INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma"

Transcript

1 INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente e l funzione f() si dice integrbile in senso improprio su [, b). Se tle ite esiste m non è finito, l integrle improprio si dice divergente. Anlogmente, dt un funzione f() continu in (, b], ponimo f() = f() ε + +ε qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente e l funzione f() si dice integrbile in senso improprio su (, b]. Se tle ite esiste m non è finito, l integrle improprio si dice divergente. Infine, un funzione f() continu in (, b) si dice integrbile in senso improprio su (, b) se risult integrbile in senso improprio (, c] e su [c, b) per qulche c (, b). In tl cso ponimo f() = c f() + c f() In prticolre l integrle improprio srà convergente se convergono entrmbi gli integrli in cui è stto decomposto. π sin Vedimo un esempio. Clcolre. ( cos ) 3 Osservimo che l funzione integrnd f() = sin ( cos ) 3 +. Per clcolre l integrle pplichimo l definizione: π sin ( cos ) 3 π = ε + ε sin ( cos ) 3 [ = 3( cos ) 3 ε + ] π ε è continu in (, π ] e che f() = + = ε + 3 3( cos ε) 3 = 3 Quindi f() è integrbile in senso improprio in (, π]. Vedimo or dei criteri che ci permetternno di stbilire l convergenz di un integrle improprio nche nei csi in cui non è possibile determinre un primitiv esplicit delle funzione integrnd. Nei seguenti risultti si considerno funzioni continue nell intervllo [, b) m nloghi risultti vlgono per funzioni continue nell intervllo (, b].

2 Teorem (Criterio del Confronto) Sino f() e g() funzioni continue nell intervllo [, b) tli che f() g() per ogni [, b). Se g() è convergente llor f() è convergente. Se f() è divergente llor g() è divergente. Dim. Le funzioni integrli F () = f(t) dt e G() = g(t) dt risultno definite e continue in [, b). Inoltre, essendo f() g() per ogni [, b), F () e G() risultno monotone crescenti in [, b) con F () G() per ogni [, b). teorem sul ite delle funzioni monotone, risult llor che esistono i iti F () = + sup F () e G() = sup G() ed inoltre (,b] + (,b] F () G() + + L tesi segue osservndo che se g() converge, llor F () R e quindi f() converge. + D ltr prte, se f() diverge, llor d cui segue che g() diverge. G() R. Dunque + Dl F () = + e quindi G() = +, + + Si osservi che se f() è funzione continu e di segno costnte in [, b), llor l funzione integrle F () = f(t) dt è funzione monoton e quindi esiste F (), ovvero l integrle b improprio f() risult convergente o divergente. Se invece f() è funzione continu in [, b) m non h segno costnte, potremo usre il seguente risultto. Corollrio Si f() funzione continu in [, b). Se f() è convergente llor convergente. f() è Dim. Per ogni [, b), considerimo le funzioni f + () = m{f(); } e f () = m{ f(); }. Osservimo che tli funzioni risultno non negtive e che f() = f + () + f () per ogni [, b), quindi f () f() e f + () f() [, b) Essendo f() convergente, dl criterio del confronto si ottiene che f +() e f () sono convergenti. Allor, essendo f() = f + () f () per ogni [, b), dll definizione si ottiene che nche f() converge.

3 Se l integrle f() converge, l integrle f() si dice ssolutmente convergente. Il precedente corollrio fferm che l convergenz ssolut implic l convergenz, m non vle in generle il vicevers. Si osservi che dl precedente corollrio segue che se f() è funzione continu e itt in [, b), in prticolre se f() R, llor f() è convergente. b In genere l integrle di confronto usto per stbilire se un dto integrle improprio converge o meno è l integrle delle potenze con p >. p Considerimo l funzione f() = nell intervllo (, ]. Allor p Quindi Dunque l integrle improprio ε prticolre, l funzione f() = p p <. ε p se p = p p log ε se p =. se p < = p p + se p. p è convergente se p < ed è divergente se p. In è integrbile in senso improprio su (, ] se e solo se Medinte un semplice sostituzione, dl precedente esempio si deduce che gli integrli b b ( ) e convergono se e solo se p <. p (b ) p Qulche esempio (log ) 3 ( ) (log ) 3. L funzione f() = ( ) è funzione continu e positiv in (, ] e + f() = +. Osservto che log ( ) per ogni >, per > ottenimo f() = (log ) 3 ( ) ( ) 3 ( ) = ( ) 3 < ( ) 3 (, ]. Essendo convergente, dl criterio del confronto si deduce che nche ( ) 3 l integrle dto è convergente. 3

4 tn. L funzione f() = tn è continu in (, ] e f() = Ricordndo che tn > per ogni (, π ), ottenimo ed essendo dto diverge. f() = tn 3 > 3 = (, ] divergente, dl criterio del confronto si deduce che nche l integrle Dl criterio del confronto e dll definizione di ite si ottiene Corollrio (Criterio del confronto sintotico) Sino f() e g() funzioni continue e di segno costnte in [, b). f() Se + g() = e se g() è convergente llor f() è convergente. f() Se + g() = e se g() è divergente llor f() è divergente. f() Se + g() = l R \ {} (in prticolre, se f() g() per +) llor e g() hnno il medesimo crttere. Dl precedente criterio bbimo che se f() è funzione continu in [, b) e se f() con p <, llor f() converge b = con p, llor f() diverge (b ) p l R \ {}, llor f() converge se e solo se p < Utilizzndo il concetto di ordine di infinito per b, possimo ffermre che se Ord(f()) p < llor f() converge; se Ord(f()) p llor f() diverge. f() Anloghi criteri vlgono nel cso di integrli di funzioni continue in intervlli del tipo (, b]. Qulche Esempio log. L funzione f() = log è continu in (, ] e f() =. Ricor- + dndo che + α log = per ogni α >, ottenimo che se p > llor f() + = p p + 4 log =.

5 Quindi, se < p <, il criterio del confronto sintotico ci permette di concludere che l integrle dto è convergente. Si osservi che dl precedente confronto bbimo che Ord(f()) <. e. L funzione f() = e ite notevole y + è continu in (, ] con f() = +. Dl + e y = + per ogni α R, si ottiene che per ogni p > risult yα f() + p e + p = = +. Scegliendo p, il criterio del confronto sintotico ci permette di concludere che l integrle dto diverge. Si osservi che dl precedente confronto ottenimo che Ord(f()) > p per ogni p > ed in prticolre che Ord(f()) >. rctn 3 sin +. L funzione f() = rctn 3 sin + è continu in (, ]. Per + bbimo rctn = +o() e sin = +o(), quindi sin + = + +o() = + o( ) e rctn( 3 ) = 3 + o( 3 ). Allor per + ottenimo f() = 3 + o( 3 ) + o( ) 3 = 6 Ne segue che f() = + e che Ord(f()) =. Dl criterio del confronto + 6 sintotico ne deducimo che l integrle dto converge. log( + ) Determinre per quli vlori di α > converge l integrle. sin( α ) L funzione f() = log(+) è continu in (, ]. Ricordndo che log( + ) = sin( α ) + o() e sin = + o() per, ottenimo che log( + ) e che sin( α ) α per. Allor f() = per. α α Ne segue che f() = + se α > e che in tl cso Ord(f()) = α. Dl criterio del confronto sintotico deducimo inoltre che l integrle risult convergente se e solo se α < ovvero se α < 3. 5

6 Esercizi Clcolre i seguenti integrli impropri: log [log 4] [ ] 3 [ π 3 ] log( + ) [Integrre per prti. ] Stbilire se i seguenti integrli impropri sono convergenti π 3 5 π sin 4 3 e ( + ) 3 cos ( + ) [Diverge] sin [Diverge] 9.. π/ sin log( + ) [Diverge] Stbilire per quli vlori di α R risultno convergenti i seguenti integrli π rctn( α ) sin + log α [Converge per ogni α] [Converge se e solo se α < ] sin ( cos ) α [Converge se e solo se α < ] α log [Converge se e solo se α < ] log (( )) α+ [Converge se e solo se α < ] tn π ( ) α [Converge se e solo se α < 3 ] π/ π/3 sin tn 3 log(cos ) [Diverge] cos e ( + 3 ) α [Converge se e solo se α < 6] α [Converge se e solo se α > ] 6

7 . Integrli impropri su intervlli ilitti Dt un funzione continu f: [, + ) R, ponimo f() = b + f() qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente e l funzione f() si dice integrbile in senso improprio su [, + ). Se tle ite esiste m non è finito, l integrle improprio si dice divergente. Anlogmente, dt un funzione continu f: (, b] R, ponimo f() = f() qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente e l funzione f si dice integrbile in senso improprio su (, b]. Se tle ite esiste m non è finito, l integrle improprio si dice divergente. Infine, un funzione continu f: (, + ) R si dice integrbile in senso improprio su (, + ) se lo è su (, b] e su [b, + ) per qulche b >. In tl cso ponimo f() = f() + b f() Anloghe definizioni nei csi in cui l intervllo di integrzione è dell form (, b). Infine, un funzione f() continu in R si dice integrbile in senso improprio su R se risult integrbile in senso improprio su (, c] e su [c, + ) per qulche c R. In tl cso ponimo f() = c f() + c f() In prticolre l integrle improprio srà convergente se convergono entrmbi gli integrli in cui è stto decomposto. Vedimo un esempio. Clcolre e. L funzione f() = e è continu in [, + ) e f() =. Dll definizione bbimo + e e = b + Quindi f() è integrbile in senso improprio in [, + ). [ ] b = e = e b e = e b + b + 7

8 Come nel cso di integrli impropri su intervlli itti si possono provre i seguenti risultti. Teorem (Criterio del Confronto) Sino f() e g() funzioni continue nell intervllo [, + ) tli che f() g() per ogni [, + ). Se g() è convergente llor lo è nche f(). Se f() è divergente llor lo è nche g(). Corollrio (Condizione necessri ll convergenz) Si f() funzione continu in [, + ). Se l integrle f() converge ed esiste il ite f(), llor tle ite è nullo. + Corollrio Se f() è convergente llor lo è nche f(). Se l integrle f() converge, l integrle f() si dice ssolutmente convergente. Il precedente corollrio fferm che l convergenz ssolut implic l convergenz. Come nel cso di integrli impropri su intervlli itti, l integrle di confronto è in genere l integrle delle potenze con p >. p Considerimo l funzione f() = p nell intervllo [, + ). Allor se p Quindi p = b p p log b se p =. se p > = p p + se p. Dunque l integrle improprio è convergente se p > ed è divergente se p. p In prticolre, l funzione f() = è integrbile in senso improprio su [, + ) se e p solo se p >. Medinte semplice sostituzione si ottiene che per ogni >, l integrle + converge se e solo se p >. + ( ) p Si osservi che per qunto provto, per ogni p > l funzione f() = non è integrbile p in senso improprio in (, + ). 8

9 Qulche esempio cos cos. Si osservi innnzitutto che = essendo cos funzione π itt, quindi l condizione necessri ll convergenz è soddisftt. Abbimo poi che cos 4 4 π. Essendo convergente, dl criterio del confronto segue che cos π 4 π 4 risult convergente e dunque, dl Teorem sull convergenz ssolut, che nche l integrle proposto converge. (log ) 3 ( ). Osservimo che, essendo log funzione concv in (, + ), risult log per ogni > essendo y = l equzione dell rett tngente l grfico di log in =. Ne segue che (log ) 3 ( ) ( ) 3 ( ) = ( ) 3 < ( ) 4 3 essendo > per ogni R. Poichè converge, dl criterio ( ) 4 3 del confronto deducimo che nche l integrle proposto converge. essendo log. L funzione f() = log è funzione continu su ([, + ) e log + α + f() = = per ogni α >. Abbimo inoltre che per ogni > e risult log > ed essendo e divergente, dl criterio del confronto si ottiene che log e diverge e quindi nche l integrle proposto essendo log e + log = + e Come ultimo esempio, considerimo l integrle per prti ottenimo π sin [ = cos 9 π ] b π sin π. Per ogni b > π, integrndo cos

10 Allor π sin sin = b + π = b + π +cos b b cos = π π cos π e l integrle dto risult convergente essendo tle π cos. Inftti risult cos π con π convergente. Quindi dl criterio del confronto cos converge π ssolutmente. sin D ltr prte, provimo che diverge. Inftti, per ogni k N si h π (k+)π kπ sin (k+)π sin = (k + )π kπ (k + )π Ricordndo che < log( + ) per ogni n N, ottenimo n n (k+)π kπ sin π log( + k + ) = π log ( ) k + k + Allor nπ π sin n = k= (k+)π kπ sin n log π k= ( ) k + = (log(n + ) log ) k + π Considerimo or l funzione integrle F () = crescente e quindi π sin = F () = + Per qunto provto sopr F (nπ) = nπ π π sin t t sup [π,+ ) sin t t dt. Tle funzione è monoton F () sup F (nπ) n N dt (log(n + ) log ) e quindi π diverge. F (nπ) + per n +. Ne segue che sin π Il precedente esempio prov che un integrle improprio può convergere m non convergere ssolutmente.

11 Dl criterio del confronto bbimo Corollrio (Criterio del confronto sintotico) Sino f() e g() funzioni continue e di segno costnte in [, + ). f() Se + g() = e se g() è convergente llor lo è nche f(). f() Se + g() = e se g() è divergente llor lo è nche f(). f() Se = l R \ {} (in prticolre, se f() g() per + ) llor g() + f() e g() hnno il medesimo crttere. Dl precedente criterio si ottiene in prticolre che se f() è funzione continu in [, + ) e se f() + = p con p >, llor f() converge con p, llor f() diverge l R \ {}, llor f() converge se e solo se p > Utilizzndo il concetto di ordine di infinitesimo per +, possimo ffermre che se ord(f()) p > llor f() converge; se ord(f()) p llor f() diverge. Anloghi criteri vlgono nel cso di un intervllo del tipo (, b]. Qulche Esempio e. L funzione f() = e è funzione continu in [, + ) e f() = + essendo α + = per ogni α R. Dl medesimo ite notevole deducimo e che f() + = p + p+ e = per ogni p R e quindi in prticolre per p >. Dl criterio del confronto sintotico deducimo llor che l integrle dto converge. Si osservi che dl precedente confronto bbimo ord(f()) > p per ogni p > e quindi che ord(f()) >.

12 + α log con α >. L funzione f α() = α log f() = per ogni α >. Abbimo { f() p α + se p > α + = p + log = se p α è continu in [, + ) e Se α <, scegliendo α < p nel primo ite, ottenimo dl criterio del confronto sintotico che l integrle diverge. Se α >, scegliendo < p α nel secondo ite ottenimo dl criterio del confronto sintotico che l integrle converge. Se α = i confronti sopr non ci permettono di concludere m in tl cso l integrle si può clcolre medinte l definizione log = b + log = [log log b + ]b = log log b log log = + b + Segue llor che l integrle dto converge se e solo se α >. essendo ( ) (. L funzione f() = ) f() = ( ) = e log( ) è continu in [, + ). Inoltre dllo sviluppo log( + y) = y y + o(y ) per y ponendo y = ottenimo d cui L integrle log( ) = ( + o( )) = + o() f() = e +o() = e e e o() e e per + per + e risult convergente (lo si può clcolre utilizzndo l definizione), quindi dl criterio del confronto sintotico nche l integrle dto risult convergente. Osservimo che dl confronto precedente ottenimo che ord(f()) = ord(e ) < p per ogni p >.

13 Esercizi Clcolre i seguenti integrli impropri: [ π ] log 3 log( + ) [ log ] [Integrre per prti. π] rctn [ π 4 log ] e [] Stbilire se i seguenti integrli impropri sono convergenti.. + [Diverge] e e sin 3 log( + ) log cos [Diverge] [Diverge] [Integrre per prti. Converge] e sin e π sin(π) + tn 4 + cos [Diverge] ( + )( + ) Stbilire se i seguenti integrli impropri sono convergenti l vrire di α R. ( 3)( + 4). log α [Converge se e solo se α > ] ( 3)( + 4) [Diverge] rctn 3 e n+ ( ) 3, n N [Converge se e solo se n ] log( + α ) [Converge se e solo se α > ] 3

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Appunti di Analisi Matematica 1

Appunti di Analisi Matematica 1 Appunti di Anlisi Mtemtic 1 MASTER IN ECONOMIA DIGITALE & e-business Centro per lo studio dei sistemi complessi Università di Sien Mrzo 2005 Prof. Polo Nistri Un funzione (o ppliczione) tr due insiemi

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale Pietro Bldi Successioni e serie di funzioni Testi di riferimento: W. Rudin, Principi di Anlisi Mtemtic, McGrw-Hill Libri Itli; N. Fusco, P. Mrcellini, C. Sbordone, Anlisi Mtemtic Due, Liguori Editore;

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle

Dettagli

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY DANIELE ANDREUCCI DIP. METODI E MODELLI, UNIVERSITÀ LA SAPIENZA VIA A.SCARPA 16, 00161 ROMA, ITALY ndreucci@dmmm.unirom1.it 1. Notzione fondmentle e prime definizioni

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Dispense di MATEMATICA PER L INGEGNERIA 4

Dispense di MATEMATICA PER L INGEGNERIA 4 ispense di MATEMATICA PER L INGEGNERIA 4 Qurto trimestre del o nno del Corso di Lure in Ingegneri Elettronic ocente: Murizio Romeo Mggio 25 ii Indice Integrzione delle funzioni di più vribili. Insiemi

Dettagli

Successioni di funzioni

Successioni di funzioni Successioni di funzioni 3.1 Introduzione Considerimo l successione (x n ) n0,icuiterminisono 1, x,x 2,x 3,..., x n,... Si trtt dell progressione geometric di termine inizile 1 e rgione x, che bbimo già

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione.

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione. T. ZOLZZI. Appunti del corso di Introduzione ll Anlisi Funzionle Scuol di Dottorto in Scienze e Tecnologie dell Informzione e dell Comuniczione. NOTA. L utore desider ringrzire le studentesse di dottorto,

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

Il dominio della funzione, cioè l'insieme dei valori che si possono attribuire a x è tutto R ;

Il dominio della funzione, cioè l'insieme dei valori che si possono attribuire a x è tutto R ; CAPITOLO ESPONENZIALI E LOGARITMI ESPONENZIALI Teori in sintesi Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z. + Sono definite:

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari :

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari : Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >, per ogni R se, per tutti e soli gli R se

Dettagli

Elementi grafici per Matematica

Elementi grafici per Matematica Elementi grfici per Mtemtic Sommrio: Sistemi di coordinte crtesine... Grfici di funzioni... 4. Definizione... 4. Esempi... 5.3 Verificre iniettività e suriettività dl grfico... 8.4 L rett... 9.5 Esempi

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

Il calcolo integrale: intro

Il calcolo integrale: intro Il clcolo integrle: intro Le ppliczioni del clcolo integrle sono svrite: esistono, inftti, molti cmpi, dll fisic ll ingegneri, dll iologi ll economi, in cui si f lrgo uso degli integrli. Per fornire l

Dettagli

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim.

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim. LIMITI E CONFRONTO LOCALE Esercizi svolti. Calcolare i seguenti iti: a + 4 + b + 4 + 4 c 5 e ± g i + + sin 4 m sin o π q sin π + 4 + 7 d + 4 + + 5 4 + f 4 4 + 5 4 + 4 h + + l + + cos n sin cos p π π +

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

Integrali curvilinei e integrali doppi

Integrali curvilinei e integrali doppi Integrli curvilinei e integrli doppi Integrli curvilinei di prim specie Prim di inizire l trttzione di questo rgomento dimo l definizione di curv. Per curv nello 3 3 spzio R intendimo un sottoinsieme di

Dettagli

Integrazione numerica di funzioni con singolarità

Integrazione numerica di funzioni con singolarità UNIVERSITÀ DEGLI STUDI DELLA CALABRIA Fcoltà di Scienze Mtemtiche, Fisiche e Nturli Corso di Lure in Mtemtic Integrzione numeric di funzioni con singolrità RELATORE Dr. Frncesco Dell Accio CANDIDATO Contrtese

Dettagli

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica Complementi di Mtemtic e Clcolo Numerico A.A. 20010-2011 Lbortorio 10 - Integrzione numeric Dtunfunzionef vlorireliperclcolre b fornisce l funzione predefinit qud Sintssi: q=qud(f,,b,tol) input: f funzione

Dettagli

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +... . serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA Slvtore Loris Pelell Corso di Mtemtic RCS LIBRI EDUCATION SPA ISBN 88-45-084-3 004 RCS Libri S.p.A.- Milno Prim edizione: gennio 004 Ristmpe 004 005 006 3 4 5 Stmp: V. Bon, Torino Coordinmento editorile

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

Rendite (2) (con rendite perpetue)

Rendite (2) (con rendite perpetue) Rendite (2) (con rendite perpetue) Esercizio n. Un ziend industrile viene vlutt ttulizzndo i redditi futuri dell gestione l tsso del 9% con inflzione null. I redditi prospettici vengono stimnti nell misur

Dettagli

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto 7 I costi dell impres 7.1. Per l combinzione di equilibrio dei due input, si ved il grfico successivo. L pendenz dell line di isocosto e` pri ll opposto del rpporto tr i prezzi dei fttori: -10 = 2 = -5.

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

QUADERNI DIDATTICI. Dipartimento di Matematica

QUADERNI DIDATTICI. Dipartimento di Matematica Università ditorino QUADERNI DIDATTICI del Diprtimento di Mtemtic G. Zmpieri Anlisi Vettorile.. 21/22 Quderno # 1 - Novembre 21........... Getno Zmpieri - Anlisi Vettorile 1 PREFAZIONE Questo quderno

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in Funzione esponenzile Dto un numero rele >0, l funzione si chim funzione esponenzile di bse e f prte dell fmigli delle funzioni elementri. Il suo ndmento (crescenz o decrescenz) è strettmente legto l vlore

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

LE RETTIFICHE DI STORNO

LE RETTIFICHE DI STORNO Cpitolo 11 LE RETTIFICHE DI STORNO cur di Alfredo Vignò Le scritture di rettific di fine esercizio Sono composte l termine del periodo mministrtivo per inserire nel sistem vlori stimti e congetturti di

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Ai gentili Clienti Loro sedi Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Al termine di ciscun periodo d impost, dopo ver effettuto le scritture di ssestmento e rettific,

Dettagli

Aniello Murano Problemi non decidibili e riducibilità

Aniello Murano Problemi non decidibili e riducibilità Aniello Murno Problemi non decidibili e riducibilità 9 Lezione n. Prole chive: LBA e PCP Corso di Lure: Informtic Codice: Emil Docente: murno@ n.infn.it A.A. 2008-2009 LBA Liner bounded utomton DEFINIZIONE:

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia.

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia. ESERCIZI DI BASE 1. I soci proprietri di un piccol compgni gricol sono tre: i signori A, B, C. Mentre i signori A e C hnno l stess quot di prtecipzione ll ziend, il signor B h solo il 50% dell quot degli

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

3. Il calcolo a scuola (2): l uso della calcolatrice 1

3. Il calcolo a scuola (2): l uso della calcolatrice 1 Didttic 3. Il clcolo scuol (2): l uso dell clcoltrice 1 Ginfrnco Arrigo 57 1. Clcoli con un sol operzione L prim cos d insegnre d un giovne llievo che voglimo educre ll uso corretto dei moderni mezzi di

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

Manuale Generale Sintel Guida alle formule di aggiudicazione

Manuale Generale Sintel Guida alle formule di aggiudicazione MANUALE DI SUPPOTO ALL UTILIZZO DELLA PIATTAFOMA SINTEL GUIDA ALLE FOMULE DI AGGIUDICAZIONE Pgin 1 di 21 AGENZIA EGIONALE CENTALE ACQUISTI Indice 1 INTODUZIONE... 3 1.1 Cso di studio... 4 2 FOMULE DI CUI

Dettagli

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico Noe Cognoe. Clsse D 9 Novebre 00 erific di Fisic forul Noe grfico Proporzionlità qudrtic invers = ) icordndo i possibili legi tr due grndezze,, coplet l seguente tbell ) Specific il significto dei prefissi

Dettagli

Topologia Algebrica e Analisi Complessa

Topologia Algebrica e Analisi Complessa Ginluc Occhett Note di Topologi Algeric e Anlisi Compless Diprtimento di Mtemtic Università di Trento Vi Sommrive 14 38050 - ovo (TN) Not per l lettur Queste note rccolgono gli rgomenti (lcuni vriili

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

8. Serie numeriche Assegnata la successione di numeri complessi {a 1, a 2, a 3,...} si considera con il nome di serie numerica.

8. Serie numeriche Assegnata la successione di numeri complessi {a 1, a 2, a 3,...} si considera con il nome di serie numerica. 8. Serie numeriche Assegnata la successione di numeri complessi {a 1, a 2, a 3,...} si considera con il nome di serie numerica la nuova successione {s n } definita come s 1 = a 1, s 2 = a 1 + a 2, s 3

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

Conversione A/D e D/A. Quantizzazione

Conversione A/D e D/A. Quantizzazione Conversione A/D e D/A Per il trttmento dei segnli sempre più vengono preferite soluzioni di tipo digitle. È quindi necessrio, in fse di cquisizione, impiegre dispositivi che convertno i segnli nlogici

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali Problemi di Fisic Moti unidimensionli Moti nel pino. Moti unidimensionli Problem N. Rppresentre grficmente le seguenti leggi del moto rettilineo uniforme e commentrle: ) S 0 -t ) S 5t 3) S -0 + 3t 4) S

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di UNIVERSITA DEGLI STUDI DI SALERNO FACOLTA DI INGEGNERIA Corso di lure in Ingegneri Meccnic Tesin del corso di TRASMISSIONE DEL CALORE Docente Prof. Ing. Gennro Cuccurullo Tesin n.7a Effetti termici del

Dettagli

Tassi di cambio, prezzi e

Tassi di cambio, prezzi e Tssi di cmbio, prezzi e tssi di interesse 2009 1 Introduzione L relzione tr l ndmento del livello generle dei prezzi e i tssi di cmbio: l Prità dei Poteri di Acquisto Le relzione tr i tssi di cmbio e i

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Definizione: Si chiama successione numerica una funzione definita su IN a valori in IR, cioè una legge che associa ad ogni intero n un numero reale a n. Per abuso di linguaggio, si

Dettagli

Alcuni complementi sulle successioni

Alcuni complementi sulle successioni Alcuni complementi sulle successioni 1 (Teorema del confronto) Siano {a n } e {b n } due successioni regolari tali che si abbia a n b n n N. (1) Allora: a n b n. (2) Dim. Sia L = a n ed L = b n. Se L =

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1 Prolemi e rppresentzione di prolemi di geometri dello spzio - ludio ered ferio 00 pg. onvenzioni di disegno e di rppresentzione Nel corso dell trttzione si dotternno le seguenti convenzioni simoliche:

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

Il Calcolo delle Aree e l Integrale

Il Calcolo delle Aree e l Integrale Cpitolo 7 Il Clcolo delle Aree e l Integrle Il problem dell rett tngente ed il problem dell re sono i due problemi geometrici principli dell Anlisi. Come bbimo visto, il concetto di derivt, insieme lle

Dettagli

ANALISI VETTORIALE. Giovanni Maria Troianiello. 31 ottobre 2010. 1 Approfondimenti sull integrale di Riemann 3. 2 Integrali impropri e serie 5

ANALISI VETTORIALE. Giovanni Maria Troianiello. 31 ottobre 2010. 1 Approfondimenti sull integrale di Riemann 3. 2 Integrali impropri e serie 5 ANALISI VETTORIALE Giovnni Mri Troiniello 31 ottobre 2010 Indice 1 Approfondimenti sull integrle di Riemnn 3 2 Integrli impropri e serie 5 3 Criterio del confronto, convergenz ssolut, convergenz condiziont

Dettagli

CRITERI DI CONVERGENZA PER LE SERIE. lim a n = 0. (1) s n+1 = s n + a n+1. (2) CRITERI PER LE SERIE A TERMINI NON NEGATIVI

CRITERI DI CONVERGENZA PER LE SERIE. lim a n = 0. (1) s n+1 = s n + a n+1. (2) CRITERI PER LE SERIE A TERMINI NON NEGATIVI Il criterio più semplice è il seguente. CRITERI DI CONVERGENZA PER LE SERIE Teorema(condizione necessaria per la convergenza). Sia a 0, a 1, a 2,... una successione di numeri reali. Se la serie a k è convergente,

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

METTITI ALLA PROVA. b. Posto che a, b e c siano i valori trovati al punto precedente, calcola: lim fx ( ); lim fx ( ).

METTITI ALLA PROVA. b. Posto che a, b e c siano i valori trovati al punto precedente, calcola: lim fx ( ); lim fx ( ). Mettiti ll prov METTITI ALLA PROVA Limiti e continuità b - + c e, c Si dt l funzione f ( ) se $ 0! = * sin, con b,! R, c! R + se 0 Ricv i vlori di, b e c in modo tle che: f() si continu in = 0 ; lim f

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Una funzione reale di una variabile reale f di dominio A è una legge che ad ogni x A associa un numero reale che denotiamo con f(x). Se A = N, la f è detta successione di numeri reali.

Dettagli