Richiami di teoria della probabilitá e Modelli Grafici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Richiami di teoria della probabilitá e Modelli Grafici"

Transcript

1 Modelli di computazione affettiva e comportamentale Data: 23 Aprile 2010 Richiami di teoria della probabilitá e Modelli Grafici Docente: Prof. Giuseppe Boccignone Scriba: Matteo Battistini 1 Richiami di teoria delle probabilitá Ricordiamo che in generale si utilizza la notazione P per indicare la probabilitá discreta e p la probabilitá continua. Laddove non vi sia situazione di ambiguit le utilizzeremo indifferentemente. Gli eventi x, y si definiscono condizionalmente indipendenti se: P (x y, H) = P (x H) (1) L equazione 1 rappresenta la proprietá che avvenga un dato evento x posto come giá accaduto y, in relazione alle ipotesi H Ricordiamo che da un punto di vista Bayesiano: Non si fanno inferenze senza ipotesi. Dunque assumeremo queste come sempre presenti, anche quando, per semplicitá notazionale non le indichiamo esplicitamente. In questo caso essendo x e y condizionalmente indipendenti il risultato e dato dalla sola probabilitá che avvenga l evento x. La probabiliá condizionata si ricava dalla seguente formula: P (x y, H) = P (x, y H) P (y H) (2) Dalla (2) si puó ricavare la regola del prodotto: P (x, y H) = P (x y, H)P (y H) (3) Nel caso x e y siano condizionalmente indipendenti (3) puó essere semplificata come: P (x, y H) = P (x H)P (y H) (4) Due eventi si definiscono mutuamenti escusivi se la probabilitá congiunta é uguale a 0. P (x, y H) = 0 (5) Dalla probabilitá congiunta é possibile ricavare la probabilitá marginale. 1

2 2 Richiami di teoria della probabilitá e Modelli Grafici P (x H) = y P (x, y H) (6) che, tramite la regola del prodotto, puó essere anche scritta come: P (x H) = y P (x, y H) = y P (x y, H)P (y H) (7) ovvero, nel caso continuo : P (x H) = P (x, y H)dy (8) y 2 Introduzione ai modelli grafici Consideriamo un esempio concreto. Analizziamo quale sia la probabilitá che il mal di denti sia derivato, o meno, dalle carie. Esprimiamo le probabilitá tramite una tabella. Eventi Mal di denti No mal di denti Carie No carie Tabella 1: Tabella della probabilitá congiunta P (carie, maldidenti) Diamo una breve spiegazione su come deve essere interpretata la tabella; il valore 0.12 identifica la probabilitá congiunta di avere carie e mal di denti, in linguaggio formale P (carie, maldidenti) = Denotiamo ora con la variabile C l asserzione che sia o non sia presente una carie. Dunque, i valori che assume C sono nell insieme 1,0 dove uno rappresenta la presenza di carie (C = carie) e 0 l assenza di carie (C = noncarie) Di seguito verranno riportati alcuni esempi che mostrano come calcolare le probabilitá tramite marginalizzazione. Esempio 1: Qual é la probabilitá di avere le carie ovvero l evento {P (C = 1)}? Tramite marginalizzazione si calcola P (C = 1, M) con M {0, 1} (non avere o avere il mal di denti). M P (C = 1) = M P (C = 1, M) = P (C = 1, M = 1) + P (C = 1, M = 0) = = 0.2 (9) Esempio 2: Qualeé la probabilitá di non avere le carie, {P (C = 0)}?. P (C = 1) = M P (C = 0, M) = P (C = 0, M = 1) + P (C = 0, M = 0) = = 0.8 (10) La probabilitá marginale prende questo nome perché i suoi risultati potrebbero essere scritti ai margini della tabella calcolando le somme sulle righe o sulle colonne, come mostrato in Tabella 2.

3 Richiami di teoria della probabilitá e Modelli Grafici 3 Eventi Mal di denti No mal di denti P marginale Carie No carie P marginale Tabella 2: Probabilitá marginale La probabilitá condizionata puó essere espressa anche attraverso un modello grafico: questo permette di schematizzare l osservazione e rappresentare le relazioni di dipendenza tra i vari eventi. Nella Figura 1 a) viene rappresentata tramite modello grafico la seguente osservazione: data una caria qual é la probabiltá di avere mal di denti, formalmente P (M = 1 C = 1) (si noti che la variabile osservata sulla quale condiziono a livello grafico viene scurita). Essendo tale probabilitá condizionata la soluzione si ricava da (2), il risultat sará 0.12/0.2, Lo stesso risultato si ricava condizionando sul mal di denti, vedi Figura 1 b). Figura 1: Modello grafico: a) puó essere utilizzato per calcolare P (M = 1 C = 1) b)il modello graico inverso per calcolare P (C = 1 M = 1). Il problema principale del calcolo della probabiliá Bayesiana, é dato del calcolo della congiunta: infatti dati N possibili stati ed M possibili condizioni il numero di calcoli da compiere aumenterá in modo esponenziale M N. Nell esempio precedente abbiamo solo due condizioni e due possibili stati. 3 Inferire variabili, modelli e parametri Assumiamo la seguente rappresentazione: y = dati osservati. H = M = ipotesi, quindi la rappresentazione di un modello. θ = parametri del modello La probalilitá di un dato evento sará data P (y θ, M), quindi le inferenze definite nell esempio precedente dovrebbero essere P (C, M θ, M), in questo caso parametri e modello sono noti, sono definiti tramite la tabella delle probabiliá.

4 4 Richiami di teoria della probabilitá e Modelli Grafici 3.1 Livello 1: Inferire il modello L inferenza del modello implica quindi il calcolo della probabilitá condizionata sui dati osservati, detta anche probabilitá a posteriori dove, P (M y) = P (y M)P (M) P (y) (11) P (y M) = P (y, θ M)dθ = P (y θ, M)P (θ M)d (12) 3.2 Livello 2: Inferenza sui parametri Dato un modello M si puó inferire l insieme dei parametri del modello, essendo i parametri rappresentati da θ. E importante notare che in un contesto Bayesiano i parametri sono variabili aleatorie che danno origine ad una distribuzione di probabilit. Il learning dei parametri in tale contesto dunque ricondotto ad un problema di inferenza della P (θ y, M), P (θ y, M) = P (y θ, M)P (θ, M) P (y M) (13) seguito da una decisione sulla distribuzione a posteriori. Per un numero molto elevato di osservazioni i valori di probabilitá bayesiana e quella frequentistica convergono, mentre per campioni sparsi, il valore della probabilitá bayesiana é migliore perché tiene conto della probabilitá a priori sui paramentri P (θ M). Si noti come il fattore di normalizzazione (l evidenza marginale) P (y M) sia necessario qualora si voglia calcolare l eq.12 per inferire il modello. Inoltre: P (y θ, M) = x P (y, x θ, M)dx = x P (y x,, M)P (x θ, M)dx (14) 3.3 Livello 3: Inferire variabili Si supponga il seguente modello generativo in cui le osservazioni y sono generate da uno stato nascosto x: Nel modello generativo rappresentato in Fig. 2 posso definire P (y x) se sono conosciuti il modello M e i parametri θ. Si supponga per esempio che x rappresenti uno stato emotivo, e y un espressione facciale osservata. Se volessi determinare lo stato emotivo nascosto x conoscendo modello e parametri dovrei utilizzare la formula di Bayes: P (y x, θ, M)P (x θ, M) P (x y, θ, y, M) = (15) P (y θ, M) In altri termini, si possono riconoscere stati emotivi, conoscendo modello e parametri; nel caso non si fosse in possesso dei parametri si utilizza (13) per il learning dei parametri, nel caso in cui vi siano molti modelli e si debba identificare quello maggiormente efficace per lo specifico caso si utilizza (11), calcolata rispetto a

5 Richiami di teoria della probabilitá e Modelli Grafici 5 Figura 2: Modello grafico: P (y x). tutti i possibili parametri. Questo permette di fare inferenze su inferenze, per la definizione di un modello. 4 Graphical Models Un Modello grafico viene utilizzato per la definizione dei rapporti di dipendenza tra le variabili del modello: infatti, tramite il modello grafico é possibile definire le proprietá condizionate. Nel caso pi semplice modello grafico non é altro che un grafo diretto G = {V, E}. Figura 3: Modello grafico. 5 Vincoli fisici I vincoli fisici del problema servono a definire le frecce di condizionamento, e dunque a scegliere lo sviluppo della probabilit congiunta mediante la regola del prodotto. Verrá mostrato come definire una probabilitá condizionata nel rispetto dei vincoli fisici, tramite un esempio. Alice si sveglia la mattina e trova il prato del giardino bagnato, vuole capire se é bagnato perché é piovuto o perché si é dimenticata l irrigatore aperto durante la notte. Osserva i prato di Bob, il suo vicino, anche

6 6 Richiami di teoria della probabilitá e Modelli Grafici questo e bagnato e si chiede se sia dovuto alla pioggia o al fatto che anche Bob si sia dimenticato l irrigatore aperto. passo 1: identificare le variabili: Eventi Variabili Prato di Alice bagnato A = 1, A {0, 1} Prato di Bob bagnato B = 1, B {0, 1} Piovuto P = 1, P {0, 1} Irrigatore aperto I = 1, I {0, 1} Tabella 3: Tabella delle Variabili passo 2: identificare la congiunta (probabilitá di tutto): P (A, B, P, I) = 2 4 = 16 possibili stati usando la regola del prodotto, si verifica che gli stati effettivi sono 2 n 1. Dimostrazione P (A, B, P, I) = P (A B, P ; I)P (B, P, I) = P (A B, P ; I)P (B P, I)P (P, I) = P (A B, P ; I)P (B P, I)P (P I)P (I) passo 3: Considerare i vincoli fisici dati dal modello: P (A B, P, I) = P (A P, I) la probabilitá che il prato di Alice sia bagnato non dipenderá dalle condizioni del prato di Bob. P (B P, I) = P (B P ) la probabilitá che il prato di Bob sa bagnato non puó dipendere dell irrigatore di Alice. P (P I) = P (P ) La probabilitá che sia piovuto non puó dipendere dall irrigatore di Alice. Sotto questi vincoli fisici posso definire il modello, che graficamente puó essere rappresentato come in Figura fig:modello Grafico.

7 Richiami di teoria della probabilitá e Modelli Grafici 7 Figura 4: Modello grafico nel rispetto dei vincoli fisici.

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

L impresa che non fa il prezzo

L impresa che non fa il prezzo L offerta nei mercati dei prodotti L impresa che non fa il prezzo L impresa che non fa il prezzo (KR 10 + NS 6) Dipartimento di Economia Politica Università di Milano Bicocca Outline L offerta nei mercati

Dettagli

La Funzione Caratteristica di una Variabile Aleatoria

La Funzione Caratteristica di una Variabile Aleatoria La Funzione Caratteristica di una Variabile Aleatoria La funzione caratteristica Φ densità di probabilità è f + Φ ω = ω di una v.a., la cui x, è definita come: jωx f x e dx E e j ω Φ ω = 1 La Funzione

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione.

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 40: Filtro di Kalman - introduzione Cenni storici Filtro di Kalman e filtro di Wiener Formulazione del problema Struttura ricorsiva della soluzione

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

Può la descrizione quantomeccanica della realtà fisica considerarsi completa?

Può la descrizione quantomeccanica della realtà fisica considerarsi completa? Può la descrizione quantomeccanica della realtà fisica considerarsi completa? A. Einstein, B. Podolsky, N. Rosen 25/03/1935 Abstract In una teoria completa c è un elemento corrispondente ad ogni elemento

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche

I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche (versione provvisoria) Marisa Faggini Università di Salerno mfaggini@unisa.it I beni pubblici rappresentano un esempio

Dettagli

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione Analisi del dominio: i sistemi per la localizzazione Definizione e implementazione del framework e risultati sperimentali e sviluppi futuri Tecniche di localizzazione Triangolazione Analisi della scena

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

EQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO VALORE AOLUTO EQUAZIONI CON VALORE AOLUTO Esercizi DIEQUAZIONI CON VALORE AOLUTO Esercizi Prof. Giulia Cagnetta ITI Marconi Domodossola (VB) *EQUAZIONI CON VALORE AOLUTO Data una qualsiasi espressione

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

a) Nel disegno contrassegnato con il numero uno. RSB0002 a) 20. b) 18. c) 16. d) 22. c

a) Nel disegno contrassegnato con il numero uno. RSB0002 a) 20. b) 18. c) 16. d) 22. c RSB0001 In quale/i dei disegni proposti l area tratteggiata é maggiore dell area lasciata invece bianca? a) Nel disegno contrassegnato con il numero uno. b) In nessuno dei due. c) Nel disegno contrassegnato

Dettagli

TERMODINAMICA DI UNA REAZIONE DI CELLA

TERMODINAMICA DI UNA REAZIONE DI CELLA TERMODINAMICA DI UNA REAZIONE DI CELLA INTRODUZIONE Lo scopo dell esperienza è ricavare le grandezze termodinamiche per la reazione che avviene in una cella galvanica, attraverso misure di f.e.m. effettuate

Dettagli

Guido Candela, Paolo Figini - Economia del turismo, 2ª edizione

Guido Candela, Paolo Figini - Economia del turismo, 2ª edizione 8.2.4 La gestione finanziaria La gestione finanziaria non dev essere confusa con la contabilità: quest ultima, infatti, ha come contenuto proprio le rilevazioni contabili e il reperimento dei dati finanziari,

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Lezione 29: Modello Domanda-Offerta Aggregata (AD-AS)

Lezione 29: Modello Domanda-Offerta Aggregata (AD-AS) Corso di Economia Politica prof. S. Papa Lezione 29: Modello Domanda-Offerta Aggregata (AD-AS) Facoltà di Economia Sapienza Roma Introduciamo i prezzi Finora abbiamo ipotizzato che i prezzi fossero dati

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Tassi a pronti ed a termine (bozza)

Tassi a pronti ed a termine (bozza) Tassi a pronti ed a termine (bozza) Mario A. Maggi a.a. 2006/2007 Indice 1 Introduzione 1 2 Valutazione dei titoli a reddito fisso 2 2.1 Titoli di puro sconto (zero coupon)................ 3 2.2 Obbligazioni

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione

Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione Consideriamo il nostro dataset formato da 468 individui e 1 variabili nominali costituite dalle seguenti modalità : colonna D: Age of client

Dettagli

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

I.Stat Guida utente Versione 1.7 Dicembre 2010

I.Stat Guida utente Versione 1.7 Dicembre 2010 I.Stat Guida utente Versione 1.7 Dicembre 2010 1 Sommario INTRODUZIONE 3 I concetti principali di I.Stat 4 Organizzazione dei dati 4 Ricerca 5 GUIDA UTENTE 6 Per iniziare 6 Selezione della lingua 7 Individuazione

Dettagli

5 Radici primitive dell unità e congruenze del tipo

5 Radici primitive dell unità e congruenze del tipo 5 Radici primitive dell unità e congruenze del tipo X m a (mod n ) Oggetto di questo paragrafo è lo studio della risolubilità di congruenze del tipo: X m a (mod n) con m, n, a Z ed m, n > 0. Per l effettiva

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Gli uni e gli altri. Strategie in contesti di massa

Gli uni e gli altri. Strategie in contesti di massa Gli uni e gli altri. Strategie in contesti di massa Alessio Porretta Universita di Roma Tor Vergata Gli elementi tipici di un gioco: -un numero di agenti (o giocatori): 1,..., N -Un insieme di strategie

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

Programmazione e Valutazione ex ante il quadro logico nel PO 14-20

Programmazione e Valutazione ex ante il quadro logico nel PO 14-20 Programmazione e Valutazione ex ante il quadro logico nel PO 14-20 [presentazione e discussione della nota tecnica] Paola Casavola DPS UVAL 25 giugno 2014 IL «quadro logico di programmazione» Rappresentazione

Dettagli

Economia del Lavoro 2010

Economia del Lavoro 2010 Economia del Lavoro 2010 Capitolo 1-3 Offerta di lavoro -Le preferenze del lavoratore 1 Offerta di lavoro Le preferenze del lavoratore Il comportamento dell offerta di lavoro è analizzato dagli economisti

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 4 Materiale di supporto per le lezioni. Non sostituisce il libro di testo Dipendenza di un carattere QUANTITATIVO da un carattere QUALITATIVO

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori

Dettagli

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 00 Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Esercizio. Un corpo parte da fermo con accelerazione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

Esercizi sul moto rettilineo uniformemente accelerato

Esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 010 Esercizi sul moto rettilineo uniformemente accelerato Esercizio 1. Un corpo parte da fermo con accelerazione pari a

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

IL TEMPO METEOROLOGICO

IL TEMPO METEOROLOGICO VOLUME 1 CAPITOLO 4 MODULO D LE VENTI REGIONI ITALIANE IL TEMPO METEOROLOGICO 1. Parole per capire A. Conosci già queste parole? Scrivi il loro significato o fai un disegno: tempo... Sole... luce... caldo...

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze:

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze: Grandezze elettriche Serie e Parallelo Legge di Ohm, Principi di Kirchhoff Elettronica Analogica Luxx Luca Carabetta Premessa L elettronica Analogica, si appoggia su segnali che possono avere infiniti

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

r.berardi NOTE E SCHEDE OPERATIVE PER APPRENDERE LE PROIEZIONI ORTOGONALI

r.berardi NOTE E SCHEDE OPERATIVE PER APPRENDERE LE PROIEZIONI ORTOGONALI r.berardi NOTE E SCHEDE OPERATIVE PER APPRENDERE LE PROIEZIONI ORTOGONALI 1. Proiezioni Assonometriche e ortogonali 2. Teoria delle proiezioni ortogonali Pag. 1 Pag. 2. 3. SCHEDE OPERATIVE SULLE PROIEZIONI

Dettagli

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Il presente capitolo continua nell esposizione di alcune basi teoriche della manutenzione. In particolare si tratteranno

Dettagli

Rappresentazione numeri in virgola mobile

Rappresentazione numeri in virgola mobile Rappresentazione numeri in virgola mobile Un numero non intero può essere rappresentato in infiniti modi quando utilizziamo la notazione esponenziale: Es. 34.5 = 0.345 10 2 = 0.0345 10 3 = 345 10-1 Questo

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

Logaritmi ed esponenziali

Logaritmi ed esponenziali Logaritmi ed esponenziali definizioni, proprietà ITIS Feltrinelli anno scolastico 2007-2008 A cosa servono i logaritmi I logaritmi rendono possibile trasformare prodotti in somme, quozienti in differenze,

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

Requisiti di informativa relativi alla composizione del patrimonio Testo delle disposizioni

Requisiti di informativa relativi alla composizione del patrimonio Testo delle disposizioni Comitato di Basilea per la vigilanza bancaria Requisiti di informativa relativi alla composizione del patrimonio Testo delle disposizioni Giugno 2012 Il presente documento è stato redatto in lingua inglese.

Dettagli

INDICE. Unità 0 LINGUAGGI MATEMATICI, 1. Unità 1 IL SISTEMA DI NUMERAZIONE DECIMALE, 49

INDICE. Unità 0 LINGUAGGI MATEMATICI, 1. Unità 1 IL SISTEMA DI NUMERAZIONE DECIMALE, 49 INDICE Unità 0 LINGUAGGI MATEMATICI, 1 Il libro prosegue nel CD Il linguaggio degli insiemi, 2 1 GLI INSIEMI E LA LORO RAPPRESENTAZIONE, 2 Gli insiemi, 2 Insieme vuoto, finito e infinito, 3 La rappresentazione

Dettagli

Risposta sismica dei terreni e spettro di risposta normativo

Risposta sismica dei terreni e spettro di risposta normativo Dipartimento di Ingegneria Strutturale, Aerospaziale e Geotecnica Risposta sismica dei terreni e spettro di risposta normativo Prof. Ing. L.Cavaleri L amplificazione locale: gli aspetti matematici u=spostamentoin

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

La ricerca non sperimentale

La ricerca non sperimentale La ricerca non sperimentale Definizione Ricerca osservazionale: : 1. naturalistica Ricerca osservazionale: : 2. osservatori partecipanti Ricerca d archiviod Casi singoli Sviluppo di teorie e verifica empirica

Dettagli

Regole per un buon Animatore

Regole per un buon Animatore Regole per un buon Animatore ORATORIO - GROSOTTO Libretto Animatori Oratorio - Grosotto Pag. 1 1. Convinzione personale: fare l animatore è una scelta di generoso servizio ai ragazzi per aiutarli a crescere.

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Fig. 1 Grafico Organigramma Datré Srl

Fig. 1 Grafico Organigramma Datré Srl Fig.1 GraficoOrganigrammaDatréSrl AREA PRODUZIONE AREA GESTIONALE AREA FORMAZIONE Rappresentantelegale Direttorestrutturaformativa StefaniaBracci ComitatoScientifico Coordinatore R.W.Stockbrugger SegreteriaEcm

Dettagli

DAL PROBLEMA AL PROGRAMMA

DAL PROBLEMA AL PROGRAMMA 1. I PROBLEMI E LA LORO SOLUZIONE DAL PROBLEMA AL PROGRAMMA L'uomo, per affrontare gli innumerevoli problemi postigli dallo sviluppo della civiltà, si è avvalso della scienza e della tecnica, i cui destini

Dettagli

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Informatica IL SAMPLE AND HOLD Progetto di Fondamenti di Automatica PROF.: M. Lazzaroni Anno Accademico

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

AUTISMO E SPORT: ASPETTI LUDICI ED EDUCATIVI. Dott.ssa Sara Ambrosetto Psicologa e Psicoterapeuta Cognitivo Comportamentale

AUTISMO E SPORT: ASPETTI LUDICI ED EDUCATIVI. Dott.ssa Sara Ambrosetto Psicologa e Psicoterapeuta Cognitivo Comportamentale AUTISMO E SPORT: ASPETTI LUDICI ED EDUCATIVI Dott.ssa Sara Ambrosetto Psicologa e Psicoterapeuta Cognitivo Comportamentale Che cos è lo sport? Lo sport viene definito come l'insieme delle attività, individuali

Dettagli

Documento di accompagnamento: mediane dei settori non bibliometrici

Documento di accompagnamento: mediane dei settori non bibliometrici Documento di accompagnamento: mediane dei settori non bibliometrici 1. Introduzione Vengono oggi pubblicate sul sito dell ANVUR e 3 tabelle relative alle procedure dell abilitazione scientifica nazionale

Dettagli

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1 UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Filippo Romano 1 1. Introduzione 2. Analisi Multicriteri o Multiobiettivi 2.1 Formule per l attribuzione del

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli