Richiami di teoria della probabilitá e Modelli Grafici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Richiami di teoria della probabilitá e Modelli Grafici"

Transcript

1 Modelli di computazione affettiva e comportamentale Data: 23 Aprile 2010 Richiami di teoria della probabilitá e Modelli Grafici Docente: Prof. Giuseppe Boccignone Scriba: Matteo Battistini 1 Richiami di teoria delle probabilitá Ricordiamo che in generale si utilizza la notazione P per indicare la probabilitá discreta e p la probabilitá continua. Laddove non vi sia situazione di ambiguit le utilizzeremo indifferentemente. Gli eventi x, y si definiscono condizionalmente indipendenti se: P (x y, H) = P (x H) (1) L equazione 1 rappresenta la proprietá che avvenga un dato evento x posto come giá accaduto y, in relazione alle ipotesi H Ricordiamo che da un punto di vista Bayesiano: Non si fanno inferenze senza ipotesi. Dunque assumeremo queste come sempre presenti, anche quando, per semplicitá notazionale non le indichiamo esplicitamente. In questo caso essendo x e y condizionalmente indipendenti il risultato e dato dalla sola probabilitá che avvenga l evento x. La probabiliá condizionata si ricava dalla seguente formula: P (x y, H) = P (x, y H) P (y H) (2) Dalla (2) si puó ricavare la regola del prodotto: P (x, y H) = P (x y, H)P (y H) (3) Nel caso x e y siano condizionalmente indipendenti (3) puó essere semplificata come: P (x, y H) = P (x H)P (y H) (4) Due eventi si definiscono mutuamenti escusivi se la probabilitá congiunta é uguale a 0. P (x, y H) = 0 (5) Dalla probabilitá congiunta é possibile ricavare la probabilitá marginale. 1

2 2 Richiami di teoria della probabilitá e Modelli Grafici P (x H) = y P (x, y H) (6) che, tramite la regola del prodotto, puó essere anche scritta come: P (x H) = y P (x, y H) = y P (x y, H)P (y H) (7) ovvero, nel caso continuo : P (x H) = P (x, y H)dy (8) y 2 Introduzione ai modelli grafici Consideriamo un esempio concreto. Analizziamo quale sia la probabilitá che il mal di denti sia derivato, o meno, dalle carie. Esprimiamo le probabilitá tramite una tabella. Eventi Mal di denti No mal di denti Carie No carie Tabella 1: Tabella della probabilitá congiunta P (carie, maldidenti) Diamo una breve spiegazione su come deve essere interpretata la tabella; il valore 0.12 identifica la probabilitá congiunta di avere carie e mal di denti, in linguaggio formale P (carie, maldidenti) = Denotiamo ora con la variabile C l asserzione che sia o non sia presente una carie. Dunque, i valori che assume C sono nell insieme 1,0 dove uno rappresenta la presenza di carie (C = carie) e 0 l assenza di carie (C = noncarie) Di seguito verranno riportati alcuni esempi che mostrano come calcolare le probabilitá tramite marginalizzazione. Esempio 1: Qual é la probabilitá di avere le carie ovvero l evento {P (C = 1)}? Tramite marginalizzazione si calcola P (C = 1, M) con M {0, 1} (non avere o avere il mal di denti). M P (C = 1) = M P (C = 1, M) = P (C = 1, M = 1) + P (C = 1, M = 0) = = 0.2 (9) Esempio 2: Qualeé la probabilitá di non avere le carie, {P (C = 0)}?. P (C = 1) = M P (C = 0, M) = P (C = 0, M = 1) + P (C = 0, M = 0) = = 0.8 (10) La probabilitá marginale prende questo nome perché i suoi risultati potrebbero essere scritti ai margini della tabella calcolando le somme sulle righe o sulle colonne, come mostrato in Tabella 2.

