Richiami di teoria della probabilitá e Modelli Grafici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Richiami di teoria della probabilitá e Modelli Grafici"

Transcript

1 Modelli di computazione affettiva e comportamentale Data: 23 Aprile 2010 Richiami di teoria della probabilitá e Modelli Grafici Docente: Prof. Giuseppe Boccignone Scriba: Matteo Battistini 1 Richiami di teoria delle probabilitá Ricordiamo che in generale si utilizza la notazione P per indicare la probabilitá discreta e p la probabilitá continua. Laddove non vi sia situazione di ambiguit le utilizzeremo indifferentemente. Gli eventi x, y si definiscono condizionalmente indipendenti se: P (x y, H) = P (x H) (1) L equazione 1 rappresenta la proprietá che avvenga un dato evento x posto come giá accaduto y, in relazione alle ipotesi H Ricordiamo che da un punto di vista Bayesiano: Non si fanno inferenze senza ipotesi. Dunque assumeremo queste come sempre presenti, anche quando, per semplicitá notazionale non le indichiamo esplicitamente. In questo caso essendo x e y condizionalmente indipendenti il risultato e dato dalla sola probabilitá che avvenga l evento x. La probabiliá condizionata si ricava dalla seguente formula: P (x y, H) = P (x, y H) P (y H) (2) Dalla (2) si puó ricavare la regola del prodotto: P (x, y H) = P (x y, H)P (y H) (3) Nel caso x e y siano condizionalmente indipendenti (3) puó essere semplificata come: P (x, y H) = P (x H)P (y H) (4) Due eventi si definiscono mutuamenti escusivi se la probabilitá congiunta é uguale a 0. P (x, y H) = 0 (5) Dalla probabilitá congiunta é possibile ricavare la probabilitá marginale. 1

2 2 Richiami di teoria della probabilitá e Modelli Grafici P (x H) = y P (x, y H) (6) che, tramite la regola del prodotto, puó essere anche scritta come: P (x H) = y P (x, y H) = y P (x y, H)P (y H) (7) ovvero, nel caso continuo : P (x H) = P (x, y H)dy (8) y 2 Introduzione ai modelli grafici Consideriamo un esempio concreto. Analizziamo quale sia la probabilitá che il mal di denti sia derivato, o meno, dalle carie. Esprimiamo le probabilitá tramite una tabella. Eventi Mal di denti No mal di denti Carie No carie Tabella 1: Tabella della probabilitá congiunta P (carie, maldidenti) Diamo una breve spiegazione su come deve essere interpretata la tabella; il valore 0.12 identifica la probabilitá congiunta di avere carie e mal di denti, in linguaggio formale P (carie, maldidenti) = Denotiamo ora con la variabile C l asserzione che sia o non sia presente una carie. Dunque, i valori che assume C sono nell insieme 1,0 dove uno rappresenta la presenza di carie (C = carie) e 0 l assenza di carie (C = noncarie) Di seguito verranno riportati alcuni esempi che mostrano come calcolare le probabilitá tramite marginalizzazione. Esempio 1: Qual é la probabilitá di avere le carie ovvero l evento {P (C = 1)}? Tramite marginalizzazione si calcola P (C = 1, M) con M {0, 1} (non avere o avere il mal di denti). M P (C = 1) = M P (C = 1, M) = P (C = 1, M = 1) + P (C = 1, M = 0) = = 0.2 (9) Esempio 2: Qualeé la probabilitá di non avere le carie, {P (C = 0)}?. P (C = 1) = M P (C = 0, M) = P (C = 0, M = 1) + P (C = 0, M = 0) = = 0.8 (10) La probabilitá marginale prende questo nome perché i suoi risultati potrebbero essere scritti ai margini della tabella calcolando le somme sulle righe o sulle colonne, come mostrato in Tabella 2.

3 Richiami di teoria della probabilitá e Modelli Grafici 3 Eventi Mal di denti No mal di denti P marginale Carie No carie P marginale Tabella 2: Probabilitá marginale La probabilitá condizionata puó essere espressa anche attraverso un modello grafico: questo permette di schematizzare l osservazione e rappresentare le relazioni di dipendenza tra i vari eventi. Nella Figura 1 a) viene rappresentata tramite modello grafico la seguente osservazione: data una caria qual é la probabiltá di avere mal di denti, formalmente P (M = 1 C = 1) (si noti che la variabile osservata sulla quale condiziono a livello grafico viene scurita). Essendo tale probabilitá condizionata la soluzione si ricava da (2), il risultat sará 0.12/0.2, Lo stesso risultato si ricava condizionando sul mal di denti, vedi Figura 1 b). Figura 1: Modello grafico: a) puó essere utilizzato per calcolare P (M = 1 C = 1) b)il modello graico inverso per calcolare P (C = 1 M = 1). Il problema principale del calcolo della probabiliá Bayesiana, é dato del calcolo della congiunta: infatti dati N possibili stati ed M possibili condizioni il numero di calcoli da compiere aumenterá in modo esponenziale M N. Nell esempio precedente abbiamo solo due condizioni e due possibili stati. 3 Inferire variabili, modelli e parametri Assumiamo la seguente rappresentazione: y = dati osservati. H = M = ipotesi, quindi la rappresentazione di un modello. θ = parametri del modello La probalilitá di un dato evento sará data P (y θ, M), quindi le inferenze definite nell esempio precedente dovrebbero essere P (C, M θ, M), in questo caso parametri e modello sono noti, sono definiti tramite la tabella delle probabiliá.

4 4 Richiami di teoria della probabilitá e Modelli Grafici 3.1 Livello 1: Inferire il modello L inferenza del modello implica quindi il calcolo della probabilitá condizionata sui dati osservati, detta anche probabilitá a posteriori dove, P (M y) = P (y M)P (M) P (y) (11) P (y M) = P (y, θ M)dθ = P (y θ, M)P (θ M)d (12) 3.2 Livello 2: Inferenza sui parametri Dato un modello M si puó inferire l insieme dei parametri del modello, essendo i parametri rappresentati da θ. E importante notare che in un contesto Bayesiano i parametri sono variabili aleatorie che danno origine ad una distribuzione di probabilit. Il learning dei parametri in tale contesto dunque ricondotto ad un problema di inferenza della P (θ y, M), P (θ y, M) = P (y θ, M)P (θ, M) P (y M) (13) seguito da una decisione sulla distribuzione a posteriori. Per un numero molto elevato di osservazioni i valori di probabilitá bayesiana e quella frequentistica convergono, mentre per campioni sparsi, il valore della probabilitá bayesiana é migliore perché tiene conto della probabilitá a priori sui paramentri P (θ M). Si noti come il fattore di normalizzazione (l evidenza marginale) P (y M) sia necessario qualora si voglia calcolare l eq.12 per inferire il modello. Inoltre: P (y θ, M) = x P (y, x θ, M)dx = x P (y x,, M)P (x θ, M)dx (14) 3.3 Livello 3: Inferire variabili Si supponga il seguente modello generativo in cui le osservazioni y sono generate da uno stato nascosto x: Nel modello generativo rappresentato in Fig. 2 posso definire P (y x) se sono conosciuti il modello M e i parametri θ. Si supponga per esempio che x rappresenti uno stato emotivo, e y un espressione facciale osservata. Se volessi determinare lo stato emotivo nascosto x conoscendo modello e parametri dovrei utilizzare la formula di Bayes: P (y x, θ, M)P (x θ, M) P (x y, θ, y, M) = (15) P (y θ, M) In altri termini, si possono riconoscere stati emotivi, conoscendo modello e parametri; nel caso non si fosse in possesso dei parametri si utilizza (13) per il learning dei parametri, nel caso in cui vi siano molti modelli e si debba identificare quello maggiormente efficace per lo specifico caso si utilizza (11), calcolata rispetto a

5 Richiami di teoria della probabilitá e Modelli Grafici 5 Figura 2: Modello grafico: P (y x). tutti i possibili parametri. Questo permette di fare inferenze su inferenze, per la definizione di un modello. 4 Graphical Models Un Modello grafico viene utilizzato per la definizione dei rapporti di dipendenza tra le variabili del modello: infatti, tramite il modello grafico é possibile definire le proprietá condizionate. Nel caso pi semplice modello grafico non é altro che un grafo diretto G = {V, E}. Figura 3: Modello grafico. 5 Vincoli fisici I vincoli fisici del problema servono a definire le frecce di condizionamento, e dunque a scegliere lo sviluppo della probabilit congiunta mediante la regola del prodotto. Verrá mostrato come definire una probabilitá condizionata nel rispetto dei vincoli fisici, tramite un esempio. Alice si sveglia la mattina e trova il prato del giardino bagnato, vuole capire se é bagnato perché é piovuto o perché si é dimenticata l irrigatore aperto durante la notte. Osserva i prato di Bob, il suo vicino, anche

6 6 Richiami di teoria della probabilitá e Modelli Grafici questo e bagnato e si chiede se sia dovuto alla pioggia o al fatto che anche Bob si sia dimenticato l irrigatore aperto. passo 1: identificare le variabili: Eventi Variabili Prato di Alice bagnato A = 1, A {0, 1} Prato di Bob bagnato B = 1, B {0, 1} Piovuto P = 1, P {0, 1} Irrigatore aperto I = 1, I {0, 1} Tabella 3: Tabella delle Variabili passo 2: identificare la congiunta (probabilitá di tutto): P (A, B, P, I) = 2 4 = 16 possibili stati usando la regola del prodotto, si verifica che gli stati effettivi sono 2 n 1. Dimostrazione P (A, B, P, I) = P (A B, P ; I)P (B, P, I) = P (A B, P ; I)P (B P, I)P (P, I) = P (A B, P ; I)P (B P, I)P (P I)P (I) passo 3: Considerare i vincoli fisici dati dal modello: P (A B, P, I) = P (A P, I) la probabilitá che il prato di Alice sia bagnato non dipenderá dalle condizioni del prato di Bob. P (B P, I) = P (B P ) la probabilitá che il prato di Bob sa bagnato non puó dipendere dell irrigatore di Alice. P (P I) = P (P ) La probabilitá che sia piovuto non puó dipendere dall irrigatore di Alice. Sotto questi vincoli fisici posso definire il modello, che graficamente puó essere rappresentato come in Figura fig:modello Grafico.

7 Richiami di teoria della probabilitá e Modelli Grafici 7 Figura 4: Modello grafico nel rispetto dei vincoli fisici.

Capitolo 26: Il mercato del lavoro

Capitolo 26: Il mercato del lavoro Capitolo 26: Il mercato del lavoro 26.1: Introduzione In questo capitolo applichiamo l analisi della domanda e dell offerta ad un mercato che riveste particolare importanza: il mercato del lavoro. Utilizziamo

Dettagli

Computazione per l interazione naturale: Modelli dinamici

Computazione per l interazione naturale: Modelli dinamici Computazione per l interazione naturale: Modelli dinamici Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

LE REGOLE GENERALI DI CALCOLO DELLE PROBABILITA : COME SI DIMOSTRANO CON I TRE ASSIOMI DELLA PROBABILITA?

LE REGOLE GENERALI DI CALCOLO DELLE PROBABILITA : COME SI DIMOSTRANO CON I TRE ASSIOMI DELLA PROBABILITA? INDICE (lezione17.04.07 LE REGOLE GENERALI DI CALCOLO DELLE PROBABILIA : COME SI DIMOSRANO CON I RE ASSIOMI DELLA PROBABILIA?.1 Raccordo con le regole di calcolo delle probabilità già viste nelle lezioni

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Modelli Grafici Probabilistici (1): concetti generali

Modelli Grafici Probabilistici (1): concetti generali Modelli Grafici Probabilistici (1): concetti generali Corso di Modelli di Computazione Affettiva Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it Giuseppe.Boccignone@unimi.it

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Lucio Demeio Dipartimento di Scienze Matematiche Università Politecnica delle Marche 1. Esercizio. Siano X ed Y due variabili

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

Metodi Computazionali

Metodi Computazionali Metodi Computazionali Elisabetta Fersini fersini@disco.unimib.it A.A. 2009/2010 Catene di Markov Applicazioni: Fisica dinamica dei sistemi Web simulazione del comportamento utente Biologia evoluzione delle

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Le operazioni di assicurazione

Le operazioni di assicurazione Le operazioni di assicurazione Giovanni Zambruno e Asmerilda Hitaj Bicocca, 2014 Outline 1 Lezione 1: Le operazioni di assicurazione Condizione di indifferenza Condizione di equità 2 Premio equo, premio

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

CIRCE Scheda 1 I CENTRI DI RESPONSABILITA E I LORO PRODOTTO. Dati quantitativi del prodotto. Descrizione Amministrazione:... Anno:.. Mese:..

CIRCE Scheda 1 I CENTRI DI RESPONSABILITA E I LORO PRODOTTO. Dati quantitativi del prodotto. Descrizione Amministrazione:... Anno:.. Mese:.. CIRCE Scheda 1 I CENTRI DI RESPONSABILITA E I LORO PRODOTTO Descrizione Amministrazione:.... Anno:.. Mese:.. Dati quantitativi del prodotto (1) CdR (2) prodotto (3) Prodotto (4) Volume nell anno (5) Tempo

Dettagli

BASI DI DATI DIPENDENZE FUNZIONALI E FORME NORMALI

BASI DI DATI DIPENDENZE FUNZIONALI E FORME NORMALI BASI DI DATI DIPENDENZE FUNZIONALI E FORME NORMALI Prof. Fabio A. Schreiber Dipartimento di Elettronica e Informazione Politecnico di Milano ERRORI DI PROGETTAZIONE INSERIMENTO DI ELEMENTI RIDONDANTI SPRECO

Dettagli

Valutazione delle impedenze equivalenti nei circuiti con retroazione.

Valutazione delle impedenze equivalenti nei circuiti con retroazione. UNIVERSITÀ DI PADOVA Facoltà di Ingegneria Corso di Laurea in Ingegneria dell Informazione Tesina di Laurea Triennale Valutazione delle impedenze equivalenti nei circuiti con retroazione. -La formula di

Dettagli

Sia data la rete di fig. 1 costituita da tre resistori,,, e da due generatori indipendenti ideali di corrente ed. Fig. 1

Sia data la rete di fig. 1 costituita da tre resistori,,, e da due generatori indipendenti ideali di corrente ed. Fig. 1 Analisi delle reti 1. Analisi nodale (metodo dei potenziali dei nodi) 1.1 Analisi nodale in assenza di generatori di tensione L'analisi nodale, detta altresì metodo dei potenziali ai nodi, è un procedimento

Dettagli

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 A. Il modello macroeconomico in economia chiusa e senza settore pubblico. A.1. Un sistema economico

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) STATISTICA DESCRITTIVA

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Funzione logaritmo con. funzione inversa della funzione di

Funzione logaritmo con. funzione inversa della funzione di FUNZIONE LOGARITMO a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo con funzione inversa

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Capacità di canale in molte salse

Capacità di canale in molte salse Capacità di canale in molte salse. Bernardini 6 maggio 008 Indice 1 Introduzione 1 Modelli di canale 1.1 Matrice di transizione........................................ 1. Funzione aleatoria..........................................

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

La scelta in condizioni di incertezza

La scelta in condizioni di incertezza La scelta in condizioni di incertezza 1 Stati di natura e utilità attesa. L approccio delle preferenza per gli stati Il problema posto dall incertezza riformulato (state-preference approach). L individuo

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Gli algoritmi: definizioni e proprietà

Gli algoritmi: definizioni e proprietà Dipartimento di Elettronica ed Informazione Politecnico di Milano Informatica e CAD (c.i.) - ICA Prof. Pierluigi Plebani A.A. 2008/2009 Gli algoritmi: definizioni e proprietà La presente dispensa e da

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

Logistica - Il problema del trasporto

Logistica - Il problema del trasporto Logistica - Il problema del trasporto Federico Di Palma December 17, 2009 Il problema del trasporto sorge ogniqualvolta si debba movimentare della merce da una o più sorgenti verso una o più destinazioni

Dettagli

VARIABILI ALEATORIE E VALORE ATTESO

VARIABILI ALEATORIE E VALORE ATTESO VARIABILI ALEATORIE E VALORE ATTESO Variabili aleatorie Variabili discrete e continue Coppie e vettori di variabili aleatorie Valore atteso Proprietà del valore atteso Varianza Covarianza e varianza della

Dettagli

Introduzione. Articolazione della dispensa. Il sistema del controllo di gestione. Introduzione. Controllo di Gestione

Introduzione. Articolazione della dispensa. Il sistema del controllo di gestione. Introduzione. Controllo di Gestione Introduzione Perché il controllo di gestione? L azienda, come tutte le altre organizzazioni, è un sistema che è rivolto alla trasformazione di input (risorse tecniche, finanziarie e umane) in output (risultati

Dettagli

Corso di Economia Applicata

Corso di Economia Applicata Corso di Economia Applicata a.a. 2007-08 II modulo 12 Lezione Asimmetrie informative e Adverse Selection Soluzioni per l Adverse Selection? selezione (screening ) segnalazione razionamento le soluzioni

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

Esperimentazioni di Fisica II. Esercitazione 3 Misure di resistività

Esperimentazioni di Fisica II. Esercitazione 3 Misure di resistività Esperimentazioni di Fisica II Richiami sulla resistività elettrica La resistenza R di un conduttore dipende da diversi fattori : caratteristiche fisiche; caratteristiche geometriche; condizioni ambientali.

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Gli input sono detti anche fattori di produzione: terra, capitale, lavoro, materie prime.

Gli input sono detti anche fattori di produzione: terra, capitale, lavoro, materie prime. LA TECNOLOGIA Studio del comportamento dell impresa, soggetto a vincoli quando si compiono scelte. La tecnologia rientra tra vincoli naturali e si traduce nel fatto che solo alcuni modi di trasformare

Dettagli

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti Enrico Saltari Università di Roma La Sapienza 1 Dotazioni iniziali Il consumatore dispone ora non di un dato reddito monetario ma di un ammontare

Dettagli

Insegnamento di Gestione e Organizzazione dei Progetti A.A. 2008/9

Insegnamento di Gestione e Organizzazione dei Progetti A.A. 2008/9 Insegnamento di Gestione e Organizzazione dei Progetti A.A. 2008/9 Lezione 11: valutazione costi diagramma di PERT Prof.ssa R. Folgieri email: folgieri@dico.unimi.it folgieri@mtcube.com 1 Da ricordare:

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

1. Introduzione. 2. I metodi di valutazione

1. Introduzione. 2. I metodi di valutazione 1. Introduzione La Riserva Sinistri è l accantonamento che l impresa autorizzata all esercizio dei rami danni deve effettuare a fine esercizio in previsione dei costi che essa dovrà sostenere in futuro

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica Università del Piemonte Orientale Corsi di Laurea Triennale di area tecnica Corso di Statistica Medica Campionamento e distribuzione campionaria della media Corsi di laurea triennale di area tecnica -

Dettagli

La Funzione Caratteristica di una Variabile Aleatoria

La Funzione Caratteristica di una Variabile Aleatoria La Funzione Caratteristica di una Variabile Aleatoria La funzione caratteristica Φ densità di probabilità è f + Φ ω = ω di una v.a., la cui x, è definita come: jωx f x e dx E e j ω Φ ω = 1 La Funzione

Dettagli

Come costruire una distribuzione di frequenze per caratteri quantitativi continui

Come costruire una distribuzione di frequenze per caratteri quantitativi continui Come costruire una distribuzione di frequenze per caratteri quantitativi continui Consideriamo i dati contenuti nel primo foglio di lavoro (quello denominato dati) del file esempio2.xls. I dati si riferiscono

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND.

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND. IPSI G. Plana Via Parenzo 46, Torino efinizione di Mintermine onsiderata una qualunque riga della tabella di verità in cui la funzione booleana di uscita Q vale, si definisce mintermine il prodotto logico

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Guida al livellamento delle risorse con logica Critical Chain (1^ parte)

Guida al livellamento delle risorse con logica Critical Chain (1^ parte) Paolo Mazzoni 2011. E' ammessa la riproduzione per scopi di ricerca e didattici se viene citata la fonte completa nella seguente formula: "di Paolo Mazzoni, www.paolomazzoni.it, (c) 2011". Non sono ammesse

Dettagli

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Cash Flow Manuale Utente

Cash Flow Manuale Utente Cash Flow Manuale Utente Paragrafo-Pagina di Pagine 1-1 di 10 SOMMARIO 1 A Chi è destinato... 1-3 2 Pre requisiti... 2-3 3 Obiettivi... 3-3 4 Durata della formazione... 4-3 5 Introduzione concettuale...

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

Microeconomia per la Finanza - Esercitazione 3 Bayesian updating

Microeconomia per la Finanza - Esercitazione 3 Bayesian updating Microeconomia per la Finanza - Esercitazione 3 Bayesian updating pcrosetto@luiss.it 6 Maggio 2010 1. Che faremo? Dove trovare i materiali: http://docenti.luiss.it/crosetto/ 1 Ripasso di probabilità 2 Regola

Dettagli

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1 Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 7 - Pag. 1. Capitolo 7. Probabilità, verosimiglianze e teorema di Bayes.

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 7 - Pag. 1. Capitolo 7. Probabilità, verosimiglianze e teorema di Bayes. Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 7 - Pag. 1 Capitolo 7. Probabilità, verosimiglianze e teorema di Bayes. Probabilità, verosimiglianza e teorema di Bayes Se A e B sono

Dettagli

Corso di elettrotecnica Materiale didattico. Cenni sui sistemi trifase

Corso di elettrotecnica Materiale didattico. Cenni sui sistemi trifase Corso di elettrotecnica Materiale didattico. Cenni sui sistemi trifase A. Laudani 19 gennaio 2007 Le reti trifase sono reti elettriche in regime sinusoidale (tutte le variabili di rete hanno andamento

Dettagli

Statistica. Alfonso Iodice D Enza iodicede@unicas.it

Statistica. Alfonso Iodice D Enza iodicede@unicas.it Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 2 Outline 1 2 3 4 () Statistica 2 / 2 Misura del legame Data una variabile doppia (X, Y ), la misura

Dettagli

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio M. Besozzi - IRCCS Istituto Auxologico Italiano L argomento... Errori cognitivi Il problema gnoseologico Dati, informazione

Dettagli

Un riepilogo di alcuni fenomeni macroeconomici. Giorgio Ricchiuti

Un riepilogo di alcuni fenomeni macroeconomici. Giorgio Ricchiuti Un riepilogo di alcuni fenomeni macroeconomici Giorgio Ricchiuti Cosa abbiamo visto fin qui Abbiamo presentato e discusso alcuni concetti e fenomeni aggregati: 1) Il PIL, il risparmio e il debito pubblico.

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

Le derivate versione 4

Le derivate versione 4 Le derivate versione 4 Roberto Boggiani 2 luglio 2003 Riciami di geometria analitica Dalla geometria analitica sulla retta sappiamo ce dati due punti del piano A(x, y ) e B(x 2, y 2 ) con x x 2 la retta

Dettagli

MODULO 4: FOGLIO ELETTRONICO (EXCEL)

MODULO 4: FOGLIO ELETTRONICO (EXCEL) MODULO 4: FOGLIO ELETTRONICO (EXCEL) 1. Introduzione ai fogli elettronici I fogli elettronici sono delle applicazioni che permettono di sfruttare le potenzialità di calcolo dei Personal computer. Essi

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera 1. Avete risparmiato 10 dollari che volete investire per un anno in azioni e/o buoni del tesoro

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

L impresa che non fa il prezzo

L impresa che non fa il prezzo L offerta nei mercati dei prodotti L impresa che non fa il prezzo L impresa che non fa il prezzo (KR 10 + NS 6) Dipartimento di Economia Politica Università di Milano Bicocca Outline L offerta nei mercati

Dettagli

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti.

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti. PROVE D'ESAME DI CPS A.A. 009/00 0/06/00 () (4pt) Olimpiadi, nale dei 00m maschili, 8 nalisti. Si sa che i 4 atleti nelle corsie centrali hanno probabilità di correre in meno di 0 secondi. I 4 atleti delle

Dettagli

La teoria dell utilità attesa

La teoria dell utilità attesa La teoria dell utilità attesa 1 La teoria dell utilità attesa In un contesto di certezza esiste un legame biunivoco tra azioni e conseguenze: ad ogni azione corrisponde una e una sola conseguenza, e viceversa.

Dettagli

online La situazione operativa. In ambito aziendale i processi decisionali richiedono assunzioni di responsabilità a vari LABORATORIO 1

online La situazione operativa. In ambito aziendale i processi decisionali richiedono assunzioni di responsabilità a vari LABORATORIO 1 LABORATORIO 1 Scelta tra preventivi per l acquisto di un impianto di Luca CAGLIERO Materie: Informatica, Matematica, Economia aziendale (Triennio IT) L attività da svolgere in laboratorio, di carattere

Dettagli

Teoria delle Decisioni. Lezioni 1 e 2 a.a. 2006 2007. J. Mortera, Università Roma Tre mortera@uniroma3.it

Teoria delle Decisioni. Lezioni 1 e 2 a.a. 2006 2007. J. Mortera, Università Roma Tre mortera@uniroma3.it Teoria delle Decisioni Lezioni 1 e 2 a.a. 2006 2007 J. Mortera, Università Roma Tre mortera@uniroma3.it Decisioni in Condizioni di Incertezza Sia singoli individui che gruppi di individui (società, governi,

Dettagli

Appendice B: Reti di code

Appendice B: Reti di code Appendice B: Reti di code B. INTRODUZIONE ALLE RETI DI CODE B.. Generalità La trattazione della teoria delle code effettuata fino ad ora ha sempre considerato singoli sistemi a coda. Tuttavia, molto spesso

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

EXCEL PER WINDOWS95. sfruttare le potenzialità di calcolo dei personal computer. Essi si basano su un area di lavoro, detta foglio di lavoro,

EXCEL PER WINDOWS95. sfruttare le potenzialità di calcolo dei personal computer. Essi si basano su un area di lavoro, detta foglio di lavoro, EXCEL PER WINDOWS95 1.Introduzione ai fogli elettronici I fogli elettronici sono delle applicazioni che permettono di sfruttare le potenzialità di calcolo dei personal computer. Essi si basano su un area

Dettagli

METODOLOGIA PER ANALIZZARE IL LIVELLO DI RISCHIO CORRUZIONE

METODOLOGIA PER ANALIZZARE IL LIVELLO DI RISCHIO CORRUZIONE ALLEGATO A METODOLOGIA PER ANALIZZARE IL LIVELLO DI RISCHIO CORRUZIONE L analisi del rischio è un processo di comprensione della natura del rischio e di determinazione del livello di rischio (UNI ISO 3100).

Dettagli

CONTROLLO IN TENSIONE DI LED

CONTROLLO IN TENSIONE DI LED Applicazioni Ver. 1.1 INTRODUZIONE CONTROLLO IN TENSIONE DI LED In questo documento vengono fornite delle informazioni circa la possibilità di pilotare diodi led tramite una sorgente in tensione. La trattazione

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it A.Studio dell interdipendenza tra variabili: riepilogo Concetto relativo allo studio delle relazioni tra

Dettagli

Finanza matematica - Lezione 01

Finanza matematica - Lezione 01 Finanza matematica - Lezione 01 Contratto d opzione Un opzione è un contratto finanziario stipulato al tempo, che permette di eseguire una certa transazione, d acquisto call o di vendita put, ad un tempo

Dettagli