1- Argomenti Il rischio Il rischio negli investimenti finanziari La misurazione del rischio Varianza e scarto quadratico medio Il rischio

Dettagli

Indice. Presentazione

Indice. Presentazione Indice Presentazione di Pier Luigi Fabrizi pag. XIII 1 L economia del mercato mobiliare di Pier Luigi Fabrizi» 1 1.1 Premessa» 1 1.2 L esercizio semantico» 1 1.3 La collocazione della disciplina» 4 Bibliogra

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

La domanda di moneta

La domanda di moneta Corso interfacoltà in Economia Politica economica e finanza Modulo in Teoria e politica monetaria La domanda di moneta (terza parte) Giovanni Di Bartolomeo gdibartolomeo@unite.it La teoria keynesiana (preferenza

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

info Prodotto Eurizon Multiasset Reddito Ottobre 2020 A chi si rivolge

info Prodotto Eurizon Multiasset Reddito Ottobre 2020 A chi si rivolge info Prodotto Eurizon Multiasset Reddito è un Fondo comune di diritto italiano, gestito da Eurizon Capital SGR, che persegue l'obiettivo di ottimizzare il rendimento del Fondo in un orizzonte temporale

Dettagli

Corso di Macroeconomia. Il modello IS-LM. Appunti

Corso di Macroeconomia. Il modello IS-LM. Appunti Corso di Macroeconomia Il modello IS-LM Appunti 1 Le ipotesi 1. Il livello dei prezzi è fisso. 2. L analisi è limitata al breve periodo. La funzione degli investimenti A differenza del modello reddito-spesa,

Dettagli

Risparmio gestito e stili di gestione Dott. Sergio Paris - Università degli Studi di Bergamo

Risparmio gestito e stili di gestione Dott. Sergio Paris - Università degli Studi di Bergamo Economia dei mercati mobiliari e finanziamenti di aziende Risparmio gestito e stili di gestione Dott. Sergio Paris - Università degli Studi di Bergamo Gli stili di gestione Stile di gestione come espressione

Dettagli

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 24 Il mercato dei beni

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 24 Il mercato dei beni UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 24 Il mercato dei beni Prof. Gianmaria Martini Domanda ed offerta Uno degli schemi logici fondamentali dell analisi economica

Dettagli

Dalle Relazioni, il Valore

Dalle Relazioni, il Valore Calcolo e ripartizione del Valore Aggiunto 80 Schemi e prospetti 82 Le strategie e il Valore 86 Il Valore delle relazioni 88 Indici di Sostenibilità 89 78 79 Calcolo e ripartizione del Valore Aggiunto

Dettagli

Indice della lezione. La finanza aziendale UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA

Indice della lezione. La finanza aziendale UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA Corso di Corporate Banking a.a. 2010-2011 (Professor Eugenio Pavarani) La stima del costo del capitale 1 Indice della lezione Il costo del capitale (=

Dettagli

La ricerca di extrarendimenti nella gestione del patrimonio: i fondi di strategia

La ricerca di extrarendimenti nella gestione del patrimonio: i fondi di strategia La ricerca di extrarendimenti nella gestione del patrimonio: i fondi di strategia Indice Premessa Introduzione Capitolo 1: I primi sviluppi della teoria di portafoglio 1.1 La teoria del portafoglio di

Dettagli

TEST FINANZA OTTOBRE 2013

TEST FINANZA OTTOBRE 2013 TEST FINANZA OTTOBRE 03. Si consideri la funzione f ( ) ln( e ). Determinare l espressione corretta della derivata seconda f ( ). e f( ) ( e ) A B f( ) e f( ) ln ( e ) C D f( ). Dati i tre vettori (, 3,

Dettagli

DOCUMENTO SUL MULTICOMPARTO

DOCUMENTO SUL MULTICOMPARTO DOCUMENTO SUL MULTICOMPARTO Aggiornamento: giugno 2013 1 Dalla sua origine nel 1987 e fino al 31 dicembre 2008 il Fondo ha adottato un modello di gestione basato su una convenzione assicurativa, gestita

Dettagli

La valutazione delle aziende. 4a parte

La valutazione delle aziende. 4a parte La valutazione delle aziende 4a parte 95 Il WACC Il WACC non è né un costo, né un rendimento minimo: è la media ponderata di un costo e di un rendimento minimo. Considerare il WACC un costo può essere

Dettagli

Capital budgeting. Luca Deidda. Uniss, CRENoS, DiSEA. Luca Deidda (Uniss, CRENoS, DiSEA) Lecture 19 1 / 1

Capital budgeting. Luca Deidda. Uniss, CRENoS, DiSEA. Luca Deidda (Uniss, CRENoS, DiSEA) Lecture 19 1 / 1 Capital budgeting Luca Deidda Uniss, CRENoS, DiSEA Luca Deidda (Uniss, CRENoS, DiSEA) Lecture 19 1 / 1 Introduzione Scaletta Introduzione Incertezza e costo del capitale Costo del capitale di rischio (equity

Dettagli

Economia monetaria e creditizia. Slide 4

Economia monetaria e creditizia. Slide 4 Economia monetaria e creditizia Slide 4 Le teorie diverse che spiegano come di determina la domanda di moneta possono essere ricondotte alle due funzioni di mezzo di pagamento e di riserva di valore la

Dettagli

È evidenziata la crescita (in euro e al lordo della tassazione anche per i fondi italiani) realizzata dal

È evidenziata la crescita (in euro e al lordo della tassazione anche per i fondi italiani) realizzata dal Lettura delle schede Giunta alla sua decima edizione, la Guida permette agli investitori di accedere ad analisi indipendenti e nuovi strumenti per la selezione dei fondi, compresi i Morningstar Analyst

Dettagli

LA STIMA DEL COST OF EQUITY (Ke) Valutazione d impresa aprile 2012 dott. Lanfranco Lodi

LA STIMA DEL COST OF EQUITY (Ke) Valutazione d impresa aprile 2012 dott. Lanfranco Lodi LA STIMA DEL COST OF EQUITY (Ke) 0 CAPM: si fonda sul presupposto che investitori realizzino diversificazione di portafoglio remunerazione solo del rischio non diversificabile R i =K el* = R f + β i x

Dettagli

Crescita della produttività e delle economie

Crescita della produttività e delle economie Lezione 21 1 Crescita della produttività e delle economie Il più spettacolare effetto della sviluppo economico è stata la crescita della produttività, ossia la quantità di prodotto per unità di lavoro.

Dettagli

Operazioni finanziarie. Asset allocation: come ottimizzare un portafoglio di attività finanziarie. di Amedeo De Luca (*)

Operazioni finanziarie. Asset allocation: come ottimizzare un portafoglio di attività finanziarie. di Amedeo De Luca (*) Operazioni Tecniche Asset allocation: come ottimizzare un portafoglio di attività di Amedeo De Luca (*) Attraverso una composizione del portafoglio di attività strategica e ben condotta i gestori finanziari

Dettagli

ALLEGATO B2 ALLA DELIBERA N. 415/04/CONS IL MODELLO DI DETERMINAZIONE DEL TASSO DI REMUNERAZIONE DEL CAPITALE IMPIEGATO

ALLEGATO B2 ALLA DELIBERA N. 415/04/CONS IL MODELLO DI DETERMINAZIONE DEL TASSO DI REMUNERAZIONE DEL CAPITALE IMPIEGATO ALLEGATO B2 ALLA DELIBERA N. 415/04/CONS IL MODELLO DI DETERMINAZIONE DEL TASSO DI REMUNERAZIONE DEL CAPITALE IMPIEGATO 1 1. Il modello di calcolo del tasso di remunerazione del capitale impiegato L Autorità,

Dettagli

FINANZA AZIENDALE. - secondo modulo - anno accademico 2008/2009

FINANZA AZIENDALE. - secondo modulo - anno accademico 2008/2009 FINANZA AZIENDALE - secondo modulo - anno accademico 2008/2009 LEZIONE Rischio e rendimento Alcuni concetti introduttivi 2 Alcuni concetti introduttivi () Nella prima parte del corso l attenzione è venuta

Dettagli

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Strumenti di Valutazione di un Prodotto Finanziario

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Strumenti di Valutazione di un Prodotto Finanziario AREA FINANZA DISPENSA FINANZA Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto Strumenti di Valutazione di un Prodotto Finanziario ORGANISMO BILATERALE PER LA FORMAZIONE IN CAMPANIA Strumenti

Dettagli

Capitolo IV. I mercati finanziari

Capitolo IV. I mercati finanziari Capitolo IV. I mercati finanziari 2 I MERCATI FINANZIARI OBIETTIVO: SPIEGARE COME SI DETERMINANO I TASSI DI INTERESSE E COME LA BANCA CENTRALE PUO INFLUENZARLI LA DOMANDA DI MONETA DETERMINAZIONE DEL TASSO

Dettagli

Gli strumenti derivati per la gestione dell'indebitamento e la copertura del rischio di tasso. 22 Gennaio 2003

Gli strumenti derivati per la gestione dell'indebitamento e la copertura del rischio di tasso. 22 Gennaio 2003 Gli strumenti derivati per la gestione dell'indebitamento e la copertura del rischio di tasso. 22 Gennaio 2003 Agenda Premessa L analisi delle passività come presupposto La diversificazione La riduzione

Dettagli

M. Massari, L. Zanetti, Valutazione. Fondamenti teorici e best practice nel settore industriale e finanziario, Mc Graw Hill, 2008

M. Massari, L. Zanetti, Valutazione. Fondamenti teorici e best practice nel settore industriale e finanziario, Mc Graw Hill, 2008 M. Massari, L. Zanetti, Valutazione. Fondamenti teorici e best practice nel settore industriale e finanziario, Mc Graw Hill, 2008 CAP. 5 (2a PARTE) LA STIMA DEL COSTO OPPORTUNITA DEL CAPITALE 1 LA STIMA

Dettagli

INTRODUZIONE ALLA FINANZA AZIENDALE. Docente: Prof. Massimo Mariani

INTRODUZIONE ALLA FINANZA AZIENDALE. Docente: Prof. Massimo Mariani INTRODUZIONE ALLA FINANZA AZIENDALE Docente: Prof. Massimo Mariani SOMMARIO La creazione del valore Che cos è la finanza aziendale Obiettivi degli stakeholders Massimizzazione del valore Massimizzazione

Dettagli

GLI EQUILIBRI AZIENDALI

GLI EQUILIBRI AZIENDALI GLI EQUILIBRI AZIENDALI Il fine ultimo dell azienda è se stessa, ossia la sua capacità di sopravvivere e svilupparsi, operando in condizioni di «equilibrio». Le condizioni di equilibrio aziendale sono

Dettagli

TURBO Certificate Long & Short

TURBO Certificate Long & Short TURBO Certificate Long & Short Fai scattare la leva dei tuoi investimenti x NEGOZIABILI SUL MERCATO SEDEX DI BORSA ITALIANA Investi a Leva su indici e azioni! Scopri i vantaggi dei TURBO Long e Short Certificate

Dettagli

Il criterio media-varianza e il modello CAPM

Il criterio media-varianza e il modello CAPM Il criterio media-varianza e il modello CAPM 1 Il criterio media-varianza Se α 1 è la quota della ricchezza destinata all acquisto del titolo 1 e α 2 èlaquota impiegata nell acquisto del titolo 2, il valore

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA

UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA IN SCIENZE STATISTICHE, ECONOMICHE, FINANZIARIE ED AZIENDALI TESI DI LAUREA GESTIONE DI PORTAFOGLIO: UNA STRATEGIA DI GESTIONE

Dettagli

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Economia degli Intermediari Finanziari 29 aprile 2009 A.A. 2008-2009 Agenda 1. Il calcolo

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

In termini di rischio le conclusioni a cui giunge il modello possono riassumersi nelle seguenti proposizioni:

In termini di rischio le conclusioni a cui giunge il modello possono riassumersi nelle seguenti proposizioni: b) Il capital Asset Pricing Model (CAPM) Il modello del CAPM è stato elaborato agli inizi degli anni 60 da tre studiosi americani: Sharpe, Lintner e Mossin. Le ipotesi semplificatrici alla base del modello

Dettagli

Come usare gli ETF. Valerio Baselli e Azzurra Zaglio Morningstar Editor&Analyst team. Rimini, 17 maggio 2012

Come usare gli ETF. Valerio Baselli e Azzurra Zaglio Morningstar Editor&Analyst team. Rimini, 17 maggio 2012 Come usare gli ETF Valerio Baselli e Azzurra Zaglio Morningstar Editor&Analyst team Rimini, 17 maggio 2012 Cosa sono gli Etf? Gli Etf sono una particolare categoria di fondi d investimento mobiliare quotati

Dettagli

Lezione 23 Legge di Walras

Lezione 23 Legge di Walras Corso di Economia Politica prof. S. Papa Lezione 23 Legge di Walras Funzione del Consumo Facoltà di Economia Università di Roma La Sapienza Perché la macroeconomia I problem illustrati nelle lezione precedente

Dettagli

Corso di Risk Management S

Corso di Risk Management S Corso di Risk Management S Marco Bee marco.bee@economia.unitn.it Dipartimento di Economia Università di Trento Anno Accademico 2007-2008 Struttura del corso Il corso può essere suddiviso come segue: 1.

Dettagli

TECNICHE DI STIMA DEL COSTO DELLE ALTRE FORME DI FINANZIAMENTO. Docente: Prof. Massimo Mariani

TECNICHE DI STIMA DEL COSTO DELLE ALTRE FORME DI FINANZIAMENTO. Docente: Prof. Massimo Mariani TECNICHE DI STIMA DEL COSTO DELLE ALTRE FORME DI FINANZIAMENTO Docente: Prof. Massimo Mariani 1 SOMMARIO Il costo del capitale stima del costo del capitale stima del costo del capitale di aziende operanti

Dettagli

info Prodotto Eurizon Multiasset Reddito Aprile 2021 A chi si rivolge

info Prodotto Eurizon Multiasset Reddito Aprile 2021 A chi si rivolge info Prodotto Eurizon Multiasset Reddito è un Fondo comune di diritto italiano, gestito da Eurizon Capital SGR, che persegue l'obiettivo di ottimizzare il rendimento del Fondo in un orizzonte temporale

Dettagli

Lezione 5: Gli investimenti e la scheda IS

Lezione 5: Gli investimenti e la scheda IS Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 5: Gli investimenti e la scheda IS Facoltà di Scienze della Comunicazione Università di Teramo Comovimento di C e Y -Italia

Dettagli

Capitolo 22: Lo scambio nel mercato dei capitali

Capitolo 22: Lo scambio nel mercato dei capitali Capitolo 22: Lo scambio nel mercato dei capitali 22.1: Introduzione In questo capitolo analizziamo lo scambio nel mercato dei capitali, dove si incontrano la domanda di prestito e l offerta di credito.

Dettagli