3 Richiami di teoria della probabilitá e Modelli Grafici 3 Eventi Mal di denti No mal di denti P marginale Carie No carie P marginale Tabella 2: Probabilitá marginale La probabilitá condizionata puó essere espressa anche attraverso un modello grafico: questo permette di schematizzare l osservazione e rappresentare le relazioni di dipendenza tra i vari eventi. Nella Figura 1 a) viene rappresentata tramite modello grafico la seguente osservazione: data una caria qual é la probabiltá di avere mal di denti, formalmente P (M = 1 C = 1) (si noti che la variabile osservata sulla quale condiziono a livello grafico viene scurita). Essendo tale probabilitá condizionata la soluzione si ricava da (2), il risultat sará 0.12/0.2, Lo stesso risultato si ricava condizionando sul mal di denti, vedi Figura 1 b). Figura 1: Modello grafico: a) puó essere utilizzato per calcolare P (M = 1 C = 1) b)il modello graico inverso per calcolare P (C = 1 M = 1). Il problema principale del calcolo della probabiliá Bayesiana, é dato del calcolo della congiunta: infatti dati N possibili stati ed M possibili condizioni il numero di calcoli da compiere aumenterá in modo esponenziale M N. Nell esempio precedente abbiamo solo due condizioni e due possibili stati. 3 Inferire variabili, modelli e parametri Assumiamo la seguente rappresentazione: y = dati osservati. H = M = ipotesi, quindi la rappresentazione di un modello. θ = parametri del modello La probalilitá di un dato evento sará data P (y θ, M), quindi le inferenze definite nell esempio precedente dovrebbero essere P (C, M θ, M), in questo caso parametri e modello sono noti, sono definiti tramite la tabella delle probabiliá.

4 4 Richiami di teoria della probabilitá e Modelli Grafici 3.1 Livello 1: Inferire il modello L inferenza del modello implica quindi il calcolo della probabilitá condizionata sui dati osservati, detta anche probabilitá a posteriori dove, P (M y) = P (y M)P (M) P (y) (11) P (y M) = P (y, θ M)dθ = P (y θ, M)P (θ M)d (12) 3.2 Livello 2: Inferenza sui parametri Dato un modello M si puó inferire l insieme dei parametri del modello, essendo i parametri rappresentati da θ. E importante notare che in un contesto Bayesiano i parametri sono variabili aleatorie che danno origine ad una distribuzione di probabilit. Il learning dei parametri in tale contesto dunque ricondotto ad un problema di inferenza della P (θ y, M), P (θ y, M) = P (y θ, M)P (θ, M) P (y M) (13) seguito da una decisione sulla distribuzione a posteriori. Per un numero molto elevato di osservazioni i valori di probabilitá bayesiana e quella frequentistica convergono, mentre per campioni sparsi, il valore della probabilitá bayesiana é migliore perché tiene conto della probabilitá a priori sui paramentri P (θ M). Si noti come il fattore di normalizzazione (l evidenza marginale) P (y M) sia necessario qualora si voglia calcolare l eq.12 per inferire il modello. Inoltre: P (y θ, M) = x P (y, x θ, M)dx = x P (y x,, M)P (x θ, M)dx (14) 3.3 Livello 3: Inferire variabili Si supponga il seguente modello generativo in cui le osservazioni y sono generate da uno stato nascosto x: Nel modello generativo rappresentato in Fig. 2 posso definire P (y x) se sono conosciuti il modello M e i parametri θ. Si supponga per esempio che x rappresenti uno stato emotivo, e y un espressione facciale osservata. Se volessi determinare lo stato emotivo nascosto x conoscendo modello e parametri dovrei utilizzare la formula di Bayes: P (y x, θ, M)P (x θ, M) P (x y, θ, y, M) = (15) P (y θ, M) In altri termini, si possono riconoscere stati emotivi, conoscendo modello e parametri; nel caso non si fosse in possesso dei parametri si utilizza (13) per il learning dei parametri, nel caso in cui vi siano molti modelli e si debba identificare quello maggiormente efficace per lo specifico caso si utilizza (11), calcolata rispetto a

5 Richiami di teoria della probabilitá e Modelli Grafici 5 Figura 2: Modello grafico: P (y x). tutti i possibili parametri. Questo permette di fare inferenze su inferenze, per la definizione di un modello. 4 Graphical Models Un Modello grafico viene utilizzato per la definizione dei rapporti di dipendenza tra le variabili del modello: infatti, tramite il modello grafico é possibile definire le proprietá condizionate. Nel caso pi semplice modello grafico non é altro che un grafo diretto G = {V, E}. Figura 3: Modello grafico. 5 Vincoli fisici I vincoli fisici del problema servono a definire le frecce di condizionamento, e dunque a scegliere lo sviluppo della probabilit congiunta mediante la regola del prodotto. Verrá mostrato come definire una probabilitá condizionata nel rispetto dei vincoli fisici, tramite un esempio. Alice si sveglia la mattina e trova il prato del giardino bagnato, vuole capire se é bagnato perché é piovuto o perché si é dimenticata l irrigatore aperto durante la notte. Osserva i prato di Bob, il suo vicino, anche

6 6 Richiami di teoria della probabilitá e Modelli Grafici questo e bagnato e si chiede se sia dovuto alla pioggia o al fatto che anche Bob si sia dimenticato l irrigatore aperto. passo 1: identificare le variabili: Eventi Variabili Prato di Alice bagnato A = 1, A {0, 1} Prato di Bob bagnato B = 1, B {0, 1} Piovuto P = 1, P {0, 1} Irrigatore aperto I = 1, I {0, 1} Tabella 3: Tabella delle Variabili passo 2: identificare la congiunta (probabilitá di tutto): P (A, B, P, I) = 2 4 = 16 possibili stati usando la regola del prodotto, si verifica che gli stati effettivi sono 2 n 1. Dimostrazione P (A, B, P, I) = P (A B, P ; I)P (B, P, I) = P (A B, P ; I)P (B P, I)P (P, I) = P (A B, P ; I)P (B P, I)P (P I)P (I) passo 3: Considerare i vincoli fisici dati dal modello: P (A B, P, I) = P (A P, I) la probabilitá che il prato di Alice sia bagnato non dipenderá dalle condizioni del prato di Bob. P (B P, I) = P (B P ) la probabilitá che il prato di Bob sa bagnato non puó dipendere dell irrigatore di Alice. P (P I) = P (P ) La probabilitá che sia piovuto non puó dipendere dall irrigatore di Alice. Sotto questi vincoli fisici posso definire il modello, che graficamente puó essere rappresentato come in Figura fig:modello Grafico.

7 Richiami di teoria della probabilitá e Modelli Grafici 7 Figura 4: Modello grafico nel rispetto dei vincoli fisici.

Capitolo 26: Il mercato del lavoro

Capitolo 26: Il mercato del lavoro Capitolo 26: Il mercato del lavoro 26.1: Introduzione In questo capitolo applichiamo l analisi della domanda e dell offerta ad un mercato che riveste particolare importanza: il mercato del lavoro. Utilizziamo

Dettagli

Computazione per l interazione naturale: Modelli dinamici

Computazione per l interazione naturale: Modelli dinamici Computazione per l interazione naturale: Modelli dinamici Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

LE REGOLE GENERALI DI CALCOLO DELLE PROBABILITA : COME SI DIMOSTRANO CON I TRE ASSIOMI DELLA PROBABILITA?

LE REGOLE GENERALI DI CALCOLO DELLE PROBABILITA : COME SI DIMOSTRANO CON I TRE ASSIOMI DELLA PROBABILITA? INDICE (lezione17.04.07 LE REGOLE GENERALI DI CALCOLO DELLE PROBABILIA : COME SI DIMOSRANO CON I RE ASSIOMI DELLA PROBABILIA?.1 Raccordo con le regole di calcolo delle probabilità già viste nelle lezioni

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Lucio Demeio Dipartimento di Scienze Matematiche Università Politecnica delle Marche 1. Esercizio. Siano X ed Y due variabili

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Sia data la rete di fig. 1 costituita da tre resistori,,, e da due generatori indipendenti ideali di corrente ed. Fig. 1

Sia data la rete di fig. 1 costituita da tre resistori,,, e da due generatori indipendenti ideali di corrente ed. Fig. 1 Analisi delle reti 1. Analisi nodale (metodo dei potenziali dei nodi) 1.1 Analisi nodale in assenza di generatori di tensione L'analisi nodale, detta altresì metodo dei potenziali ai nodi, è un procedimento

Dettagli

Metodi Computazionali

Metodi Computazionali Metodi Computazionali Elisabetta Fersini fersini@disco.unimib.it A.A. 2009/2010 Catene di Markov Applicazioni: Fisica dinamica dei sistemi Web simulazione del comportamento utente Biologia evoluzione delle

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

Microeconomia per la Finanza - Esercitazione 3 Bayesian updating

Microeconomia per la Finanza - Esercitazione 3 Bayesian updating Microeconomia per la Finanza - Esercitazione 3 Bayesian updating pcrosetto@luiss.it 6 Maggio 2010 1. Che faremo? Dove trovare i materiali: http://docenti.luiss.it/crosetto/ 1 Ripasso di probabilità 2 Regola

Dettagli

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 A. Il modello macroeconomico in economia chiusa e senza settore pubblico. A.1. Un sistema economico

Dettagli

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

BASI DI DATI DIPENDENZE FUNZIONALI E FORME NORMALI

BASI DI DATI DIPENDENZE FUNZIONALI E FORME NORMALI BASI DI DATI DIPENDENZE FUNZIONALI E FORME NORMALI Prof. Fabio A. Schreiber Dipartimento di Elettronica e Informazione Politecnico di Milano ERRORI DI PROGETTAZIONE INSERIMENTO DI ELEMENTI RIDONDANTI SPRECO

Dettagli

Teoria delle Decisioni. Lezioni 1 e 2 a.a. 2006 2007. J. Mortera, Università Roma Tre mortera@uniroma3.it

Teoria delle Decisioni. Lezioni 1 e 2 a.a. 2006 2007. J. Mortera, Università Roma Tre mortera@uniroma3.it Teoria delle Decisioni Lezioni 1 e 2 a.a. 2006 2007 J. Mortera, Università Roma Tre mortera@uniroma3.it Decisioni in Condizioni di Incertezza Sia singoli individui che gruppi di individui (società, governi,

Dettagli

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio M. Besozzi - IRCCS Istituto Auxologico Italiano L argomento... Errori cognitivi Il problema gnoseologico Dati, informazione

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

Gli input sono detti anche fattori di produzione: terra, capitale, lavoro, materie prime.

Gli input sono detti anche fattori di produzione: terra, capitale, lavoro, materie prime. LA TECNOLOGIA Studio del comportamento dell impresa, soggetto a vincoli quando si compiono scelte. La tecnologia rientra tra vincoli naturali e si traduce nel fatto che solo alcuni modi di trasformare

Dettagli

Valutazione delle impedenze equivalenti nei circuiti con retroazione.

Valutazione delle impedenze equivalenti nei circuiti con retroazione. UNIVERSITÀ DI PADOVA Facoltà di Ingegneria Corso di Laurea in Ingegneria dell Informazione Tesina di Laurea Triennale Valutazione delle impedenze equivalenti nei circuiti con retroazione. -La formula di

Dettagli

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti Enrico Saltari Università di Roma La Sapienza 1 Dotazioni iniziali Il consumatore dispone ora non di un dato reddito monetario ma di un ammontare

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

Funzione logaritmo con. funzione inversa della funzione di

Funzione logaritmo con. funzione inversa della funzione di FUNZIONE LOGARITMO a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo con funzione inversa

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

EXCEL PER WINDOWS95. sfruttare le potenzialità di calcolo dei personal computer. Essi si basano su un area di lavoro, detta foglio di lavoro,

EXCEL PER WINDOWS95. sfruttare le potenzialità di calcolo dei personal computer. Essi si basano su un area di lavoro, detta foglio di lavoro, EXCEL PER WINDOWS95 1.Introduzione ai fogli elettronici I fogli elettronici sono delle applicazioni che permettono di sfruttare le potenzialità di calcolo dei personal computer. Essi si basano su un area

Dettagli

VARIABILI ALEATORIE E VALORE ATTESO

VARIABILI ALEATORIE E VALORE ATTESO VARIABILI ALEATORIE E VALORE ATTESO Variabili aleatorie Variabili discrete e continue Coppie e vettori di variabili aleatorie Valore atteso Proprietà del valore atteso Varianza Covarianza e varianza della

Dettagli

Corso di Economia Applicata

Corso di Economia Applicata Corso di Economia Applicata a.a. 2007-08 II modulo 12 Lezione Asimmetrie informative e Adverse Selection Soluzioni per l Adverse Selection? selezione (screening ) segnalazione razionamento le soluzioni

Dettagli

L impresa che non fa il prezzo

L impresa che non fa il prezzo L offerta nei mercati dei prodotti L impresa che non fa il prezzo L impresa che non fa il prezzo (KR 10 + NS 6) Dipartimento di Economia Politica Università di Milano Bicocca Outline L offerta nei mercati

Dettagli

Le operazioni di assicurazione e la teoria

Le operazioni di assicurazione e la teoria Capitolo 1 Le operazioni di assicurazione e la teoria dell utilità 1.1 Introduzione In questo capitolo si discutono alcuni aspetti di base della teoria delle assicurazioni. In particolare, si formalizza

Dettagli

Le operazioni di assicurazione

Le operazioni di assicurazione Le operazioni di assicurazione Giovanni Zambruno e Asmerilda Hitaj Bicocca, 2014 Outline 1 Lezione 1: Le operazioni di assicurazione Condizione di indifferenza Condizione di equità 2 Premio equo, premio

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 7 - Pag. 1. Capitolo 7. Probabilità, verosimiglianze e teorema di Bayes.

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 7 - Pag. 1. Capitolo 7. Probabilità, verosimiglianze e teorema di Bayes. Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 7 - Pag. 1 Capitolo 7. Probabilità, verosimiglianze e teorema di Bayes. Probabilità, verosimiglianza e teorema di Bayes Se A e B sono

Dettagli

Capacità di canale in molte salse

Capacità di canale in molte salse Capacità di canale in molte salse. Bernardini 6 maggio 008 Indice 1 Introduzione 1 Modelli di canale 1.1 Matrice di transizione........................................ 1. Funzione aleatoria..........................................

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

Logistica - Il problema del trasporto

Logistica - Il problema del trasporto Logistica - Il problema del trasporto Federico Di Palma December 17, 2009 Il problema del trasporto sorge ogniqualvolta si debba movimentare della merce da una o più sorgenti verso una o più destinazioni

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1 Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) STATISTICA DESCRITTIVA

Dettagli

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie TEORIA RELAZIONALE: INTRODUZIONE 1 Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Tecniche di DM: Link analysis e Association discovery

Tecniche di DM: Link analysis e Association discovery Tecniche di DM: Link analysis e Association discovery Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Architettura di un generico algoritmo di DM. 2 2 Regole di associazione:

Dettagli

online La situazione operativa. In ambito aziendale i processi decisionali richiedono assunzioni di responsabilità a vari LABORATORIO 1

online La situazione operativa. In ambito aziendale i processi decisionali richiedono assunzioni di responsabilità a vari LABORATORIO 1 LABORATORIO 1 Scelta tra preventivi per l acquisto di un impianto di Luca CAGLIERO Materie: Informatica, Matematica, Economia aziendale (Triennio IT) L attività da svolgere in laboratorio, di carattere

Dettagli

CAPITOLO 10 I SINDACATI

CAPITOLO 10 I SINDACATI CAPITOLO 10 I SINDACATI 10-1. Fate l ipotesi che la curva di domanda di lavoro di una impresa sia data da: 20 0,01 E, dove è il salario orario e E il livello di occupazione. Ipotizzate inoltre che la funzione

Dettagli

MODULO 4: FOGLIO ELETTRONICO (EXCEL)

MODULO 4: FOGLIO ELETTRONICO (EXCEL) MODULO 4: FOGLIO ELETTRONICO (EXCEL) 1. Introduzione ai fogli elettronici I fogli elettronici sono delle applicazioni che permettono di sfruttare le potenzialità di calcolo dei Personal computer. Essi

Dettagli

L EQUILIBRIO DEL MERCATO CONCORRENZIALE

L EQUILIBRIO DEL MERCATO CONCORRENZIALE L EQUILIBRIO EL MERCATO CONCORRENZIALE Un mercato concorrenziale è in equilibrio quando la domanda di mercato è uguale all offerta di mercato: p (p) p* (p) q* Il prezzo di equilibrio è tale che ( p* )

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Dispensa 4. June 11, 2009

Dispensa 4. June 11, 2009 Dispensa 4 June 11, 2009 1 Il mercato dei bidoni Il problema della selezione avversa è dovuto al fatto che l agente detiene informazioni private (delle quali il principale non è a conoscenza) prima della

Dettagli

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ;

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; Primo anno Secondo anno Terzo anno Primo anno MATEMATICA Scuola dell Infanzia Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; legge

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

Guida al livellamento delle risorse con logica Critical Chain (1^ parte)

Guida al livellamento delle risorse con logica Critical Chain (1^ parte) Paolo Mazzoni 2011. E' ammessa la riproduzione per scopi di ricerca e didattici se viene citata la fonte completa nella seguente formula: "di Paolo Mazzoni, www.paolomazzoni.it, (c) 2011". Non sono ammesse

Dettagli

Introduzione. Articolazione della dispensa. Il sistema del controllo di gestione. Introduzione. Controllo di Gestione

Introduzione. Articolazione della dispensa. Il sistema del controllo di gestione. Introduzione. Controllo di Gestione Introduzione Perché il controllo di gestione? L azienda, come tutte le altre organizzazioni, è un sistema che è rivolto alla trasformazione di input (risorse tecniche, finanziarie e umane) in output (risultati

Dettagli

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND.

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND. IPSI G. Plana Via Parenzo 46, Torino efinizione di Mintermine onsiderata una qualunque riga della tabella di verità in cui la funzione booleana di uscita Q vale, si definisce mintermine il prodotto logico

Dettagli

ESEMPIO DI APPLICAZIONE MODELLI DI DOMANDA AD ALIQUOTE PARZIALI

ESEMPIO DI APPLICAZIONE MODELLI DI DOMANDA AD ALIQUOTE PARZIALI ! Dipartimento Ingegneria dell Impresa corso di TEORIA E TECNICA DELLA CIRCOLAZIONE + TRASPORTI E TERRITORIO ESEMPIO DI APPLICAZIONE MODELLI DI DOMANDA AD ALIQUOTE PARZIALI DOCENTE Prof. Ing. UMBERTO CRISALLI

Dettagli

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica Liceo Linguistico I.F.R.S. Marcelline Curriculum di Matematica Introduzione La matematica nel nostro Liceo Linguistico ha come obiettivo quello di far acquisire allo studente saperi e competenze che lo

Dettagli

Sintesi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 9 Prof. Rosario Cerbone rosario.cerbone@uniparthenope.it a.a. 2007-2008 http://digilander.libero.it/rosario.cerbone Sintesi di Reti Sequenziali Sincrone

Dettagli

VENDERE BENE LA TUA CASA,

VENDERE BENE LA TUA CASA, 1 SCOPRI I SEGRETI PER VENDERE BENE LA TUA CASA, E LE AZIONI COMMERCIALI SBAGLIATE DA NON COMMETTERE. 2 Oggi il nostro compito è quello di proteggerti da tutto ciò che potrebbe trasformare Vendita di casa

Dettagli

Appendice B: Reti di code

Appendice B: Reti di code Appendice B: Reti di code B. INTRODUZIONE ALLE RETI DI CODE B.. Generalità La trattazione della teoria delle code effettuata fino ad ora ha sempre considerato singoli sistemi a coda. Tuttavia, molto spesso

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

i criteri di valutazione

i criteri di valutazione La fattibilità economica dei progetti: i criteri di valutazione 14.XII.2011 I criteri di fattibilità del progetto La convenienza di un investimento t immobiliare per il promotore può avvenire attraverso

Dettagli

SISTEMI INFORMATIVI AVANZATI -2010/2011 1. Introduzione

SISTEMI INFORMATIVI AVANZATI -2010/2011 1. Introduzione SISTEMI INFORMATIVI AVANZATI -2010/2011 1 Introduzione In queste dispense, dopo aver riportato una sintesi del concetto di Dipendenza Funzionale e di Normalizzazione estratti dal libro Progetto di Basi

Dettagli

METODOLOGIA PER ANALIZZARE IL LIVELLO DI RISCHIO CORRUZIONE

METODOLOGIA PER ANALIZZARE IL LIVELLO DI RISCHIO CORRUZIONE ALLEGATO A METODOLOGIA PER ANALIZZARE IL LIVELLO DI RISCHIO CORRUZIONE L analisi del rischio è un processo di comprensione della natura del rischio e di determinazione del livello di rischio (UNI ISO 3100).

Dettagli

Il mercato della moneta

Il mercato della moneta Il mercato della moneta Alessandro Scopelliti Università di Reggio Calabria e University of Warwick alessandro.scopelliti@unirc.it 1 Funzioni della moneta Consideriamo i mercati della moneta e delle attività

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

Misure finanziarie del rendimento: il Van

Misure finanziarie del rendimento: il Van Venezia, 6 novembre 2013 Prof. Antonella Faggiani Arch. Valeria Ruaro, collaboratrice alla didattica estimo.b.acc2013@gmail.com Corso di Estimo Laurea Magistrale Architettura per il Nuovo e l Antico Dipartimento

Dettagli

Finanza matematica - Lezione 01

Finanza matematica - Lezione 01 Finanza matematica - Lezione 01 Contratto d opzione Un opzione è un contratto finanziario stipulato al tempo, che permette di eseguire una certa transazione, d acquisto call o di vendita put, ad un tempo

Dettagli

CIRCE Scheda 1 I CENTRI DI RESPONSABILITA E I LORO PRODOTTO. Dati quantitativi del prodotto. Descrizione Amministrazione:... Anno:.. Mese:..

CIRCE Scheda 1 I CENTRI DI RESPONSABILITA E I LORO PRODOTTO. Dati quantitativi del prodotto. Descrizione Amministrazione:... Anno:.. Mese:.. CIRCE Scheda 1 I CENTRI DI RESPONSABILITA E I LORO PRODOTTO Descrizione Amministrazione:.... Anno:.. Mese:.. Dati quantitativi del prodotto (1) CdR (2) prodotto (3) Prodotto (4) Volume nell anno (5) Tempo

Dettagli

Esercizi d esame di Teoria dei Giochi

Esercizi d esame di Teoria dei Giochi Esercizi d esame di Teoria dei Giochi Dario Bauso Esempio Svolto Dato il seguente gioco a due giocatori a somma zero si calcolino P P 1 0-3 3 1. il loss ceiling J,. il gain floor J, 3. l equilibrio di

Dettagli

La scelta in condizioni di incertezza

La scelta in condizioni di incertezza La scelta in condizioni di incertezza 1 Stati di natura e utilità attesa. L approccio delle preferenza per gli stati Il problema posto dall incertezza riformulato (state-preference approach). L individuo

Dettagli

Prezzi vischiosi e domanda aggregata

Prezzi vischiosi e domanda aggregata Prezzi vischiosi e domanda aggregata Ciò che rende differente il lungo periodo dal breve è il comportamento dei prezzi. Nel lungo periodo i prezzi sono flessibili, nel breve sono vischiosi. Il fatto che

Dettagli

GUIDA PER LA VALUTAZIONE E LA ESPRESSIONE DELL INCERTEZZA NELLE MISURAZIONI

GUIDA PER LA VALUTAZIONE E LA ESPRESSIONE DELL INCERTEZZA NELLE MISURAZIONI SISTEMA NAZIONALE PER L'ACCREDITAMENTO DI LABORATORI DT-000 GUIDA PER LA VALUTAZIONE E LA ESPRESSIONE DELL INCERTEZZA NELLE MISURAZIONI INDICE parte sezione pagina 1. INTRODUZIONE. FONDAMENTI.1. Misurando,

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo docente Giuseppe Sanfilippo http://www.unipa.it/sanfilippo giuseppe.sanfilippo@unipa.it

Dettagli

1. Introduzione. 2. I metodi di valutazione

1. Introduzione. 2. I metodi di valutazione 1. Introduzione La Riserva Sinistri è l accantonamento che l impresa autorizzata all esercizio dei rami danni deve effettuare a fine esercizio in previsione dei costi che essa dovrà sostenere in futuro

Dettagli

DVR Procedure Standardizzate: il 99% sono sbagliati. Scopri perchè!

DVR Procedure Standardizzate: il 99% sono sbagliati. Scopri perchè! DVR Procedure Standardizzate: il 99% sono sbagliati. Scopri perchè! Leggendo una conversazione su un forum online http://ingegneriaforum.it/index.php?topic=3746.0 in cui un utente, tra l'altro cliente

Dettagli

Probabilità. Concetti fondamentali Definizione di probabilità Teoremi sulla probabilità

Probabilità. Concetti fondamentali Definizione di probabilità Teoremi sulla probabilità Probabilità Concetti fondamentali Definizione di probabilità Teoremi sulla probabilità Probabilità: indicazioni quantitative sul verificarsi di certi eventi (linguaggio comune), ad es. P di superare o

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

COMPETENZA NUMERICA I SISTEMI DI NUMERAZIONE

COMPETENZA NUMERICA I SISTEMI DI NUMERAZIONE COMPETENZA NUMERICA I SISTEMI DI NUMERAZIONE Macroindicatori di conoscenze/abilità Comprensione: -del significato dei numeri -dei modi per rappresentarli -della notazione posizionale dei traguardi per

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Macroeconomia, Esercitazione 6. 1 Esercizi. 1.1 Taylor rule e Domanda Aggregata Dinamica/1. 1.2 Taylor rule e Domanda Aggregata Dinamica/2

Macroeconomia, Esercitazione 6. 1 Esercizi. 1.1 Taylor rule e Domanda Aggregata Dinamica/1. 1.2 Taylor rule e Domanda Aggregata Dinamica/2 Macroeconomia, Esercitazione 6 A cura di Giuseppe Gori (giuseppe.gori@unibo.it) Esercizi. Taylor rule e Domanda Aggregata Dinamica/ Sapete che =0, 5, Y =0, 3 e che il tasso d interesse naturale è pari

Dettagli

La Massimizzazione del profitto

La Massimizzazione del profitto La Massimizzazione del profitto Studio del comportamento dell impresa, soggetto a vincoli quando si compiono scelte. Ora vedremo un modello per analizzare le scelte di quantità prodotta e come produrla.

Dettagli

Il modello relazionale dei dati

Il modello relazionale dei dati Il modello relazionale dei dati Master Alma Graduate School Sistemi Informativi Home Page del corso: http://www-db.deis.unibo.it/courses/alma_si1/ Versione elettronica: 04Relazionale.pdf Obiettivi della

Dettagli

Insegnamento di Gestione e Organizzazione dei Progetti A.A. 2008/9

Insegnamento di Gestione e Organizzazione dei Progetti A.A. 2008/9 Insegnamento di Gestione e Organizzazione dei Progetti A.A. 2008/9 Lezione 11: valutazione costi diagramma di PERT Prof.ssa R. Folgieri email: folgieri@dico.unimi.it folgieri@mtcube.com 1 Da ricordare:

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

CONTROLLO IN TENSIONE DI LED

CONTROLLO IN TENSIONE DI LED Applicazioni Ver. 1.1 INTRODUZIONE CONTROLLO IN TENSIONE DI LED In questo documento vengono fornite delle informazioni circa la possibilità di pilotare diodi led tramite una sorgente in tensione. La trattazione

Dettagli

COMPETENZE SPECIFICHE

COMPETENZE SPECIFICHE COMPETENZE IN MATEMATICA DISCIPLINA DI RIFERIMENTO: MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE FISSATI DALLE INDICAZIONI NAZIONALI PER IL CURRICOLO 2012. MATEMATICA TRAGUARDI ALLA FINE DELLA

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

Componenti di un sistema KNOWLEDGE-BASED

Componenti di un sistema KNOWLEDGE-BASED Componenti di un sistema KNOWLEDGE-BASED DYNAMIC DATABASE PROBLEM FORMALIZATION CONTROL STRATEGY IL DATABASE DESCRIVE LA SITUAZIONE CORRENTE NELLA DETERMINAZIONE DELLA SOLUZIONE AL PROBLEMA. LA FORMALIZZAZIONE

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio Indice 1 Probabilità 1 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio.. 1 1.2 Probabilità condizionata, indipendenza e teorema di Bayes.... 2 1 Probabilità 1.1 Primi esercizi di probabilità

Dettagli

Incertezza probabilità a priori probabilità a posteriori condizionata preferenze esiti utilità proposizione variabile aleatoria dominio

Incertezza probabilità a priori probabilità a posteriori condizionata preferenze esiti utilità proposizione variabile aleatoria dominio Incertezza Quando un agente logico possiede tutte le informazioni necessarie sull'ambiente e sugli effetti delle sue azioni sul mondo, riesce a determinare la sequenza di azioni che lo portano al raggiungimento

Dettagli

Corso di Macroeconomia. Il modello IS-LM. Appunti

Corso di Macroeconomia. Il modello IS-LM. Appunti Corso di Macroeconomia Il modello IS-LM Appunti 1 Le ipotesi 1. Il livello dei prezzi è fisso. 2. L analisi è limitata al breve periodo. La funzione degli investimenti A differenza del modello reddito-spesa,

Dettagli