Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 2018 Parte B Tema B1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 2018 Parte B Tema B1"

Transcript

1 Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 08 Parte B Tema B Tempo a disposizione: due ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio deve cominciare all'inizio di una nuova pagina. Vanno consegnati solo questo foglio e la bella. Saranno tolti punti per le risposte non giusticate. SOLUZIONI Esercizio. a) Risolvere l'equazione z z 5 = 8 + 8i Osserviamo innanzitutto che z = 0 non è una soluzione dell'equazione. Scriviamo quindi in forma esponenziale z = ρe iθ con ρ > 0 e θ R. Abbiamo inoltre 8 + 8i = 8 e iπ. Quindi z è soluzione se e solo se Dobbiamo perciò avere ρ 7 e iθ = 8 e iπ ρ 7 = 8 = 7 θ = π + kπ con k Z, ovvero ρ = = θ = π kπ con k = 0,, (gli altri valori di k danno le stesse soluzioni). Le soluzioni sono quindi gli con k = 0,,. z k = e i( π kπ )

2 b) Scrivere una delle soluzioni in forma algebrica. Delle soluzioni precedentemente enumerate, la più semplice è quella con k = 0, ovvero z 0 = i. Esercizio. Sia data la matrice M, dipendente da un parametro k R, 0 M = 0 k a) Determinare al variare del parametro k se la matrice è invertibile o no. Una matrice è invertibile se e solo se il suo determinante è diverso da 0. Calcoliamo quindi il determinante di M, troviamo: det M = 8k + 0. La matrice M è invertibile quindi se e solo se k non è uguale a 5. b) Determinare per quale valore di k la matrice M ammette il vettore v = come autovettore. Il vettore v è un autovettore se e solo se esiste un reale λ tale che M v = λv. Abbiamo M v = k + Quindi v sarà un autovettore se λ = e k + =, cioè k = 5. c) Per il valore di k determinato alla domanda precedente, determinare autovalori e autovettori di M e dire se la matrice è diagonalizzabile. Sappiamo già che in questo caso M ha λ = come autovalore e che un autovettore corrispondente è v. Il polinomio caratteristico di M è P M (λ) = λ λ.

3 Le radici di questo polinomio sono ovvie, cioè λ = 0 (autovalore doppio) oltre a λ = (che conoscevamo già dalla domanda precedente). l'autovalore 0 è generato da v 0 = 5, quindi ha dimensione e pertanto la matrice non è diagonalizzabile. L'autospazio per d) Risolvere il sistema x + y = x y + z = 5y + z = Una soluzione ovvia è il vettore v. Siccome il nucleo della matrice M è di dimensione (vedere la domanda precedente) l'insieme delle soluzioni è della forma S = {v + tv 0 : t R}. Esercizio. Si consideri la retta r : x = 7 + 5t y = t z = + t a) Scrivere un'equazione cartesiana del piano π passante per il punto A(; ; 5) e ortogonale alla retta r. Come vettore normale al piano π possiamo prendere il vettore direzionale di r, ossia (5; ; ). Quindi l'equazione cercata è 5(x ) (y ) + (z + 5) = 0, ossia 5x y + z 7 = 0. b) Trovare il punto B in cui la retta r interseca il piano π. Basta inserire le equazioni (parametriche) di r nell'equazione di π. Si trova t = e quindi B(; ; ). c) Determinare un punto C sulla retta r tale che l'area del triangolo ABC sia uguale a 78. Il triangolo ABC è ovviamente rettangolo in B. Poiché BA = (; ; ), abbiamo che BA =. Sia ora C(7 + 5t; t; + t) il generico punto della retta r. Si

4 ha che BC = 7(t + ) = 7 t + e quindi l'area del triangolo ABC vale 78 t + /. Dall'equazione 78 t + / = 78 otteniamo t + = e quindi t = oppure t =. Ci sono quindi due possibili scelte per il punto C; la prima è (; ; 0), la seconda ( 8; ; ).

5 Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 08 Parte B Tema B Tempo a disposizione: due ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio deve cominciare all'inizio di una nuova pagina. Vanno consegnati solo questo foglio e la bella. Saranno tolti punti per le risposte non giusticate. SOLUZIONI Esercizio. a) Risolvere l'equazione z z 5 = 8 8i Osserviamo innanzitutto che z = 0 non è una soluzione dell'equazione. Scriviamo quindi in forma esponenziale z = ρe iθ con ρ > 0 e θ R. Abbiamo inoltre 8 8i = 8 e iπ. Quindi z è soluzione se e solo se Dobbiamo perciò avere ρ 7 e iθ = 8 e iπ ρ 7 = 8 = 7 θ = π + kπ con k Z, ovvero ρ = = θ = π kπ con k = 0,, (gli altri valori di k danno le stesse soluzioni). Le soluzioni sono quindi gli con k = 0,,. z k = e i( π kπ )

6 b) Scrivere una delle soluzioni in forma algebrica. Delle soluzioni precedentemente enumerate, la più semplice è quella con k = 0, ovvero z 0 = + i. Esercizio. Sia data la matrice M, dipendente da un parametro k R, 0 M = 9 k 5 a) Determinare al variare del parametro k se la matrice è invertibile o no. Una matrice è invertibile se e solo se il suo determinante è diverso da 0. Calcoliamo quindi il determinante di M, troviamo: det M = k. La matrice M è invertibile quindi se e solo se k non è uguale a 6. b) Determinare per quale valore di k la matrice M ammette il vettore v = come autovettore. Il vettore v è un autovettore se e solo se esiste un reale λ tale che M v = λv. Abbiamo M v = 6 k Quindi v sarà un autovettore se λ = e k =, cioè k = 0. c) Per il valore di k determinato alla domanda precedente, determinare autovalori e autovettori di M e dire se la matrice è diagonalizzabile. Sappiamo già che in questo caso M ha λ = come autovalore e che un autovettore corrispondente è v. Il polinomio caratteristico di M è P M (λ) = λ λ 5λ.

7 I due altri autovalori sono (autovalore doppio). L'autospazio per l'autovalore è di equazione x z = 0 ed è quindi di dimensione. Una sua base è data dai vettori 0 e Inoltre la matrice è diagonalizzabile, perché i suoi autovalori sono reali e ciascuno ha molteplicità algebrica uguale alla sua molteplicità geometrica. 0 0 d) Risolvere il sistema x z = 9x y z = 6 x 5z = Una soluzione ovvia è il vettore v. Siccome la matrice M è di determinante diverso da 0, questo è l'unica soluzione. Esercizio. Si consideri la retta r : x = + 5t y = t z = + t a) Scrivere un'equazione cartesiana del piano π passante per il punto A(0; ; 5) e ortogonale alla retta r. Come vettore normale al piano π possiamo prendere il vettore direzionale di r, ossia (5; ; ). Quindi l'equazione cercata è 5(x) (y ) + (z + 5) = 0, ossia 5x y + z + 8 = 0. b) Trovare il punto B in cui la retta r interseca il piano π. Basta inserire le equazioni (parametriche) di r nell'equazione di π. Si trova t = e quindi B( ; ; ).

8 c) Determinare un punto C sulla retta r tale che l'area del triangolo ABC sia uguale a 78. Il triangolo ABC è ovviamente rettangolo in B. Poiché BA = (; ; ), abbiamo che BA =. Sia ora C( + 5t; t; + t) il generico punto della retta r. Si ha che BC = 7(t + ) = 7 t + e quindi l'area del triangolo ABC vale 78 t + /. Dall'equazione 78 t + / = 78 otteniamo t + = e quindi t = oppure t =. Ci sono quindi due possibili scelte per il punto C; la prima è (9; ; 0), la seconda ( ; ; ).

9 Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 08 Parte B Tema B Tempo a disposizione: due ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio deve cominciare all'inizio di una nuova pagina. Vanno consegnati solo questo foglio e la bella. Saranno tolti punti per le risposte non giusticate. SOLUZIONI Esercizio. a) Risolvere l'equazione z 5 z = 8 + 8i Osserviamo innanzitutto che z = 0 non è una soluzione dell'equazione. Scriviamo quindi in forma esponenziale z = ρe iθ con ρ > 0 e θ R. Abbiamo inoltre 8 + 8i = 8 e iπ. Quindi z è soluzione se e solo se Dobbiamo perciò avere ρ 7 e iθ = 8 e iπ ρ 7 = 8 = 7 θ = π + kπ con k Z, ovvero ρ = = θ = π + kπ con k = 0,, (gli altri valori di k danno le stesse soluzioni). Le soluzioni sono quindi gli con k = 0,,. z k = e i( π + kπ )

10 b) Scrivere una delle soluzioni in forma algebrica. Delle soluzioni precedentemente enumerate, la più semplice è quella con k = 0, ovvero z 0 = + i. Esercizio. Sia data la matrice M, dipendente da un parametro k R, 8 M = 0 8 k a) Determinare al variare del parametro k se la matrice è invertibile o no. Una matrice è invertibile se e solo se il suo determinante è diverso da 0. Calcoliamo quindi il determinante di M, troviamo: det M = 6k +. La matrice M è invertibile quindi se e solo se k non è uguale a 5 9. b) Determinare per quale valore di k la matrice M ammette il vettore v = come autovettore. Il vettore v è un autovettore se e solo se esiste un reale λ tale che M v = λv. Abbiamo M v = k Quindi v sarà un autovettore se λ = e k =, cioè k = 6. c) Per il valore di k determinato alla domanda precedente, determinare autovalori e autovettori di M e dire se la matrice è diagonalizzabile. Sappiamo già che in questo caso M ha λ = come autovalore e che un autovettore corrispondente è v. Il polinomio caratteristico di M è P M (λ) = λ 5λ 8λ.

11 I due altri autovalori sono (autovalore doppio). L'autospazio per l'autovalore è di equazione x + 6y 9z = 0 ed è quindi di dimensione. Una sua base è data dai vettori 6 0 e 9 0 Inoltre la matrice è diagonalizzabile, perché i suoi autovalori sono reali e ciascuno ha molteplicità algebrica uguale alla sua molteplicità geometrica. d) Risolvere il sistema x y + 8z = x + 0y 8z = x + 6y z = Una soluzione ovvia è il vettore v. Siccome la matrice M è di determinante diverso da 0, questo è l'unica soluzione. Esercizio. Si consideri la retta r : x = 6 + 5t y = t z = + t a) Scrivere un'equazione cartesiana del piano π passante per il punto A(; ; 5) e ortogonale alla retta r. Come vettore normale al piano π possiamo prendere il vettore direzionale di r, ossia (5; ; ). Quindi l'equazione cercata è 5(x ) (y ) + (z + 5) = 0, ossia 5x y + z = 0. b) Trovare il punto B in cui la retta r interseca il piano π. Basta inserire le equazioni (parametriche) di r nell'equazione di π. Si trova t = e quindi B(; ; ).

12 c) Determinare un punto C sulla retta r tale che l'area del triangolo ABC sia uguale a 78. Il triangolo ABC è ovviamente rettangolo in B. Poiché BA = (; ; ), abbiamo che BA =. Sia ora C(6 + 5t; t; + t) il generico punto della retta r. Si ha che BC = 7(t + ) = 7 t + e quindi l'area del triangolo ABC vale 78 t + /. Dall'equazione 78 t + / = 78 otteniamo t + = e quindi t = oppure t =. Ci sono quindi due possibili scelte per il punto C; la prima è (; ; 0), la seconda ( 9; ; ).

13 Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 08 Parte B Tema B Tempo a disposizione: due ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio deve cominciare all'inizio di una nuova pagina. Vanno consegnati solo questo foglio e la bella. Saranno tolti punti per le risposte non giusticate. SOLUZIONI Esercizio. a) Risolvere l'equazione z 5 z = 8 8i Osserviamo innanzitutto che z = 0 non è una soluzione dell'equazione. Scriviamo quindi in forma esponenziale z = ρe iθ con ρ > 0 e θ R. Abbiamo inoltre 8 8i = 8 e iπ. Quindi z è soluzione se e solo se Dobbiamo perciò avere ρ 7 e iθ = 8 e iπ con k Z, ovvero ρ 7 = 8 = 7 θ = π + kπ ρ = = θ = π + kπ con k = 0,, (gli altri valori di k danno le stesse soluzioni). Le soluzioni sono quindi gli con k = 0,,. z k = e i( π + kπ )

14 b) Scrivere una delle soluzioni in forma algebrica. Delle soluzioni precedentemente enumerate, la più semplice è quella con k = 0, ovvero z 0 = i. Esercizio. Sia data la matrice M, dipendente da un parametro k R, 8 6 M = 9 0 k a) Determinare al variare del parametro k se la matrice è invertibile o no. Una matrice è invertibile se e solo se il suo determinante è diverso da 0. Calcoliamo quindi il determinante di M, troviamo: det M = k 0. La matrice M è invertibile quindi se e solo se k non è uguale a 5. b) Determinare per quale valore di k la matrice M ammette il vettore v = come autovettore. Il vettore v è un autovettore se e solo se esiste un reale λ tale che M v = λv. Abbiamo 6 M v = 6 k + Quindi v sarà un autovettore se λ = e k + =, cioè k =. c) Per il valore di k determinato alla domanda precedente, determinare autovalori e autovettori di M e dire se la matrice è diagonalizzabile. Sappiamo già che in questo caso M ha λ = come autovalore e che un autovettore corrispondente è v. Il polinomio caratteristico di M è P M (λ) = λ 6λ λ 6.

15 I due altri autovalori sono e. I tre autovalori sono semplici quindi la matrice è diagonalizzabile. Inoltre un autovettore per l'autovalore è 6 mentre uno per l'autovalore è 7 d) Risolvere il sistema x + 8y 6z = 6 x 9y + z = 6 y + z = Una soluzione ovvia è il vettore v. Siccome la matrice M è di determinante diverso da 0, questo è l'unica soluzione. Esercizio. Si consideri la retta r : x = 8 + 5t y = t z = + t a) Scrivere un'equazione cartesiana del piano π passante per il punto A(; ; 5) e ortogonale alla retta r. Come vettore normale al piano π possiamo prendere il vettore direzionale di r, ossia (5; ; ). Quindi l'equazione cercata è 5(x ) (y ) + (z + 5) = 0, ossia 5x y + z = 0. b) Trovare il punto B in cui la retta r interseca il piano π. Basta inserire le equazioni (parametriche) di r nell'equazione di π. Si trova t = e quindi B(; ; ).

16 c) Determinare un punto C sulla retta r tale che l'area del triangolo ABC sia uguale a 78. Il triangolo ABC è ovviamente rettangolo in B. Poiché BA = (; ; ), abbiamo che BA =. Sia ora C(8 + 5t; t; + t) il generico punto della retta r. Si ha che BC = 7(t + ) = 7 t + e quindi l'area del triangolo ABC vale 78 t + /. Dall'equazione 78 t + / = 78 otteniamo t + = e quindi t = oppure t =. Ci sono quindi due possibili scelte per il punto C; la prima è (; ; 0), la seconda ( 7; ; ).

Esercizi su Autovalori e Autovettori

Esercizi su Autovalori e Autovettori Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio

Dettagli

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Syllabus: argomenti di Matematica delle prove di valutazione

Syllabus: argomenti di Matematica delle prove di valutazione Syllabus: argomenti di Matematica delle prove di valutazione abcdef... ABC (senza calcolatrici, senza palmari, senza telefonini... ) Gli Argomenti A. Numeri frazioni e numeri decimali massimo comun divisore,

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2014-2015 - Docente: Prof. Angelo Felice Lopez Tutori: Federico Campanini e Giulia Salustri Soluzioni Tutorato 13

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

Appunti di Algebra Lineare. Antonino Salibra

Appunti di Algebra Lineare. Antonino Salibra Appunti di Algebra Lineare Antonino Salibra January 11, 2016 2 Libro di testo: Gilbert Strang, Algebra lineare, Edizioni Apogeo 2008 Programma di Algebra Lineare (2015/16) (da completare): 1. Campi numerici.

Dettagli

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura Cognome Nome Matricola ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura (Primo appello/ii prova parziale 15/6/15 - Chiarellotto-Urbinati) Per la II prova: solo esercizi

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x FUNZIONI Esercizio 1 Studiare la funzione f(x) = ln ( ) x e disegnarne il grafico. x 1 Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: { e x per x 1 f(x) = α x + e 1 per 1

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

LA GEOMETRIA ANALITICA DELLO SPAZIO. Liceo G. GALILEI - Verona Venerdì 10 Aprile 2015 CONVEGNO MATHESIS VERONA

LA GEOMETRIA ANALITICA DELLO SPAZIO. Liceo G. GALILEI - Verona Venerdì 10 Aprile 2015 CONVEGNO MATHESIS VERONA LA GEOMETRIA ANALITICA DELLO SPAZIO CONVEGNO MATHESIS Liceo G. GALILEI - Verona Venerdì 10 Aprile 2015 Perché Assenza di ogni riferimento alla geometria analitica dello spazio nel quadri di Mondrian La

Dettagli

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

Corso di Laurea in Ingegneria Informatica Analisi Numerica

Corso di Laurea in Ingegneria Informatica Analisi Numerica Corso di Laurea in Ingegneria Informatica Lucio Demeio Dipartimento di Scienze Matematiche 1 2 Analisi degli errori Informazioni generali Libro di testo: J. D. Faires, R. Burden, Numerical Analysis, Brooks/Cole,

Dettagli

Introduzione alla programmazione lineare. Mauro Pagliacci

Introduzione alla programmazione lineare. Mauro Pagliacci Introduzione alla programmazione lineare Mauro Pagliacci c Draft date 25 maggio 2010 Premessa In questo fascicolo sono riportati gli appunti dalle lezioni del corso di Elaborazioni automatica dei dati

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Massimi e minimi vincolati in R 2 - Esercizi svolti

Massimi e minimi vincolati in R 2 - Esercizi svolti Massimi e minimi vincolati in R 2 - Esercizi svolti Esercizio 1. Determinare i massimi e minimi assoluti della funzione f(x, y) = 2x + 3y vincolati alla curva di equazione x 4 + y 4 = 1. Esercizio 2. Determinare

Dettagli

Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon

Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon Esercizi di algebra lineare e sistemi di equazioni lineari con applicazioni

Dettagli

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A)

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A) Esame di Geometria - 9 CFU (Appello del 28 gennaio 23 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Nello spazio R 3, siano dati il piano e i punti P = (, 2, ), Q = (2,, ). π : x + 2y 3

Dettagli

1 Regole generali per l esame. 2 Libro di Testo

1 Regole generali per l esame. 2 Libro di Testo FACOLTÀ DI INGEGNERIA Corso di GEOMETRIA E ALGEBRA (mn). (Ing. per l Ambiente e il Territorio, Ing. Informatica - Sede di Mantova) A.A. 2008/2009. Docente: F. BISI. 1 Regole generali per l esame L esame

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI ISTITUTO PROFESSIONALE DI ENOGASTRONOMIA E OSPITALITA ALBERGHIERA CON I PERCORSI: ACCOGLIENZA TURISTICA, CUCINA, SALA-BAR ISTITUTO TECNICO PER IL TURISMO Sede Amministrativa:

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

ESERCIZIO 1: Vincolo di bilancio lineare

ESERCIZIO 1: Vincolo di bilancio lineare Microeconomia rof. Barigozzi ESERCIZIO 1: Vincolo di bilancio lineare Si immagini un individuo che ha a disosizione un budget di 500 euro e deve decidere come allocare tale budget tra un bene, che ha un

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

FUNZIONI CONTINUE - ESERCIZI SVOLTI

FUNZIONI CONTINUE - ESERCIZI SVOLTI FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique.

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti verticali Sia 0 punto di accumulazione per dom(f). La retta = 0 è

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Primo Esonero del corso di Geometria Docente F. Flamini, Roma, 2//28 SOLUZIONI COMPITO I ESONERO Esercizio.

Dettagli

Dispense per TFA. Domenico Candeloro

Dispense per TFA. Domenico Candeloro Dispense per TFA Domenico Candeloro Introduzione. Queste brevi dispense hanno lo scopo di illustrare alcuni strumenti elementari della Matematica, oggetto di studio nelle Scuole Medie, Superiori e non,

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi ESERCIZIO (6 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 2 GENNAIO 25 Una volta identificato, nel piano complesso α, il dominio di convergenza della

Dettagli

FOGLIO 6 - Esercizi Riepilogativi Svolti. Nei seguenti esercizi, si consideri fissato una volta per tutte un riferimento proiettivo per

FOGLIO 6 - Esercizi Riepilogativi Svolti. Nei seguenti esercizi, si consideri fissato una volta per tutte un riferimento proiettivo per Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Edile/Architettura Esercizi per il corso di GEOMETRIA 2 - aa 2007/2008 Docente: Prof F Flamini - Tutore: Dott M Paganin FOGLIO 6 - Esercizi

Dettagli

Ripasso delle matematiche elementari: esercizi svolti

Ripasso delle matematiche elementari: esercizi svolti Ripasso delle matematiche elementari: esercizi svolti I Equazioni e disequazioni algebriche 3 Esercizi su equazioni e polinomi di secondo grado.............. 3 Esercizi sulle equazioni di grado superiore

Dettagli

Introduzione a GeoGebra

Introduzione a GeoGebra Introduzione a GeoGebra Nicola Sansonetto Istituto Sanmicheli di Verona 31 Marzo 2016 Nicola Sansonetto (Sanmicheli) Introduzione a GeoGebra 31 Marzo 2016 1 / 14 Piano dell incontro 1 Introduzione 2 Costruzioni

Dettagli

Esercitazione n o 3 per il corso di Ricerca Operativa

Esercitazione n o 3 per il corso di Ricerca Operativa Esercitazione n o 3 per il corso di Ricerca Operativa Ultimo aggiornamento October 17, 2011 Fornitura acqua Una città deve essere rifornita, ogni giorno, con 500 000 litri di acqua. Si richiede che l acqua

Dettagli

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI 1. REGOLA DI CRAMER Sia S un sistema lineare di n ( 2) equazioni in n incognite su un campo K : a 11 x 1 + a 12 x 2 + + a 1n x n

Dettagli

Archimede BORSE DI STUDIO INDAM 2003

Archimede BORSE DI STUDIO INDAM 2003 1 2004 Archimede BORSE DI STUDIO INDAM 2003 ARTICOLO UN PREMIO PER GLI STUDENTI DI MATEMATICA Anche per il 2003-2004, l INdAM ha assegnato 50 borse di studio ad alcuni dei migliori studenti immatricolati

Dettagli

Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1

Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1 Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria R. Vitolo Dipartimento di Matematica Università di Lecce SaLUG! - Salento Linux User Group Il programma OCTAVE per l

Dettagli

Matteo Moda Geometria e algebra lineare Fasci. Fasci. N.B.: Questo argomento si trova sull eserciziario. Fasci di rette nel piano

Matteo Moda Geometria e algebra lineare Fasci. Fasci. N.B.: Questo argomento si trova sull eserciziario. Fasci di rette nel piano Fasci N.B.: Questo argomento si trova sull eserciziario Fasci di rette nel piano 1 Fasci di piani nello spazio 2 Matteo Moda Geometria e algebra lineare Fasci Date due rette r ed r di equazione: : 0 :

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE FLAVIO ANGELINI Sommario Queste note hanno lo scopo di indicare a studenti di Economia interessati alla finanza quantitativa i concetti essenziali

Dettagli

Prof. Stefano Capparelli

Prof. Stefano Capparelli APPUNTI PER UN SECONDO CORSO DI ALGEBRA LINEARE Prof. Stefano Capparelli A mia madre Prefazione. Brevi Richiami di Algebra Lineare. Forma Canonica di Jordan.. Blocco di Jordan.. Base di Jordan.. Polinomio

Dettagli

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane) 1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche

Dettagli

Lezione 3: Il problema del consumatore: Il

Lezione 3: Il problema del consumatore: Il Corso di Economica Politica prof. Stefano Papa Lezione 3: Il problema del consumatore: Il vincolo di bilancio Facoltà di Economia Università di Roma La Sapienza Il problema del consumatore 2 Applichiamo

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

Esempio di test di ingresso per i Corsi di Laurea della classe L-31 Scienze e tecnologie informatiche

Esempio di test di ingresso per i Corsi di Laurea della classe L-31 Scienze e tecnologie informatiche Esempio di test di ingresso per i Corsi di Laurea della classe L-31 Scienze e tecnologie informatiche Il tempo a disposizione per la risoluzione dei quesiti è di 90 minuti. Il test si ritiene superato

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classi I C I G

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classi I C I G Esercizi Estivi di Matematica a.s. 0/04 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classi I C I G ALUNNO CLASSE Ulteriore ripasso e recupero anche nei siti www.vallauricarpi.it

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come Numeri complessi 9 Da questi esempi si può osservare che, facendo le successive potene di un numero complesso, i punti corrispondenti girano attorno all origine. Se inoltre > allora i punti si allontanano

Dettagli

Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2014-2015 Programma del corso di Geometria Prof.

Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2014-2015 Programma del corso di Geometria Prof. Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2014-2015 Programma del corso di Geometria Prof. Antonio Cigliola Prerequisiti Logica elementare. Principio di Induzione.

Dettagli

Funzioni. 1. Introduzione alle funzioni. Tema C13. Che cos è una funzione?

Funzioni. 1. Introduzione alle funzioni. Tema C13. Che cos è una funzione? Funzioni Tema C. Introduzione alle funzioni STRUMENTI DIGITALI APPRFNDIMENTI RISRSE IN GEGEBRA FIGURE ANIMATE VIDELEZINI ESERCIZI INTERATTIVI Che cos è una funzione? Dati due insiemi X e Y, si definisce

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO A INDIRIZZO SPERIMENTALE (PNI)

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO A INDIRIZZO SPERIMENTALE (PNI) ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO A INDIRIZZO SPERIMENTALE (PNI) Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. Problema

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa

Dettagli

Università degli Studi di Verona Corsi di Laurea in Matematica Applicata, Informatica e Informatica Multimediale. Test di autovalutazione (matematica)

Università degli Studi di Verona Corsi di Laurea in Matematica Applicata, Informatica e Informatica Multimediale. Test di autovalutazione (matematica) Università degli Studi di Verona Corsi di Laurea in Matematica Applicata, Informatica e Informatica Multimediale Test di autovalutazione (matematica) 1. Eseguendo la divisione con resto di 3437 per 225

Dettagli

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

Ripasso di Calcolo Scientifico: Giulio Del Corso

Ripasso di Calcolo Scientifico: Giulio Del Corso Ripasso di Calcolo Scientifico: Giulio Del Corso Queste dispense sono tratte dalle lezioni del Prof. Gemignani e del Prof. Bini del corso di Calcolo Scientifico (2014/2015) dell università di Pisa. Non

Dettagli

Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica. Calcolo 2 [40214]

Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica. Calcolo 2 [40214] Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica Calcolo 2 [40214] Attività didattica: Attività didattica [codice] Corso di studio Facoltà Calcolo 2 [40214] Ingegneria delle

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

Liceo Classico Statale Dante Alighieri

Liceo Classico Statale Dante Alighieri Liceo Classico Statale Dante Alighieri via E. Q. Visconti, 13 - ROMA - PIANO ANNUALE DI LAVORO Anno scolastico 2015/16 Docente: Cristina Zeni Disciplina: MATEMATICA Classe: 4C Ore settimanali: 2 1. ANALISI

Dettagli

Verica di Matematica su dominio e segno di una funzione [COMPITO 1]

Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Esercizio 1. Determinare il dominio delle seguenti funzioni: 1. y = 16 x ;. y = e 1 x +4 + x + x + 1; 3. y = 10 x x 3 4x +3x; 4. y =

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Elenco Ordinato per Materia Chimica

Elenco Ordinato per Materia Chimica ( [B,25404] Perché le ossa degli uccelli sono pneumatiche, cioè ripiene di aria? C (A) per consentire i movimenti angolari (B) per immagazzinare come riserva di ossigeno X(C) per essere più leggere onde

Dettagli

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO

Dettagli

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI)

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) 1 Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) Approssimazioni di Taylor BPS, Capitolo 5, pagine 256 268 Approssimazione lineare, il simbolo

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

I.P.S.S. Severini a.s. 2015-16 Curriculum Verticale MATEMATICA

I.P.S.S. Severini a.s. 2015-16 Curriculum Verticale MATEMATICA Curriculum Verticale MATEMATICA I Docenti di Matematica dell IPSS concordano, per l a.s. 2015/16, i seguenti punti: numero minimo di verifiche annue (riferite ad una frequenza regolare): 6, di varia tipologia

Dettagli

Tutorato di Analisi 2 - AA 2014/15

Tutorato di Analisi 2 - AA 2014/15 Tutorato di Analisi - AA /5 Emanuele Fabbiani 5 marzo 5 Integrali doppi. La soluzione più semplice... Come per gli integrali in una sola variabile, riconoscere eventuali simmetrie evita di sprecare tempo

Dettagli

Prova scritta di Geometria 2 Prof. M. Boratynski

Prova scritta di Geometria 2 Prof. M. Boratynski 10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale

Dettagli

Syllabus delle conoscenze per il modulo: linguaggio matematico di base, modellizzazione e ragionamento. Esempi di domande

Syllabus delle conoscenze per il modulo: linguaggio matematico di base, modellizzazione e ragionamento. Esempi di domande Syllabus delle conoscenze per il modulo: linguaggio matematico di base, modellizzazione e ragionamento Esempi di domande Nelle pagine che seguono sono riportati, come esempio, i venticinque quesiti già

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Università degli studi di Foggia SSIS D.M.85 2005 Laboratorio di didattica della matematica finanziaria Classe 17/A

Università degli studi di Foggia SSIS D.M.85 2005 Laboratorio di didattica della matematica finanziaria Classe 17/A Università degli studi di Foggia SSIS D.M.85 2005 Laboratorio di didattica della matematica finanziaria Classe 17/A Appunti sull utilizzo di Excel per la soluzione di problemi di matematica finanziaria.

Dettagli

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3 livello A1 modulo A1.1 modulo A1.2 matematica livello A2 modulo A2.1 modulo A2.2 livello A insiemi e appartenenza interpretazione grafica nel piano traslazioni proprietà commutatività associatività elemento

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. A cura di Jung Kyu CANCI e Domenico FRENI. Con la collaborazione di

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. A cura di Jung Kyu CANCI e Domenico FRENI. Con la collaborazione di UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria A cura di Jung Kyu CANCI e Domenico FRENI Con la collaborazione di Luciano BATTAIA e Pier Carlo CRAIGHERO MATEMATICA DI BASE TEMI D ESAME 9

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli