Soluzioni Esercitazione VIII. p(t)dt = R

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Soluzioni Esercitazione VIII. p(t)dt = R"

Transcript

1 S. a Si ha Soluioni Esercitaione VIII PT > + ptt ptt perché pt per t <. Quini T è una v.a. positiva e può unque essere usata per escrivere probabilisticamente ei tempi i vita. b Per u, si ha PT > u + perché pt per t <. Se invece u >, Quini la f.. i T è c Si ha + u ptt + + ptt PT > u ptt λ t e λ t t> t u u + e λ t t e λ t t + e λ u. u t tu F T u { se u e λ u se u > PT > t + s T > s PT > t + s, T > s PT > s PT > t + s PT > s perché {T > t + s} {T > s}. Quini, usano b, { g t s exp λ t + s s }. Stuiamo il segno ella erivata i g t, per s > : [ g ts λ g t s t + s s ]. Allora, g ts se e solo se t + s s, ovvero t + s che equivale si ricori che t, s > a richieere s. Possiamo quini riassumere come segue: g t s è

2 monotona crescente in s > se e solo se < ; costante in s > se e solo se ; monotona ecrescente in s > se e solo se >. Sia T il tempo i vita i una unità. La funione g t s rappresenta la probabilità che l apparecchiatura sopravviva un ulteriore tempo t, coniionatamente al fatto che è funionante all istante s, cioè la probabilità che il tempo i vita resiuo a s sia maggiore i t. Se quini g t è ecrescente <, tale apparecchiatura ev essere soggetta a un fenomeno i tipo usura, ovvero tene a eteriorarsi con il tempo: all aumentare el tempo s, il tempo i vita resiuo tene a iminuire. Se invece g t è crescente >, l unità in questione tene a migliorare con l età: all aumentare el tempo s, il tempo i vita resiuo tene a aumentare. Qualora invece g t fosse costante, significherebbe che l età non influena il tempo i vita resiuo ell apparecchiatura perita i memoria. Si noti infine che per allora p è la ensità i una Expλ: le v.a. esponeniali soisfano quini la proprietà i perita i memoria, che nel caso iscreto è tipica elle v.a. geometriche. S. Per β > e X Expλ, se t allora PX β t e se t > si ha PX β t PX t /β. Quini, f X βt t PXβ t t PX t/β t> f X t /β β t/β λ β t/β e t/β t> cioè X β è una v.a. i Weibull come nell Eserciio, i parametri λ e /β. 3 a Cerchiamo µ tale che esiste finito lim + xµ x: per >, Quini, x µ+ x µ µ+ µ+ µ+ se µ x ln x ln se µ lim + x µ x { µ+ se µ > + se µ Possiamo allora concluere iceno che p è integrabile su se e solo se µ > e inoltre pxx c µ+. b Perché p sia una ensità, ev essere p integrabile, p e pxx, quini p è una ensità se e solo se µ > e inoltre, cioè c µ +. c µ+

3 c Inichiamo con p X e p Y la ensità i X e Y rispettivamente: p X x x x, p Y y e y y>. Per calcolare la ensità i X + Y basta calcolare la convoluione continua tra p X e p Y : p X+Y p X xp Y x x x <x< e x x> x e x e x <x<, x< x. Calcoliamo separatamente x ex <x<,x< x. Tutto ipene a come si trova rispetto a e. : <x<,x<, quini x ex <x<,x< x ; < < : <x<,x< <x<, quini x e x <x<,x< x xe x x x e x e e x : <x<,x< <x<, quini x e x <x<,x< x e e + e + ; xe x x x e x e x x e x x e e x. iassumeno, possiamo scrivere p X+Y e e + << + e > <<. Si noti che p X+Y è una ensità: p X+Y per ogni, perché e per ogni, verificare!, e inoltre + p X+Y e S 4. e + +. a Stuiamo il comportamento asintotico per + i pxx: lim px x lim π quini esite finito px x. La f.. associata è F x x + x x π lim arctg x π lim arctg π π pt t π arctg t x 3 π arctg x + π.

4 b Stuiamo il comportamento asintotico per + i x pxx: lim x px x lim ln + x π lim π lim quini una v.a. i Cauchy non ha meia. π x + x x ln + + c Se y, ovviamente F Y y PY y PX y. Se invece y >, quini, per y >, F Y y P y < X < y F X y F X y f Y y y F Y y F X y F X y f X y + f X y y y. Possiamo infine scrivere f Y y π y + y y>. Ovviamente Y X non può avere né meia né variana, perché in caso affermativo significherebbe che X ha momento secono o quarto, il che non è possibile perché non ha neanche momento primo. Z /X è ben posta: l eventuale problema è per X, che comunque è un evento i probabilità perché X ha ensità. Calcoliamo la sua f..: per,, si ha: F Z PZ P X P X, X > + P X, X < P X, X > + P X, X < P X, X >, > + P X, X >, < + P X, X <, > +P X, X <, < quini: se > : P X F Z P X, X > + PX < F X + P X, X < + F X 3 F X ; e f Z 3 F X f X π + ; 4

5 se < : F Z P X, X > e Possiamo quini scrivere + P X, X < F X + P X <. f Z F X f X π +. f Z π +. F X F X Quini f Z e la ensità p i una v.a i Cauchy coinciono ovunque tranne che nell origine, quini Z è ancora una v.a. i Cauchy come abbiamo già etto, se le ensità sono moificate su un insieme finito i punti, le funioni i istribuione non cambiano. S 5. Calcoliamo apprima la legge el massimo: F U u PmaxX,..., X n u PX u,..., X n u PX k u F k u, quini f U u u i F k u f i u F i u i F k u u F iu F k u,k i i F k u f i u F i u ove si ponga f iu F i u se F iu si noti che se F i u, segue che anche f i u ev essere. Se f... f n f e F... F n F, allora Per il minimo, si ha f U u n fu F n u. F W w PminX,..., X n u PminX,..., X n > w PX > w,..., X n > w F k w, PX k > w 5

6 quini f W w w f i w i F k w,k i i F k w n F i w F k w u,k i F k w i i f i w F i w f i w F i w F k w ove si ponga f iw F i w se F iw. Se f... f n f e F... F n F, allora n. f W w n fw F w S 6. a Inichiamo con S e S il tempo i vita el primo e el secono componente; con T e T i tempi i vita ei ue elementi che eterminano il secono componente. Allora, S Exp/, T, T Exp/8 e S maxt, T. Inoltre, le v.a. T, T possono consiersi inipenenti. a Calcoliamo la funione i istribuione i S : per s >, F S s PS s PmaxT, T s PT s, T s PT spt s e s/8 e F S s se s. Derivano rispetto a s, si ottiene la ensità i probabilità: f S s 4 e s/8 e s/8 s>, come altro anto segue all eserciio 5. La vita meia el secono componente è E[S ] s f S ss. Dunque, in meia ura i più il secono componente. b La probabilità richiesta è PS > S PS S > PS + S >. Posto V S, allora PS > S PS + V > f S +V ss. Occorre unque calcolare la ensità i S + V : poiché S e V rimangono inipenenti, f S +V s f S s vf V vv che, a sua volta, richiee la valutaione ella ensità i V : per v, f V v v PV v v P S v v PS v 6

7 v F S v v F S v f S v f S v. Quini f V v 4 ev/8 e v/8 v<. Allora, f S +V s f S s vf V vv e s v/ s v> 4 ev/8 e v/8 v< v 4 e s/ e 9v/4 e 4v/4 v<s v< v. Consieriamo separatamente il caso s e s <. Se s, v<s v< v<, quini f S +V s 4 e s/ e 9v/4 e 4v/4 v 5 6 e s/ ; se s <, v<s v< v<s, quini f S +V s 4 e s/ s e 9v/4 e 4v/4 v 9 e s/8 4 e s/4 come verifica, si controlli che f S +V s e che f S +V ss. Infine, sostitueno tale espressione in si ottiene la probabilità richiesta: PS > S f S +V ss 5 6 e s/ s

L'equazione di continuità

L'equazione di continuità L'equazione i continuità Una prima imostrazione. Consieriamo il volume occupato a una istribuzione i cariche ρ (t, x). È possibile esprimere la proprietà i conservazione ella carica nel seguente moo t

Dettagli

r i =. 100 In generale faremo riferimento al tasso unitario.

r i =. 100 In generale faremo riferimento al tasso unitario. . Operazioni finanziarie Si efinisce operazione finanziaria (O.F.) ogni operazione relativa a impegni monetari e si efinisce operazione finanziaria elementare uno scambio, tra ue iniviui, i capitali iversi.

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO CINEMATICA DEL CORPO RIGIDO 5 Premettiamo una Definizione: si chiama atto i moto i un sistema materiale in un ato istante t, l insieme elle velocità i tutti i punti el sistema all istante t. E errato parlare

Dettagli

Le molle. M. Guagliano

Le molle. M. Guagliano Le molle M. Guagliano Introuzione Le molle sono organi meccanici che hanno la proprietà i eformarsi molto sotto carico, ma rimaneno nel campo elastico el materiale i cui sono costituite, ovvero non accumulano

Dettagli

ondulatorio della luce; tuttavia l'ottica geometrica eç un punto di partenza

ondulatorio della luce; tuttavia l'ottica geometrica eç un punto di partenza O2. Introuzione all'ottica geometrica Premessa Lo stuio egli strumenti astronomici non puoç prescinere al comportamento onulatorio ella luce; tuttavia l'ottica geometrica eç un punto i partenza necessario,

Dettagli

STRATEGIA DI CAMPIONAMENTO E VALUTAZIONE DEGLI ERRORI CAMPIONARI 1

STRATEGIA DI CAMPIONAMENTO E VALUTAZIONE DEGLI ERRORI CAMPIONARI 1 INDAGINE MULTISCOPO SULLA SICUREZZA DELLE DONNE STRATEGIA DI CAMPIONAMENTO E VALUTAZIONE DEGLI ERRORI CAMPIONARI - INTRODUZIONE La popolazione i interesse ell inagine è costituita alle onne i età compresa

Dettagli

Studio di una funzione razionale fratta (autore Carlo Elce)

Studio di una funzione razionale fratta (autore Carlo Elce) Stuio i funzioni Carlo Elce 1 Stuio i una funzione razionale fratta (autore Carlo Elce) Per rappresentare graficamente una funzione reale i una variabile reale bisogna seguire i seguenti passi: Passo 1)

Dettagli

Teorema di Sostituzione

Teorema di Sostituzione Teorema i Sostituzione Le Fiure (a) e (b) i seuito riportate, si riferiscono al Teorema i sostituzione che afferma: Una impeenza Z a percorsa a una corrente, può essere sostituita un eneratore i tensione

Dettagli

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 6 29 Aprile 2011

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 6 29 Aprile 2011 Università i Siena See i Grosseto Secono Semestre 200-20 Macroeconomia Paolo Pin ( pin3@unisi.it ) Lezione 6 29 Aprile 20 Un ultimo punto sul capitolo 5 Risparmio Investimento in economia aperta? o, serve

Dettagli

1. Richiami di probabilità

1. Richiami di probabilità 6 1. RICHIAMI DI PROBABILITÀ 1. Richiami i probabilità Forniamo un compenio elle nozioni basilari i probabilità che ci saranno utili. Per maggiori ettagli, si possono consultare i testi [Billingsley, 1995],

Dettagli

Gestione economico-aziendale

Gestione economico-aziendale La valutazione i un aziena nell ipotesi i un acquisizione: un caso i applicazione el metoo ei multipli i Massimo Buongiorno * e Marco Capra ** Il presente lavoro illustra un incarico svolto nell interesse

Dettagli

H ds = 2πRH = Ni H = Ni 2πR. N(k m 1) M = 0.05A

H ds = 2πRH = Ni H = Ni 2πR. N(k m 1) M = 0.05A Esercizio Un anello toroiale i piccola sezione avente raggio meio R = 0cm è fatto i ferro con permeabilità magnetica relativa = 5000. Una bobina con N = 000 spire è avvolta sulla superficie ell anello.

Dettagli

Nota metodologica. Strategia di campionamento e livello di precisione dei risultati dell indagine Multiscopo Aspetti della vita quotidiana

Nota metodologica. Strategia di campionamento e livello di precisione dei risultati dell indagine Multiscopo Aspetti della vita quotidiana Nota metoologica I ati vengono raccolti nell ambito ell inagine campionaria sulle famiglie Aspetti ella vita quotiiana, ce fa parte i un sistema integrato i inagini sociali (Inagini Multiscopo) e è volta

Dettagli

IL SISTEMA DEI PREZZI DI LEON WALRAS

IL SISTEMA DEI PREZZI DI LEON WALRAS IL SISTEMA DEI PREZZI DI LEON WALRAS E L EQUILIBRIO ECONOMICO GENERALE Sommario: 1. Introuzione 2. Il sistema ei prezzi i Walras e l equilibrio economico generale 3. Le contraizioni implicite nel sistema

Dettagli

1. La retta IS in economia aperta

1. La retta IS in economia aperta 999, Riccaro Marselli. La riprouzione i questa ispensa, e parti i essa, per L'economia aperta Questa ispensa illustra le moifiche che è necessario apportare allo schema base IS-LM per tener conto ei legami

Dettagli

Barriere paramassi rigide ed elastiche

Barriere paramassi rigide ed elastiche GeoStru Sotware www.geostru.com Barriere paramassi rigie e elastiche Le barriere paramassi a rete sono generalmente composte a una struttura intercettazione, a una struttura i sostegno, a una struttura

Dettagli

Nozioni generali. Tipi di cuscinetti 6. Normalizzazione ed intercambiabilità 12. Dimensioni e codifica 14. Precisione di esecuzione dei cuscinetti 18

Nozioni generali. Tipi di cuscinetti 6. Normalizzazione ed intercambiabilità 12. Dimensioni e codifica 14. Precisione di esecuzione dei cuscinetti 18 Nozioni generali Tipi i cuscinetti 6 efinizioni 6 Vocabolario 8 Attituini 9 Normalizzazione e intercambiabilità 12 Le norme 12 Intercambiabilità 12 imensioni e coifica 14 Coifica generale 14 Coice completo

Dettagli

PROVINCIA DI SALERNO ASSESSORATO ALLE POLITICHE AMBIENTALI

PROVINCIA DI SALERNO ASSESSORATO ALLE POLITICHE AMBIENTALI Relazione Valutazione ell apporto solio ei principali corsi acqua el golfo i Salerno Consulenti e collaboratori: Prof. Eugenio Pugliese Carratelli Prof. Enrico Foti (Univ. Catania) Prof. Vittorio Bovolin

Dettagli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 8. Rimini, 7 ottobre 2014. Il mercato dei titoli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 8. Rimini, 7 ottobre 2014. Il mercato dei titoli Macroeconomia Laura Vici laura.vici@unibo.it www.lauravici.com/macroeconomia LEZIONE 8 Rimini, 7 ottobre 2014 Macroeconomia 158 Il mercato ei titoli Sul mercato ei titoli si etermina il prezzo ei titoli

Dettagli

SENSORI PER GRANDEZZE MECCANICHE

SENSORI PER GRANDEZZE MECCANICHE Sono utili per la misura i: SENSORI PER GRANDEZZE MECCANICHE granezze legate al moto, come posizione, spostamento, rugosità superficiale, velocità i flusso, velocità i rotazione,... granezze legate alle

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

Progetto di un solaio in legno a semplice orditura (a cura di: ing. E. Grande)

Progetto di un solaio in legno a semplice orditura (a cura di: ing. E. Grande) Progetto i un solaio in legno a semplice oritura (a cura i: ing. E. Grane) 1. PREMESSA Il presente elaborato concerne la progettazione i un solaio in legno a semplice oritura con estinazione uso i civile

Dettagli

Corso di Economia del Lavoro Daniele Checchi Blanchard-Amighini-Giavazzi cap.4 anno 2014-15

Corso di Economia del Lavoro Daniele Checchi Blanchard-Amighini-Giavazzi cap.4 anno 2014-15 Corso i Economia el Lavoro Daniele Checchi Blanchar-Amighini-Giavazzi cap.4 anno 2014-15 I MERCATI FINANZIARI Esise una grane varieà i aivià finanziarie. Il risparmiaore eve scegliere in quali forme eenere

Dettagli

Tributi, accertamento e giurisprudenza tributaria

Tributi, accertamento e giurisprudenza tributaria Tributi, accertamento e giurispruenza tributaria Riflessi fiscali ella copertura elle perite nelle società in accomanita semplice i Fabio Giommoni * La copertura elle perite elle società in accomanita

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

La redazione del primo bilancio d esercizio successivo alla trasformazione di una società di persone in società di capitali di Fabio Giommoni *

La redazione del primo bilancio d esercizio successivo alla trasformazione di una società di persone in società di capitali di Fabio Giommoni * La reazione el primo bilancio esercizio successivo alla trasformazione i una società i persone in società i capitali i Fabio Giommoni * La reazione el bilancio esercizio a parte i una società i capitali

Dettagli

Viti a ricircolazione di sfere standard

Viti a ricircolazione di sfere standard Viti a ricircolazione i stanar KURODA prouce viti a ricircolazione i nelle versioni rullate stanar, rettificate stanar e rettificate secono isegno cliente; la gamma completa comprene chiocciole singole

Dettagli

Cap. 8 Sistemi di controllo

Cap. 8 Sistemi di controllo Cap. 8 Sistemi i controllo Come già etto, in generale, un sistema è solo potenzialmente in grao i soisfare gli obiettivi per i quali è stato costruito, e cioè i comportarsi nella maniera esierata. Per

Dettagli

Corso di Fondazioni - D2180 Esempi di Calcolo FONDAZIONE A PLINTO QUADRATO

Corso di Fondazioni - D2180 Esempi di Calcolo FONDAZIONE A PLINTO QUADRATO Corso i Fonazioni - D80 FONDAZIONE A PLINTO QUADRATO L'esempio i calcolo riguara una onazione supericiale a plinto quarato, soggetta a ue ierenti conigurazioni i carico: A) CARICO CENTRATO: N850 KN B)

Dettagli

Condizionamento, congestione e capacità economica delle strade.

Condizionamento, congestione e capacità economica delle strade. Conizionamento, congestione e capacità economica elle strae. µ 3 4 ε (-Q) m (-Q) M : Equilibrio spontaneo in corrisponenza el traffico Q : volume i traffico Q E, corrisponente alla capacità economica ella

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete Corso di Calcolo delle Probabilità e Statistica Esercizi su variabili aleatorie discrete Es.1 Da un urna con 10 pallina bianche e 15 palline nere, si eseguono estrazioni con reimbussolamento fino all estrazione

Dettagli

Navigazione di Veicoli Autonomi

Navigazione di Veicoli Autonomi Luca Baglivo Navigazione i Veicoli Autonomi Pianificazione e Controllo i Traiettoria Appunti per il corso i Robotica Spaziale per Ingegneria Aerospaziale PREFAZIONE Lo scopo ella presente ispensa è quello

Dettagli

Diodi: Complementi e applicazioni

Diodi: Complementi e applicazioni SOMMO - MMUNTÀ DSTU N UN GUNZONE PN... Esempio 1 :... - DSTUZONE D UN GUNZONE PE ECCESSO D O PE ECCESSO D V... - CONNESSONE N PEO D DUE DOD... Esempio :...3 - CONNESSONE N SEE D DUE O PÙ DOD...3 Esempio

Dettagli

Lezione 9. Equilibrio del mercato finanziario e tasso d interesse

Lezione 9. Equilibrio del mercato finanziario e tasso d interesse Lezione 9. Equilibrio el mercato finanziario e tao interee Ipotei: Il itema finanziario: la truttura ei mercati (a) eite un unico mercato ei titoli (); (b) la anca centrale crea ecluivamente attravero

Dettagli

Capitolo 1: La sintesi del diamante a basse pressioni 1.1 Diagramma di fase del carbonio, paradosso termodinamico e ruolo dell idrogeno nella sintesi

Capitolo 1: La sintesi del diamante a basse pressioni 1.1 Diagramma di fase del carbonio, paradosso termodinamico e ruolo dell idrogeno nella sintesi Capitolo : La sintesi el iamante a basse pressioni. Diagramma i fase el carbonio, paraosso termoinamico e ruolo ell irogeno nella sintesi el iamante a basse pressioni. Moelli i nucleazione e i crescita

Dettagli

CORDA DI METALLO UN MODELLO E UN ALGORITMO PER LA SIMULAZIONE PER MODELLI FISICI DI STRUMENTI AD ARCO PREPRINT

CORDA DI METALLO UN MODELLO E UN ALGORITMO PER LA SIMULAZIONE PER MODELLI FISICI DI STRUMENTI AD ARCO PREPRINT UN MODELLO E UN ALGORITMO PER LA SIMULAZIONE PER MODELLI FISICI DI STRUMENTI AD ARCO PREPRINT Marco Palumbi, Lorenzo Seno marco.palumbi@bigfoot.com, lorenzo.seno@bigfoot.com Centro Ricerche Musicali Via

Dettagli

APPUNTI DI TOPOGRAFIA MODULO 5

APPUNTI DI TOPOGRAFIA MODULO 5 PPUNTI DI TOPOGRFI MODULO 5 MISUR DELLE DISTNZE E DEI DISLIVELLI PROF. SPDRO EMNUELE UNIT DIDTTIC N 1 MISUR DELLE DISTNZE http://spaaroemanueletopografia.bloog.it/ RIDUZIONE DELL DISTNZ LL SUPERFICIE DI

Dettagli

Adempimenti e procedure

Adempimenti e procedure Aempimenti e proceure Fusioni i società: semplificazioni e aempimenti pratici i Roberto Moro Visconti * Il D.Lgs. n.123/12 (in G.U. n.180 el 3 agosto 2012) ha previsto una serie i semplificazioni proceurali

Dettagli

2. In un mercato concorrenziale senza intervento pubblico non si ha perdita di benessere sociale netto.

2. In un mercato concorrenziale senza intervento pubblico non si ha perdita di benessere sociale netto. Beanko & Breautigam Microeconomia Manuale elle oluzioni Capitolo 10 Mercati concorrenziali: applicazioni Soluzioni elle Domane i ripao 1. In corriponenza ell equilibrio i lungo perioo, un mercato concorrenziale

Dettagli

LA VARIABILE ESPONENZIALE

LA VARIABILE ESPONENZIALE LA VARIABILE ESPONENZIALE E. DI NARDO 1. Analogia con la v.a. geometria In una successione di prove ripetute di Bernoulli, la v.a. geometrica restituisce il numero di prove necessarie per avere il primo

Dettagli

Università degli studi di Bari A. Moro. Economia dei tributi. Anno accademico 2015/2016. Prova scritta del 13 giugno 2016 sul programma del I modulo

Università degli studi di Bari A. Moro. Economia dei tributi. Anno accademico 2015/2016. Prova scritta del 13 giugno 2016 sul programma del I modulo Università eli stui i Bari A. Moro Corso i Laurea maistrale in Consulenza professionale per le aziene Economia ei tributi Anno accaemico 2015/2016 Prova scritta el 13 iuno 2016 sul proramma el I moulo

Dettagli

ANALISI DELLE PRESTAZIONI DI UN MANIPOLATORE PARALLELO PER IL PICK-AND-PLACE TRAMITE INDICI CINEMATICI E DINAMICI UNIVERSITÀ DEGLI STUDI DI PADOVA

ANALISI DELLE PRESTAZIONI DI UN MANIPOLATORE PARALLELO PER IL PICK-AND-PLACE TRAMITE INDICI CINEMATICI E DINAMICI UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSIÀ DEGLI SUDI DI PADOVA FACOLÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCARONICA ESI DI LAUREA MAGISRALE ANALISI DELLE PRESAZIONI DI UN MANIPOLAORE PARALLELO PER IL PICK-AND-PLACE RAMIE INDICI

Dettagli

Determinazione della quota sul livello del mare del monte Etna

Determinazione della quota sul livello del mare del monte Etna Deterinazione ella quota sul livello el are el onte Etna a.s. 998/999 classe 5 oorinatore: Prof.. Epainona Preessa Per ottenere una isura i tutto rispetto, ci siao avvalsi ella consulenza e ella collaborazione

Dettagli

Il controllo del dolore e non farmacologico

Il controllo del dolore e non farmacologico DICEMBRE 2013 L evoluzione storica Il controllo el olore e non farmacologico i la filosofia Cure Palliative I bisogni el Paziente f.moggia.valenti Bologna, 20 aprile 2013.valenti L Organizzazione Moniale

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

Tributi, accertamento e giurisprudenza tributaria

Tributi, accertamento e giurisprudenza tributaria La liquiazione mortis causa ella quota sociale agli erei i un socio i società i persone i Fabio Giommoni * La morte i un socio i società i persone impone generalmente la liquiazione ella quota agli erei.

Dettagli

Capitolo 4 Funzionamento dei gruppi elettrogeni e loro protezioni

Capitolo 4 Funzionamento dei gruppi elettrogeni e loro protezioni 61 Capitolo 4 Funzionamento ei gruppi elettrogeni e loro protezioni 4.1 ntrouzione Nel presente capitolo si prenono in esame le moalità i esercizio e i funzionamento ei gruppi elettrogeni nei confronti

Dettagli

Nuova generazione! We measure it. Misure sempre più professionali con i nuovi data logger Testo. Data logger serie testo 174

Nuova generazione! We measure it. Misure sempre più professionali con i nuovi data logger Testo. Data logger serie testo 174 We measure it. Nuova generazione! Misure sempre più professionali con i nuovi ata logger Testo Data logger serie testo 174 Data logger serie testo 175 Data logger serie testo 176 La nuova generazione i

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

8. Serie numeriche Assegnata la successione di numeri complessi {a 1, a 2, a 3,...} si considera con il nome di serie numerica.

8. Serie numeriche Assegnata la successione di numeri complessi {a 1, a 2, a 3,...} si considera con il nome di serie numerica. 8. Serie numeriche Assegnata la successione di numeri complessi {a 1, a 2, a 3,...} si considera con il nome di serie numerica la nuova successione {s n } definita come s 1 = a 1, s 2 = a 1 + a 2, s 3

Dettagli

Appunti di Teoria delle Distribuzioni Limite

Appunti di Teoria delle Distribuzioni Limite Aunti i eoria elle Distribuzioni Limite Diego Lubian 3 marzo 999 Le iotesi el moello lineare classico con errori normali ci ermettono i ottenere risultati sulla istribuzione i alcune statistiche i interesse:

Dettagli

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati.

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati. Si raccolgono qui temi d esame, esercizi e domande di teoria dati negli anni 3-4 nei corsi di Analisi Matematica I presso il DTG di Vicenza. Il materiale è stato reso disponibile dai docenti che hanno

Dettagli

Target standard per sensori di prossimità induttivi. Target. 1mm

Target standard per sensori di prossimità induttivi. Target. 1mm ensori i prossimità inuttivi Introuzione Principi i funzionamento ei sensori i prossimità inuttivi Bobina Oscillatore Circuito i attivazione Circuito elettrico i uscita I sensori i prossimità inuttivi

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004 Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 200 Esercizio 1 Tre apparecchiature M 1, M 2 e M 3 in un anno si guastano, in maniera indipendente, con probabilità

Dettagli

sistema Sistema di tubazioni preisolate per il district heating & cooling (DHC)

sistema Sistema di tubazioni preisolate per il district heating & cooling (DHC) sistema Sistema i tubazioni preisolate per il istrict heating & cooling (DH) sistema Sistema i tubazioni preisolate per il istrict heating & cooling (DH) Introuzione 2 Vantaggi i posa (easy installation)

Dettagli

sistema Sistema di tubazioni preisolate per il district heating & cooling (DHC)

sistema Sistema di tubazioni preisolate per il district heating & cooling (DHC) sistema Sistema i tubazioni preisolate per il istrict heating & cooling (DH) sistema Sistema i tubazioni preisolate per il istrict heating & cooling (DH) Introuzione 2 Vantaggi i posa (easy installation)

Dettagli

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: generazione

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

INFLUENZA DEL RINFORZO NELLA PROPAGAZIONE DELLA FRATTURA DI VOLTE IN MURATURA

INFLUENZA DEL RINFORZO NELLA PROPAGAZIONE DELLA FRATTURA DI VOLTE IN MURATURA XV Convegno Nazionale G Cetraro CS, aggio Giugno 6 NLUENZA DEL RNORZO NELLA ROAGAZONE DELLA RATTURA D VOLTE N URATURA G. ERRO,. ERCO, V. GNATA Dipartimento i ngegneria Strutturale e Geotecnica, olitecnico

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

Abstract: the article, after a brief mention of

Abstract: the article, after a brief mention of Giuseppe Sofia Ministero ello Sviluppo Economico - Comunicazioni Ispettorato Territoriale Calabria giuseppe.sofia@comunicazioni.it NOTE RADIOPROPAGAZIONE DI UN SEGNALE DVB-T IN UHF. ASPETTI TEORICI E PRATICI

Dettagli

Lezione n. 9 del 28 marzo 2012

Lezione n. 9 del 28 marzo 2012 Alessanro Manolini Diartimento i Ingegneria Civile Corso i OPERE DI SOSTEGNO A.A. 0-0 Muro a mensola Muro a gravità Terre rinforzate Paratia Gabbionate Crib wall Lezione n. 9 el 8 marzo 0 Paratie i sostegno:

Dettagli

L impatto delle garanzie sul pricing dei prestiti nell ambito dell IRB

L impatto delle garanzie sul pricing dei prestiti nell ambito dell IRB L impatto elle garanzie sul pricing ei prestiti nell ambito ell IRB R. De Lisa*,, M. Marchesi**, F. Vallascas*,, S. Zea* Napoli, 23 Giugno 2006 *: Università egli Stui i Cagliari **: Commissione Europea,

Dettagli

3. Quale affermazione è falsa?

3. Quale affermazione è falsa? 1. Quale affermazione è falsa? Se la funzione f) è continua e monotona crescente su R e se f) = 1 e f4) =, allora ha un unico zero nell intervallo, 4) f) non si annulla mai in R f ) > nell intervallo,

Dettagli

I L T E M A. Il diabete

I L T E M A. Il diabete Il iabete nell anziano Anche sopra i 70-75 anni il iabete va trattato per riurre i rischi cariovascolari e i complicanze. Ma la terapia ieale va aeguata alla conizione reale in cui il paziente si trova

Dettagli

Computer Graphics. Riccardo Berta. Appunti per un corso. Libro consigliato:

Computer Graphics. Riccardo Berta. Appunti per un corso. Libro consigliato: Computer Graphics Riccaro Berta Appunti per un corso Libro consigliato: Donal Hearn M. auline Baer, Computer Graphics - C Version, rentice Hall, Secon Eition,, 997 rimitive Grafiche...4 Linee...4 Algoritmo

Dettagli

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come Numeri complessi 9 Da questi esempi si può osservare che, facendo le successive potene di un numero complesso, i punti corrispondenti girano attorno all origine. Se inoltre > allora i punti si allontanano

Dettagli

Esercizi sullo studio completo di una funzione

Esercizi sullo studio completo di una funzione Esercizi sullo studio completo di una funzione. Disegnare il grafico delle funzioni date, utilizzando ogni informazione utile che si può ricavare dalla funzione e dalle sue derivate prima e seconda. a.

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte Gestione ell Inventaio. Politiche i gestione elle scote.. Moelli singolo punto, singolo pootto, omana eteministica costante Gli appovvigionamenti sono peioici e l obiettivo è minimizzae il costo meio nel

Dettagli

SPECIALE STRESS LAVORO-CORRELATO

SPECIALE STRESS LAVORO-CORRELATO SPECIALE STRESS LAVORO-CORRELATO MINI GUIDA ALLA VALUTAZIONE E GESTIONE DEL RISCHIO Ambiente & Sicurezza sul Lavoro Pubblicazione iscritta al N. 485/85 el 29-10-1985 el Registro ella Stampa presso il Tribunale

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

La Rivista delle Operazioni

La Rivista delle Operazioni elle razioni Mensile i approfonimento eicato alla gestione straorinaria i imprese e società aprile 2013 DIRITTOESOCIETÀ Societàaresponsabilitàlimitata(Srl),societàaresponsabilitàlimitata semplificata(srls),societàaresponsabilitàlimitataa

Dettagli

Corso di Elettronica Digitale. Display decoder a 7 segmenti con le mappe di Karnaugh

Corso di Elettronica Digitale. Display decoder a 7 segmenti con le mappe di Karnaugh Corso i Elettronica Digitale Display ecoer a 7 segmenti con le mappe i Karnaugh Anrea Di Salvo A.A. 23/24 Che cos'è? Per un singolo moulo, è una rappresentazione i interi a a 9 (e eventualmente i alcuni

Dettagli

PROVE DI RESISTENZA A TORSIONE PROVE DI RESILIENZA CHARPY PROVE DI RESISTENZA A TAGLIO SCHEDA DI APPROFONDIMENTO. Prove di laboratorio

PROVE DI RESISTENZA A TORSIONE PROVE DI RESILIENZA CHARPY PROVE DI RESISTENZA A TAGLIO SCHEDA DI APPROFONDIMENTO. Prove di laboratorio SCHEDA DI APPROONDIMENTO Prove i laoratorio PROVE DI RESISTENZA A TRAZIONE Le prove i resistenza a trazione sono essenziali per valutare le caratteristiche fonamentali e il comportamento el materiale sia

Dettagli

Numeri complessi. x 2 = 1.

Numeri complessi. x 2 = 1. 1 Numeri complessi Nel corso dello studio della matematica si assiste ad una progressiva estensione del concetto di numero. Dall insieme degli interi naturali N si passa a quello degli interi relativi

Dettagli

L INTEGRAZIONE DEGLI ALUNNI CON DISABILITÀ NELLE SCUOLE PRIMARIE E SECONDARIE DI I GRADO

L INTEGRAZIONE DEGLI ALUNNI CON DISABILITÀ NELLE SCUOLE PRIMARIE E SECONDARIE DI I GRADO 21 icembre 2015 L INTEGRAZIONE DEGLI ALUNNI CON DISABILITÀ NELLE SCUOLE PRIMARIE E SECONDARIE DI I GRADO Anno scolastico 2014-2015 Nell anno scolastico 2014-2015 gli alunni con isabilità sono stimati pari

Dettagli

MICRO-RETI DI DISTRIBUZIONE: CONTROLLO E MODELLI DELLE SORGENTI

MICRO-RETI DI DISTRIBUZIONE: CONTROLLO E MODELLI DELLE SORGENTI Università egli Stui i Paova Facoltà i Ingegneria Corso i Laurea Specialistica in Ingegneria Elettrotecnica Tesi i Laurea Specialistica: MICRO-RETI DI DISTRIBUZIONE: CONTROLLO E MODELLI DELLE SORGENTI

Dettagli

Gestione economico aziendale

Gestione economico aziendale Gestione economico azienale La ue iligence nelle operazioni straorinarie: funzione, tipologie e moalità i esecuzione i Massimo Buongiorno e Marco Capra Il presente lavoro vuole tracciare un quaro introuttivo,

Dettagli

L interferenza e la natura ondulatoria della luce

L interferenza e la natura ondulatoria della luce CAPITOLO 5 L interferenza e la natura onulatoria ella luce Un serpentone lungo più i 6 mila chilometri, che corre a oltre mila anni nel cuore ella Cina. È sicuramente grazie alla sua graniosità e alla

Dettagli

Lavoro e Tecnostress la sindrome della generazione always on

Lavoro e Tecnostress la sindrome della generazione always on obiettivo. Tuttavia, a ispetto i una (ipotetica) migliore prouttività, la continua reperibilità el lavoratore e la conseguente sua impossibilità a sottrarsi ai contatti lo pongono nella conizione i non

Dettagli

! Una gerarchia ricorsiva deriva dalla presenza di una ricorsione o ciclo (un anello nel caso più semplice) nello schema operazionale.

! Una gerarchia ricorsiva deriva dalla presenza di una ricorsione o ciclo (un anello nel caso più semplice) nello schema operazionale. Gerarhie Riorsive! Una gerarhia riorsiva eriva alla presenza i una riorsione o ilo (un anello nel aso più semplie) nello shema operazionale.! Esempio i shema operazionale on anello:! Rappresentazione sullo

Dettagli

SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI

SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI.Definizioni e insieme di definizione. Una funzione o applicazione f è una legge che ad ogni elemento di un insieme D ( dominio )fa corrispondere un

Dettagli

DISPENSE DEL CORSO DI IDRAULICA DEI MEZZI POROSI

DISPENSE DEL CORSO DI IDRAULICA DEI MEZZI POROSI Ultimo aggiornamento 30/04/013 DISPENSE DEL CORSO DI IDRAULICA DEI MEZZI POROSI 1-1 Ultimo aggiornamento 30/04/013 INDICE 1. Introuzione al corso...1-4. Le fale acquifere...-6.1. Legge i Darcy...-7.. Fale

Dettagli

Linea sistemi di tubazioni/ linea raccorderia Acciaio

Linea sistemi di tubazioni/ linea raccorderia Acciaio Prestabo IT / Catalogo 0 Con riserva i moifiche. Linea sistemi i tubazioni/ linea raccoreria Acciaio F Sistema a pressare con raccori a pressare e tubi i acciaio al carbonio non legato.0308 (E3), secono

Dettagli

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio. Funzioni e insiemi numerici.4 Verificare che (A B) (A B) = (A A ) B. ) Sia (a, b) (A B) (A B). Allora a (A A ) e b B, da cui (a,

Dettagli

Funzioni e loro invertibilità

Funzioni e loro invertibilità Funzioni e loro invertibilità Una proposta didattica di Ettore Limoli Definizione di funzione Sono dati due insiemi non vuoti A (dominio) e B (codominio) Diremo che y=f(x) è una funzione, definita in A

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

2 Argomenti introduttivi e generali

2 Argomenti introduttivi e generali 1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti

Dettagli

Il riassorbimento osseo perimplantare nella tecnica postestrattiva

Il riassorbimento osseo perimplantare nella tecnica postestrattiva Il riassorbimento osseo perimplantare nella tecnica postestrattiva Luca Fumagalli, nrea Parenti, Matteo Capelli, Francesco Zuffetti, Fabio Galli, Silvio Taschieri, Massimo Del Fabbro, Tiziano Testori.

Dettagli

Le funzioni elementari. La struttura di R. Sottrazione e divisione

Le funzioni elementari. La struttura di R. Sottrazione e divisione Le funzioni elementari La struttura di R La struttura di R è definita dalle operazioni Addizione e moltiplicazione. Proprietà: Commutativa Associativa Distributiva dell addizione rispetto alla moltiplicazione

Dettagli

INNOVAMBIENTE: un esperienza interdisciplinare di integrazione tra scienze naturali, matematiche e informatiche

INNOVAMBIENTE: un esperienza interdisciplinare di integrazione tra scienze naturali, matematiche e informatiche 268-028:Layout 1 12/05/2010 13.18 Pagina 28 28 IATTICA elle CIENZE N. 268 MAGGIO 2010 INNOVAMBIENTE: un esperienza interisciplinare i integrazione tra scienze naturali, matematiche e informatiche Troppo

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli