Richiami di teoria della probabilitá e Modelli Grafici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Richiami di teoria della probabilitá e Modelli Grafici"

Transcript

1 Modelli di computazione affettiva e comportamentale Data: 23 Aprile 2010 Richiami di teoria della probabilitá e Modelli Grafici Docente: Prof. Giuseppe Boccignone Scriba: Matteo Battistini 1 Richiami di teoria delle probabilitá Ricordiamo che in generale si utilizza la notazione P per indicare la probabilitá discreta e p la probabilitá continua. Laddove non vi sia situazione di ambiguit le utilizzeremo indifferentemente. Gli eventi x, y si definiscono condizionalmente indipendenti se: P (x y, H) = P (x H) (1) L equazione 1 rappresenta la proprietá che avvenga un dato evento x posto come giá accaduto y, in relazione alle ipotesi H Ricordiamo che da un punto di vista Bayesiano: Non si fanno inferenze senza ipotesi. Dunque assumeremo queste come sempre presenti, anche quando, per semplicitá notazionale non le indichiamo esplicitamente. In questo caso essendo x e y condizionalmente indipendenti il risultato e dato dalla sola probabilitá che avvenga l evento x. La probabiliá condizionata si ricava dalla seguente formula: P (x y, H) = P (x, y H) P (y H) (2) Dalla (2) si puó ricavare la regola del prodotto: P (x, y H) = P (x y, H)P (y H) (3) Nel caso x e y siano condizionalmente indipendenti (3) puó essere semplificata come: P (x, y H) = P (x H)P (y H) (4) Due eventi si definiscono mutuamenti escusivi se la probabilitá congiunta é uguale a 0. P (x, y H) = 0 (5) Dalla probabilitá congiunta é possibile ricavare la probabilitá marginale. 1

2 2 Richiami di teoria della probabilitá e Modelli Grafici P (x H) = y P (x, y H) (6) che, tramite la regola del prodotto, puó essere anche scritta come: P (x H) = y P (x, y H) = y P (x y, H)P (y H) (7) ovvero, nel caso continuo : P (x H) = P (x, y H)dy (8) y 2 Introduzione ai modelli grafici Consideriamo un esempio concreto. Analizziamo quale sia la probabilitá che il mal di denti sia derivato, o meno, dalle carie. Esprimiamo le probabilitá tramite una tabella. Eventi Mal di denti No mal di denti Carie No carie Tabella 1: Tabella della probabilitá congiunta P (carie, maldidenti) Diamo una breve spiegazione su come deve essere interpretata la tabella; il valore 0.12 identifica la probabilitá congiunta di avere carie e mal di denti, in linguaggio formale P (carie, maldidenti) = Denotiamo ora con la variabile C l asserzione che sia o non sia presente una carie. Dunque, i valori che assume C sono nell insieme 1,0 dove uno rappresenta la presenza di carie (C = carie) e 0 l assenza di carie (C = noncarie) Di seguito verranno riportati alcuni esempi che mostrano come calcolare le probabilitá tramite marginalizzazione. Esempio 1: Qual é la probabilitá di avere le carie ovvero l evento {P (C = 1)}? Tramite marginalizzazione si calcola P (C = 1, M) con M {0, 1} (non avere o avere il mal di denti). M P (C = 1) = M P (C = 1, M) = P (C = 1, M = 1) + P (C = 1, M = 0) = = 0.2 (9) Esempio 2: Qualeé la probabilitá di non avere le carie, {P (C = 0)}?. P (C = 1) = M P (C = 0, M) = P (C = 0, M = 1) + P (C = 0, M = 0) = = 0.8 (10) La probabilitá marginale prende questo nome perché i suoi risultati potrebbero essere scritti ai margini della tabella calcolando le somme sulle righe o sulle colonne, come mostrato in Tabella 2.

3 Richiami di teoria della probabilitá e Modelli Grafici 3 Eventi Mal di denti No mal di denti P marginale Carie No carie P marginale Tabella 2: Probabilitá marginale La probabilitá condizionata puó essere espressa anche attraverso un modello grafico: questo permette di schematizzare l osservazione e rappresentare le relazioni di dipendenza tra i vari eventi. Nella Figura 1 a) viene rappresentata tramite modello grafico la seguente osservazione: data una caria qual é la probabiltá di avere mal di denti, formalmente P (M = 1 C = 1) (si noti che la variabile osservata sulla quale condiziono a livello grafico viene scurita). Essendo tale probabilitá condizionata la soluzione si ricava da (2), il risultat sará 0.12/0.2, Lo stesso risultato si ricava condizionando sul mal di denti, vedi Figura 1 b). Figura 1: Modello grafico: a) puó essere utilizzato per calcolare P (M = 1 C = 1) b)il modello graico inverso per calcolare P (C = 1 M = 1). Il problema principale del calcolo della probabiliá Bayesiana, é dato del calcolo della congiunta: infatti dati N possibili stati ed M possibili condizioni il numero di calcoli da compiere aumenterá in modo esponenziale M N. Nell esempio precedente abbiamo solo due condizioni e due possibili stati. 3 Inferire variabili, modelli e parametri Assumiamo la seguente rappresentazione: y = dati osservati. H = M = ipotesi, quindi la rappresentazione di un modello. θ = parametri del modello La probalilitá di un dato evento sará data P (y θ, M), quindi le inferenze definite nell esempio precedente dovrebbero essere P (C, M θ, M), in questo caso parametri e modello sono noti, sono definiti tramite la tabella delle probabiliá.

4 4 Richiami di teoria della probabilitá e Modelli Grafici 3.1 Livello 1: Inferire il modello L inferenza del modello implica quindi il calcolo della probabilitá condizionata sui dati osservati, detta anche probabilitá a posteriori dove, P (M y) = P (y M)P (M) P (y) (11) P (y M) = P (y, θ M)dθ = P (y θ, M)P (θ M)d (12) 3.2 Livello 2: Inferenza sui parametri Dato un modello M si puó inferire l insieme dei parametri del modello, essendo i parametri rappresentati da θ. E importante notare che in un contesto Bayesiano i parametri sono variabili aleatorie che danno origine ad una distribuzione di probabilit. Il learning dei parametri in tale contesto dunque ricondotto ad un problema di inferenza della P (θ y, M), P (θ y, M) = P (y θ, M)P (θ, M) P (y M) (13) seguito da una decisione sulla distribuzione a posteriori. Per un numero molto elevato di osservazioni i valori di probabilitá bayesiana e quella frequentistica convergono, mentre per campioni sparsi, il valore della probabilitá bayesiana é migliore perché tiene conto della probabilitá a priori sui paramentri P (θ M). Si noti come il fattore di normalizzazione (l evidenza marginale) P (y M) sia necessario qualora si voglia calcolare l eq.12 per inferire il modello. Inoltre: P (y θ, M) = x P (y, x θ, M)dx = x P (y x,, M)P (x θ, M)dx (14) 3.3 Livello 3: Inferire variabili Si supponga il seguente modello generativo in cui le osservazioni y sono generate da uno stato nascosto x: Nel modello generativo rappresentato in Fig. 2 posso definire P (y x) se sono conosciuti il modello M e i parametri θ. Si supponga per esempio che x rappresenti uno stato emotivo, e y un espressione facciale osservata. Se volessi determinare lo stato emotivo nascosto x conoscendo modello e parametri dovrei utilizzare la formula di Bayes: P (y x, θ, M)P (x θ, M) P (x y, θ, y, M) = (15) P (y θ, M) In altri termini, si possono riconoscere stati emotivi, conoscendo modello e parametri; nel caso non si fosse in possesso dei parametri si utilizza (13) per il learning dei parametri, nel caso in cui vi siano molti modelli e si debba identificare quello maggiormente efficace per lo specifico caso si utilizza (11), calcolata rispetto a

5 Richiami di teoria della probabilitá e Modelli Grafici 5 Figura 2: Modello grafico: P (y x). tutti i possibili parametri. Questo permette di fare inferenze su inferenze, per la definizione di un modello. 4 Graphical Models Un Modello grafico viene utilizzato per la definizione dei rapporti di dipendenza tra le variabili del modello: infatti, tramite il modello grafico é possibile definire le proprietá condizionate. Nel caso pi semplice modello grafico non é altro che un grafo diretto G = {V, E}. Figura 3: Modello grafico. 5 Vincoli fisici I vincoli fisici del problema servono a definire le frecce di condizionamento, e dunque a scegliere lo sviluppo della probabilit congiunta mediante la regola del prodotto. Verrá mostrato come definire una probabilitá condizionata nel rispetto dei vincoli fisici, tramite un esempio. Alice si sveglia la mattina e trova il prato del giardino bagnato, vuole capire se é bagnato perché é piovuto o perché si é dimenticata l irrigatore aperto durante la notte. Osserva i prato di Bob, il suo vicino, anche

6 6 Richiami di teoria della probabilitá e Modelli Grafici questo e bagnato e si chiede se sia dovuto alla pioggia o al fatto che anche Bob si sia dimenticato l irrigatore aperto. passo 1: identificare le variabili: Eventi Variabili Prato di Alice bagnato A = 1, A {0, 1} Prato di Bob bagnato B = 1, B {0, 1} Piovuto P = 1, P {0, 1} Irrigatore aperto I = 1, I {0, 1} Tabella 3: Tabella delle Variabili passo 2: identificare la congiunta (probabilitá di tutto): P (A, B, P, I) = 2 4 = 16 possibili stati usando la regola del prodotto, si verifica che gli stati effettivi sono 2 n 1. Dimostrazione P (A, B, P, I) = P (A B, P ; I)P (B, P, I) = P (A B, P ; I)P (B P, I)P (P, I) = P (A B, P ; I)P (B P, I)P (P I)P (I) passo 3: Considerare i vincoli fisici dati dal modello: P (A B, P, I) = P (A P, I) la probabilitá che il prato di Alice sia bagnato non dipenderá dalle condizioni del prato di Bob. P (B P, I) = P (B P ) la probabilitá che il prato di Bob sa bagnato non puó dipendere dell irrigatore di Alice. P (P I) = P (P ) La probabilitá che sia piovuto non puó dipendere dall irrigatore di Alice. Sotto questi vincoli fisici posso definire il modello, che graficamente puó essere rappresentato come in Figura fig:modello Grafico.

7 Richiami di teoria della probabilitá e Modelli Grafici 7 Figura 4: Modello grafico nel rispetto dei vincoli fisici.

Computazione per l interazione naturale: Modelli dinamici

Computazione per l interazione naturale: Modelli dinamici Computazione per l interazione naturale: Modelli dinamici Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

LE REGOLE GENERALI DI CALCOLO DELLE PROBABILITA : COME SI DIMOSTRANO CON I TRE ASSIOMI DELLA PROBABILITA?

LE REGOLE GENERALI DI CALCOLO DELLE PROBABILITA : COME SI DIMOSTRANO CON I TRE ASSIOMI DELLA PROBABILITA? INDICE (lezione17.04.07 LE REGOLE GENERALI DI CALCOLO DELLE PROBABILIA : COME SI DIMOSRANO CON I RE ASSIOMI DELLA PROBABILIA?.1 Raccordo con le regole di calcolo delle probabilità già viste nelle lezioni

Dettagli

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Lucio Demeio Dipartimento di Scienze Matematiche Università Politecnica delle Marche 1. Esercizio. Siano X ed Y due variabili

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

Funzione logaritmo con. funzione inversa della funzione di

Funzione logaritmo con. funzione inversa della funzione di FUNZIONE LOGARITMO a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo con funzione inversa

Dettagli

Microeconomia per la Finanza - Esercitazione 3 Bayesian updating

Microeconomia per la Finanza - Esercitazione 3 Bayesian updating Microeconomia per la Finanza - Esercitazione 3 Bayesian updating pcrosetto@luiss.it 6 Maggio 2010 1. Che faremo? Dove trovare i materiali: http://docenti.luiss.it/crosetto/ 1 Ripasso di probabilità 2 Regola

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

Incertezza probabilità a priori probabilità a posteriori condizionata preferenze esiti utilità proposizione variabile aleatoria dominio

Incertezza probabilità a priori probabilità a posteriori condizionata preferenze esiti utilità proposizione variabile aleatoria dominio Incertezza Quando un agente logico possiede tutte le informazioni necessarie sull'ambiente e sugli effetti delle sue azioni sul mondo, riesce a determinare la sequenza di azioni che lo portano al raggiungimento

Dettagli

Le operazioni di assicurazione e la teoria

Le operazioni di assicurazione e la teoria Capitolo 1 Le operazioni di assicurazione e la teoria dell utilità 1.1 Introduzione In questo capitolo si discutono alcuni aspetti di base della teoria delle assicurazioni. In particolare, si formalizza

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

Tecniche di DM: Link analysis e Association discovery

Tecniche di DM: Link analysis e Association discovery Tecniche di DM: Link analysis e Association discovery Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Architettura di un generico algoritmo di DM. 2 2 Regole di associazione:

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Teoria delle Decisioni. Lezioni 1 e 2 a.a. 2006 2007. J. Mortera, Università Roma Tre mortera@uniroma3.it

Teoria delle Decisioni. Lezioni 1 e 2 a.a. 2006 2007. J. Mortera, Università Roma Tre mortera@uniroma3.it Teoria delle Decisioni Lezioni 1 e 2 a.a. 2006 2007 J. Mortera, Università Roma Tre mortera@uniroma3.it Decisioni in Condizioni di Incertezza Sia singoli individui che gruppi di individui (società, governi,

Dettagli

Capacità di canale in molte salse

Capacità di canale in molte salse Capacità di canale in molte salse. Bernardini 6 maggio 008 Indice 1 Introduzione 1 Modelli di canale 1.1 Matrice di transizione........................................ 1. Funzione aleatoria..........................................

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

Gli input sono detti anche fattori di produzione: terra, capitale, lavoro, materie prime.

Gli input sono detti anche fattori di produzione: terra, capitale, lavoro, materie prime. LA TECNOLOGIA Studio del comportamento dell impresa, soggetto a vincoli quando si compiono scelte. La tecnologia rientra tra vincoli naturali e si traduce nel fatto che solo alcuni modi di trasformare

Dettagli

BASI DI DATI DIPENDENZE FUNZIONALI E FORME NORMALI

BASI DI DATI DIPENDENZE FUNZIONALI E FORME NORMALI BASI DI DATI DIPENDENZE FUNZIONALI E FORME NORMALI Prof. Fabio A. Schreiber Dipartimento di Elettronica e Informazione Politecnico di Milano ERRORI DI PROGETTAZIONE INSERIMENTO DI ELEMENTI RIDONDANTI SPRECO

Dettagli

Metodi Computazionali

Metodi Computazionali Metodi Computazionali Elisabetta Fersini fersini@disco.unimib.it A.A. 2009/2010 Catene di Markov Applicazioni: Fisica dinamica dei sistemi Web simulazione del comportamento utente Biologia evoluzione delle

Dettagli

Capitolo 26: Il mercato del lavoro

Capitolo 26: Il mercato del lavoro Capitolo 26: Il mercato del lavoro 26.1: Introduzione In questo capitolo applichiamo l analisi della domanda e dell offerta ad un mercato che riveste particolare importanza: il mercato del lavoro. Utilizziamo

Dettagli

VARIABILI ALEATORIE E VALORE ATTESO

VARIABILI ALEATORIE E VALORE ATTESO VARIABILI ALEATORIE E VALORE ATTESO Variabili aleatorie Variabili discrete e continue Coppie e vettori di variabili aleatorie Valore atteso Proprietà del valore atteso Varianza Covarianza e varianza della

Dettagli

Prezzi vischiosi e domanda aggregata

Prezzi vischiosi e domanda aggregata Prezzi vischiosi e domanda aggregata Ciò che rende differente il lungo periodo dal breve è il comportamento dei prezzi. Nel lungo periodo i prezzi sono flessibili, nel breve sono vischiosi. Il fatto che

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Concetti di base sulla Teoria delle Probabilità e sulle Reti bayesiane

Concetti di base sulla Teoria delle Probabilità e sulle Reti bayesiane Concetti di base sulla Teoria delle Probabilità e sulle Reti bayesiane Mariagrazia Semenza IA: Probabilità e Reti bayesiane - 1 Concetti preliminari A cosa si applica la teoria delle probabilità? All incertezza,

Dettagli

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie TEORIA RELAZIONALE: INTRODUZIONE 1 Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano

Dettagli

Matematica finanziaria: svolgimento prova di esonero del 15 maggio 2007

Matematica finanziaria: svolgimento prova di esonero del 15 maggio 2007 Matematica finanziaria: svolgimento prova di esonero del 5 maggio 2 a. Assumendo che il colore dei capelli negli esseri umani sia determinato da una coppia di alleli, diciamo (B, S), presi a caso con probabilità

Dettagli

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio M. Besozzi - IRCCS Istituto Auxologico Italiano L argomento... Errori cognitivi Il problema gnoseologico Dati, informazione

Dettagli

Probabilità. Concetti fondamentali Definizione di probabilità Teoremi sulla probabilità

Probabilità. Concetti fondamentali Definizione di probabilità Teoremi sulla probabilità Probabilità Concetti fondamentali Definizione di probabilità Teoremi sulla probabilità Probabilità: indicazioni quantitative sul verificarsi di certi eventi (linguaggio comune), ad es. P di superare o

Dettagli

Appendice B: Reti di code

Appendice B: Reti di code Appendice B: Reti di code B. INTRODUZIONE ALLE RETI DI CODE B.. Generalità La trattazione della teoria delle code effettuata fino ad ora ha sempre considerato singoli sistemi a coda. Tuttavia, molto spesso

Dettagli

La scelta di portafoglio

La scelta di portafoglio La scelta di portafoglio 1 La scelta di portafoglio La scelta di portafoglio: il modo in cui un individuo decide di allocare la propria ricchezza tra più titoli Il mercato dei titoli è un istituzione che

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità Luca Mari, versione 2.3.15 Contenuti La generazione combinatoria di campioni...1 L algebra dei campioni...4 Il calcolo delle frequenze relative dei campioni...5 Indipendenza

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

PIANO DI LAVORO ANNUALE

PIANO DI LAVORO ANNUALE PIANO DI LAVORO ANNUALE ISTITUTO TECNICO ECONOMICO: INSEGNANTE: Consiglia Mazzone MATERIA DI INSEGNAMENTO: Matematica Applicata CLASSE IV sezione ITE Anno Scolastico 2014/2015 PARTE 1 LIVELLO COMPETENZE

Dettagli

Carlo Marchini Dipartimento di Matematica dell Università di Parma

Carlo Marchini Dipartimento di Matematica dell Università di Parma Carlo Marchini Dipartimento di Matematica dell Università di Parma Presento qui alcuni esempi citati da libri di testo italiani per la scuola Primaria 1: Si consideri il testo di Figura 1 (Esercizio 5).

Dettagli

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A. 2013-2014. Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUARTA SETTIMANA

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A. 2013-2014. Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUARTA SETTIMANA Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A. 2013-2014. Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUARTA SETTIMANA SURPLUS del CONSUMATORE E utile poter disporre di una misura monetaria

Dettagli

Teoria della probabilità: eventi, proprietà additiva e moltiplicativa. L incertezza

Teoria della probabilità: eventi, proprietà additiva e moltiplicativa. L incertezza La probabilità Teoria della probabilità: eventi, proprietà additiva e moltiplicativa L incertezza Nella maggior parte delle situazioni la nostra condizione è caratterizzata dallincertezza Incertezza relativa

Dettagli

FUNZIONI. N indica l insieme dei numeri naturali; Z indica l insieme dei numeri relativi interi; Q indica l insieme dei numeri razionali;

FUNZIONI. N indica l insieme dei numeri naturali; Z indica l insieme dei numeri relativi interi; Q indica l insieme dei numeri razionali; 1 FUNZIONI Introduzione Una lingua è fatta di parole; essa si impara soprattutto con la pratica. La matematica, per esprimere i concetti logici, usa un proprio alfabeto fatto di simboli; anche questo si

Dettagli

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio Indice 1 Probabilità 1 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio.. 1 1.2 Probabilità condizionata, indipendenza e teorema di Bayes.... 2 1 Probabilità 1.1 Primi esercizi di probabilità

Dettagli

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo docente Giuseppe Sanfilippo http://www.unipa.it/sanfilippo giuseppe.sanfilippo@unipa.it

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Voltammetria ciclica (CV)

Voltammetria ciclica (CV) Voltammetria ciclica (CV) La voltammetria ciclica è un evoluzione di quella a scansione lineare, realizzata imponendo all elettrodo una scansione di potenziale triangolare: In questo caso il primo tratto

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

Logistica - Il problema del trasporto

Logistica - Il problema del trasporto Logistica - Il problema del trasporto Federico Di Palma December 17, 2009 Il problema del trasporto sorge ogniqualvolta si debba movimentare della merce da una o più sorgenti verso una o più destinazioni

Dettagli

CONTRATTI E TASSI SWAP

CONTRATTI E TASSI SWAP CONTRATTI E TASSI SWAP FLAVIO ANGELINI Sommario. In queste note vengono definite, analizzate e valutate le tipologie più comuni di contratti interest rate swap e si discute l importanza che i tassi swap

Dettagli

Valutazione delle impedenze equivalenti nei circuiti con retroazione.

Valutazione delle impedenze equivalenti nei circuiti con retroazione. UNIVERSITÀ DI PADOVA Facoltà di Ingegneria Corso di Laurea in Ingegneria dell Informazione Tesina di Laurea Triennale Valutazione delle impedenze equivalenti nei circuiti con retroazione. -La formula di

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Economia Pubblica Giochi con informazione incompleta e Selezione Avversa

Economia Pubblica Giochi con informazione incompleta e Selezione Avversa Economia Pubblica Giochi con informazione incompleta e Selezione Avversa Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2011-12 Outline Equilibrio di Nash

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

Istituto tecnico economico

Istituto tecnico economico PIANO DI LAVORO ANNUALE Istituto tecnico economico INSEGNANTE: CONSIGLIA MAZZONE MATERIA DI INSEGNAMENTO: MATEMATICA APPLICATA CLASSE V ITE ANNO SCOLASTICO 2014/2015 PARTE 1 LIVELLO COMPETENZE DISCIPLINARI

Dettagli

PROPRIETÀ DEI CIRCUITI DI RESISTORI

PROPRIETÀ DEI CIRCUITI DI RESISTORI CAPITOLO 5 PROPRIETÀ DEI CIRCUITI DI RESISTORI Nel presente Capitolo, verrà introdotto il concetto di equivalenza tra bipoli statici e verranno enunciati e dimostrati alcuni teoremi (proprietà) generali

Dettagli

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa.

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa. Algebra booleana Nel lavoro di programmazione capita spesso di dover ricorrere ai principi della logica degli enunciati e occorre conoscere i concetti di base dell algebra delle proposizioni. L algebra

Dettagli

Appunti: Teoria Dei Test

Appunti: Teoria Dei Test Appunti: Teoria Dei Test Fulvio De Santis, Luca Tardella e Isabella Verdinelli Corsi di Laurea A + E + D + G + R 1. Introduzione. Il test d ipotesi è un area dell inferenza statistica in cui si valuta

Dettagli

MATEMATICA LINEE GENERALI E COMPETENZE

MATEMATICA LINEE GENERALI E COMPETENZE MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso del liceo scientifico lo studente conoscerä i concetti e i metodi elementari della matematica, sia interni alla disciplina in så considerata,

Dettagli

Rappresentazione della conoscenza. ha poco potere espressivo in quanto ha un ontologia limitata: il mondo consiste di fatti, es.

Rappresentazione della conoscenza. ha poco potere espressivo in quanto ha un ontologia limitata: il mondo consiste di fatti, es. Scaletta argomenti: Rappresentazione della conoscenza Logica del primo ordine Logiche non-monotone Reti semantiche Frame e script Regole di produzione Logica del Primo Ordine - Logica proposizionale ha

Dettagli

Il modello relazionale

Il modello relazionale Il modello relazionale Sistemi Informativi L-A Home Page del corso: http://www-db.deis.unibo.it/courses/sil-a/ Versione elettronica: Relazionale.pdf Sistemi Informativi L-A Relazionale, Gerarchico e Reticolare

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Come costruire una distribuzione di frequenze per caratteri quantitativi continui

Come costruire una distribuzione di frequenze per caratteri quantitativi continui Come costruire una distribuzione di frequenze per caratteri quantitativi continui Consideriamo i dati contenuti nel primo foglio di lavoro (quello denominato dati) del file esempio2.xls. I dati si riferiscono

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it A.Studio dell interdipendenza tra variabili: riepilogo Concetto relativo allo studio delle relazioni tra

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli

Il modello relazionale dei dati

Il modello relazionale dei dati Il modello relazionale dei dati Master Alma Graduate School Sistemi Informativi Home Page del corso: http://www-db.deis.unibo.it/courses/alma_si1/ Versione elettronica: 04Relazionale.pdf Obiettivi della

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

Al Dirigente Scolastico dell I.T.S.T. F. Algarotti Venezia

Al Dirigente Scolastico dell I.T.S.T. F. Algarotti Venezia PIANO DI LAVORO ANNUALE Al Dirigente Scolastico dell I.T.S.T. F. Algarotti Venezia prof.ssa LAURA MARCHETTO Classe 3 sez. H MATEMATICA a.s 2014/15 B Obiettivi generali da raggiungere: Lo studente rispetti

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

online La situazione operativa. In ambito aziendale i processi decisionali richiedono assunzioni di responsabilità a vari LABORATORIO 1

online La situazione operativa. In ambito aziendale i processi decisionali richiedono assunzioni di responsabilità a vari LABORATORIO 1 LABORATORIO 1 Scelta tra preventivi per l acquisto di un impianto di Luca CAGLIERO Materie: Informatica, Matematica, Economia aziendale (Triennio IT) L attività da svolgere in laboratorio, di carattere

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS V ERSA RI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo LICEO TECNICO MATERIA M ATEMATICA APPLICATA ANNO SCOLASTICO 2011-2012 PROF PIZZILEO

Dettagli

È fatta male? Perché? Come si può correggere?

È fatta male? Perché? Come si può correggere? UNA TABELLA N Inv Stanza Resp Oggetto Produttore Descrizione 1012 256 Ghelli Mac Mini Apple Personal Comp 1015 312 Albano Dell XPS M1330 Dell Notebook 2 GHZ 1034 256 Ghelli Dell XPS M1330 Dell Notebook

Dettagli

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Introduzione Il caso Il caso commesse e probabilità Il caso i chiama evento casuale quello che si verifica in una situazione in cui gli eventi possibili sono più d uno, ma non si sa a priori quale si verificherà.

Dettagli

Macroeconomia, Esercitazione 2. 1 Esercizi. 1.1 Moneta/1. 1.2 Moneta/2. 1.3 Moneta/3. A cura di Giuseppe Gori (giuseppe.gori@unibo.

Macroeconomia, Esercitazione 2. 1 Esercizi. 1.1 Moneta/1. 1.2 Moneta/2. 1.3 Moneta/3. A cura di Giuseppe Gori (giuseppe.gori@unibo. acroeconomia, Esercitazione 2. A cura di Giuseppe Gori (giuseppe.gori@unibo.it) 1 Esercizi. 1.1 oneta/1 Sapendo che il PIL reale nel 2008 è pari a 50.000 euro e nel 2009 a 60.000 euro, che dal 2008 al

Dettagli

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA LICEO SCIENTIFICO MATEMATICA

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA LICEO SCIENTIFICO MATEMATICA LICEO SCIENTIFICO MATEMATICA PROFILO GENERALE E COMPETENZE Al termine del percorso liceale lo studente dovrà padroneggiare i principali concetti e metodi di base della matematica, sia aventi valore intrinseco

Dettagli

Ipotesi scientifiche ed evidenze osservative

Ipotesi scientifiche ed evidenze osservative Temi filosofici dell ingegneria e della scienza /Informatica B[1] Politecnico di Milano, II Facoltà di ingegneria, a.a. 2009-10 Ipotesi scientifiche ed evidenze osservative Viola Schiaffonati Dipartimento

Dettagli

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA PROFILO GENERALE E COMPETENZE Al termine del percorso liceale lo studente dovrà padroneggiare i principali concetti e metodi di base della matematica,

Dettagli

La Funzione Caratteristica di una Variabile Aleatoria

La Funzione Caratteristica di una Variabile Aleatoria La Funzione Caratteristica di una Variabile Aleatoria La funzione caratteristica Φ densità di probabilità è f + Φ ω = ω di una v.a., la cui x, è definita come: jωx f x e dx E e j ω Φ ω = 1 La Funzione

Dettagli

Macchine a stati finiti. Sommario. Sommario. M. Favalli. 5th June 2007

Macchine a stati finiti. Sommario. Sommario. M. Favalli. 5th June 2007 Sommario Macchine a stati finiti M. Favalli 5th June 27 4 Sommario () 5th June 27 / 35 () 5th June 27 2 / 35 4 Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante:

Dettagli

Computazione per l interazione naturale: macchine che apprendono

Computazione per l interazione naturale: macchine che apprendono Computazione per l interazione naturale: macchine che apprendono Corso di Interazione Naturale! Prof. Giuseppe Boccignone! Dipartimento di Informatica Università di Milano! boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

PIANO DIDATTICO PERSONALIZZATO

PIANO DIDATTICO PERSONALIZZATO Scuola Secondaria di II grado VITTORIA COLONNA Roma Liceo Linguistico - Liceo delle Scienze Applicate - Liceo delle Scienze Umane e-mail rmpm180008@istruzione.it - www.vittoriacolonnalicei.it PIANO DIDATTICO

Dettagli

Sicurezza nelle applicazioni multimediali: lezione 4, crittografia asimmetrica. Crittografia asimmetrica (a chiave pubblica)

Sicurezza nelle applicazioni multimediali: lezione 4, crittografia asimmetrica. Crittografia asimmetrica (a chiave pubblica) Crittografia asimmetrica (a chiave pubblica) Problemi legati alla crittografia simmetrica Il principale problema della crittografia simmetrica sta nella necessità di disporre di un canale sicuro per la

Dettagli

Sistemi Intelligenti Introduzione al calcolo delle

Sistemi Intelligenti Introduzione al calcolo delle Sistemi Intelligenti Introduzione al calcolo delle probabilità - I Alberto Borghese Università degli Studi di Milano Laboratory of Applied Intelligent Systems (AIS-Lab) Dipartimento di Informatica borghese@di.unimi.it

Dettagli

Analisi Decisionale. (Decision Analysis) Caratteristiche:

Analisi Decisionale. (Decision Analysis) Caratteristiche: Analisi Decisionale 1 Analisi Decisionale (Decision Analysis) Metodologia che si applica quando un decisore può scegliere tra varie azioni future il cui esito dipende da fattori esterni che non possono

Dettagli

Modulo 2 Data Base 2

Modulo 2 Data Base 2 Modulo 2 Data Base 2 Università degli Studi di Salerno Corso di Laurea in Scienze della comunicazione Informatica generale Docente: Angela Peduto A.A. 2004/2005 Relazioni: riepilogo Relazione : concetto

Dettagli

Macchine a stati finiti. Sommario. Sommario. M. Favalli. Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante:

Macchine a stati finiti. Sommario. Sommario. M. Favalli. Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante: Sommario Macchine a stati finiti M. Favalli Engineering Department in Ferrara 4 Sommario (ENDIF) Analisiesintesideicircuitidigitali / 35 (ENDIF) Analisiesintesideicircuitidigitali 2 / 35 4 Le macchine

Dettagli

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica Liceo Linguistico I.F.R.S. Marcelline Curriculum di Matematica Introduzione La matematica nel nostro Liceo Linguistico ha come obiettivo quello di far acquisire allo studente saperi e competenze che lo

Dettagli

ASSE MATEMATICO. Competenze Abilità Conoscenze

ASSE MATEMATICO. Competenze Abilità Conoscenze Competenze di base a conclusione del I Biennio Confrontare ed analizzare figure geometriche del piano e dello spazio individuando invarianti e relazioni. Analizzare, correlare e rappresentare dati. Valutare

Dettagli

Corso di Economia Applicata

Corso di Economia Applicata Corso di Economia Applicata a.a. 2007-08 II modulo 12 Lezione Asimmetrie informative e Adverse Selection Soluzioni per l Adverse Selection? selezione (screening ) segnalazione razionamento le soluzioni

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

ANNO SCOLASTICO 2015 2016. Piano di lavoro individuale

ANNO SCOLASTICO 2015 2016. Piano di lavoro individuale ANNO SCOLASTICO 2015 2016 Piano di lavoro individuale Classe: Materia: Docente: IV^ D S.I.A. MAA MATEMATICA Prof. Michele PAVEGGIO Situazione di partenza della classe La classe risulta formata da 18 alunni,

Dettagli

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli