ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006"

Transcript

1 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato per delimitare il perimetro di u aiuola rettagolare. a) Qual è l aiuola di area massima che è possibile delimitare? Si pesa di tagliare il filo i due parti e utilizzarle per delimitare u aiuola quadrata e u altra circolare. Come si dovrebbe tagliare il filo affiché: b) la somma delle due aree sia miima? c) la somma delle due aree sia massima? U aiuola, ua volta realizzata, ha la forma di parallelepipedo rettagolo; ua scatola, cioè, colma di terreo. Si discute di aumetare del 0% ciascua sua dimesioe. Di quato terreo i più, i termii percetuali, si ha bisogo? PRBLEMA Si cosiderio le fuzioi f e g determiate da f () log e g () a, essedo a u parametro reale e il logaritmo di base e.. Si discuta, al variare di a, l equazioe log a e si dica, i particolare, per quale valore di a i grafici di f e g soo tra loro tageti.. Si calcoli, posto a, l area della parte di piao delimitata dai grafici delle fuzioi f e g e dalle rette e.. Si studi la fuzioe h() log a scegliedo per a u valore umerico maggiore di e se e disegi il e grafico. QUESTINARI Si arra che l ivetore del gioco degli scacchi chiedesse di essere compesato co chicchi di grao: u chicco sulla prima casella, due sulla secoda, quattro sulla terza e così via, sempre raddoppiado il umero dei chicchi, fio alla 64 a casella. Assumedo che 000 chicchi pesio circa 8 g, calcola il peso i toellate della quatità di grao pretesa dall ivetore. I poliedri regolari - oti ache come solidi platoici - soo, a meo di similitudii, solo cique: il tetraedro, il cubo, l ottaedro, il dodecaedro e l icosaedro. Sai dimostrarlo? U foglio di carta deve coteere: u area di stampa di 50 cm, margii superiore e iferiore di 4 cm e margii laterali di cm. Quali soo le dimesioi del foglio di carta di area miima che si può utilizzare? Zaichelli Editore, 006

2 La capacità di u serbatoio è pari a quella del cubo iscritto i ua sfera di u metro di diametro. Quati soo, approssimativamete, i litri di liquido che può coteere il serbatoio? Si dimostri che la somma dei coefficieti dello sviluppo di (a b) è uguale a per ogi N. L equazioe risolvete u dato problema è: k cos 5k 0 dove k è u parametro reale e ha le segueti limitazioi: Si discuta per quali valori di k le radici dell equazioe siao soluzioi del problema. La fuzioe f () soddisfa le codizioi del teorema di Lagrage ell itervallo [0; ]? Se sì trova il puto che compare ella formula: f (b ) f (a) f (). b a La fuzioe f () tg assume valori di sego opposto egli estremi dell itervallo I 4 ; 4, eppure o esiste alcu I tale che f () 0. È così? Perché? Della fuzioe f () si sa che è derivabile e diversa da zero i ogi puto del suo domiio e, acora, che: f () f () e f (0). Puoi determiare f ()? La fuzioe f () a se b cos ha u estremo relativo per 4 ed è f. Si trovio a e b e si dica qual è il periodo di f (). Durata massima della prova: 6 ore. È cosetito soltato l uso di calcolatrici o programmabili. No è cosetito lasciare l Istituto prima che siao trascorse ore dalla dettatura del tema. Zaichelli Editore, 006

3 SLUZINE DELLA PRVA D ESAME CRS DI RDINAMENT 006 PRBLEMA a) Poiché la lughezza del filo rappreseta il perimetro del rettagolo che delimita l aiuola, detti b, h rispettivamete la base e l altezza di tale rettagolo (figura ), vale: b h l. Figura. b h b h h b Scelta b come icogita, si ha h l b, quidi la fuzioe area da massimizzare risulta la seguete: (b) b l b b l b, b 0; l. Il grafico di (b) è ua parabola co la cocavità rivolta verso il basso e vertice di ascissa 4 l. Quidi il massimo della fuzioe è l ordiata del vertice, cioè: ma b 0; l (b) 4 l l6. l Si tratta del caso i cui l aiuola ha la forma di u quadrato di lato. 4 b) Si idica co la parte del filo che si usa per delimitare l aiuola di forma quadrata. La lughezza del lato del quadrato Q è duque 4. Di cosegueza, la lughezza della circofereza che delimita l aiuola di forma circolare è l ; si ricava quidi il raggio r: r l r l. Figura. Q 4 π 4 Zaichelli Editore, 006

4 Si è ora i grado di calcolare le due aree: area(q) 4 6 ; area( ) l (l ). 4 Sommado si ottiee la seguete fuzioe: g ( ) 6 4 l l, [0; l ]. 4 Il grafico di g è u ramo di parabola compreso tra i puti A(0; g (0)) e B (l; g (l )), co la cocavità rivolta verso l alto (figura ). Si osserva che i casi 0 e l corrispodoo etrambi all utilizzo del filo itero (seza effettuare alcu taglio) per delimitare ua sola aiuola di forma circolare ( 0) o ua sola aiuola di forma quadrata ( l). 4π A 6 4(4+π) V B 4 4+π Figura. La fuzioe g () è cotiua i u itervallo limitato e chiuso, quidi, per il teorema di Weierstrass, ammette massimo e miimo assoluti. Precisamete, detto V il vertice della parabola, il miimo di g è l ordiata di V. Poiché V, allora: 4 4l mi g () g [0;l ] 4l 4 l. 4(4 ) c) Il massimo di g viee assuto i uo degli estremi dell itervallo di defiizioe. sservado che: l l g (0) g (l ), 4 6 l si coclude che ma g (), cioè l area massima si ottiee quado il filo o viee tagliato besì 4 utilizzato tutto per delimitare u uica aiuola di forma circolare. Si cosideri ora u parallelepipedo a base rettagolare di dimesioi a, b, c. Il suo volume è: V abc. Icremetado del 0% ciascua dimesioe (figura 4), si ottiee u uovo parallelepipedo di volume: V 0 00 a 0 00 b 0 00 c 0 abc 0 abc. 4 Zaichelli Editore, 006

5 0 c c b 0 b a 0 a Figura 4. La differeza tra i due volumi risulta essere: V V 0 abc. I termii percetuali, pertato, si ottiee: 0,% PRBLEMA. Primo metodo Si discute l equazioe log a co metodo grafico poedo log e a e determiado gli evetuali puti di itersezioe tra i grafici delle due fuzioi, al variare di a. a 0. La fuzioe a è rappresetata da ua parabola co il vertice ell origie e co la cocavità rivolta verso il basso (figura 5). =log =a Figura 5. Si ha sempre u solo puto di itersezioe. a 0. La fuzioe a diveta 0. I questo caso (figura 6) il puto di itersezioe ha coordiate (; 0) e la soluzioe dell equazioe è quidi. a 0. La fuzioe a è rappresetata da ua parabola co il vertice ell origie e co la cocavità rivolta verso l alto. Figura 6. =log =0 5 Zaichelli Editore, 006

6 Ci soo tre possibilità al variare di a (figura 7): - abbiamo parabole che itersecao il grafico di log i due puti distiti; - esiste ua parabola tagete; - ci soo parabole che o itersecao mai il grafico di log. =a T =log Figura 7. Determiiamo la parabola tagete. Risulta: a log D(a ) D(log) a log a log a a e a. e La parabola tagete ha quidi equazioe e Riassumedo la discussioe dell equazioe log a, risulta: - per a 0, soluzioe; - per 0 a e, soluzioi distite; - per a e, soluzioi coicideti; - per a e, essua soluzioe. le due curve devoo itersecarsi. le due curve devoo avere la stessa tagete el puto comue log a e il puto di tageza T ha coordiate e;. Secodo metodo Le evetuali soluzioi dell equazioe log a soo gli zeri della fuzioe h() log a al variare di a R, che risulta cotiua el suo campo di esisteza D ]0; [. sserviamo che per a 0 si ottiee la ota fuzioe logaritmica che ha u uico zero i (figura 8). Sia ora a 0 e studiamo l adameto della fuzioe agli estremi del campo di esisteza. Vale: lim h () per ogi valore di a, 0 lim h () se a 0 se a 0 a=0 =log Figura 8. 6 Zaichelli Editore, 006

7 Trattiamo separatamete i casi a 0 e a 0. a 0. Dallo studio dei limiti effettuato, deduciamo che esistoo, D tali che f ( ) 0 e f ( ) 0. Per il teorema degli zeri, esiste almeo u puto ell itervallo ] ; [ i cui la fuzioe si aulla. D altra parte, risulta: h () a 0, per D, quidi la fuzioe è strettamete crescete. Pertato ache el caso a 0 l equazioe log a ha u uica soluzioe. a 0. I questo caso i limiti agli estremi del campo di esisteza soo etrambi egativi. Studiamo il sego della derivata prima h () a i D. Risulta: h () 0 a a. Poiché il massimo della fuzioe è assuto i di tale massimo. Calcoliamo l immagie: a log a a, l esisteza degli zeri di h dipede dal sego h (log a ). Studiamo la disequazioe: h a 0 log a 0 a. e I coclusioe: - 0 a : il massimo di h è positivo, i limiti agli estremi del campo di esisteza soo etrambi e egativi ed esiste u solo puto critico; quidi la fuzioe h() ammette due zeri; - a : il massimo di h è zero ed esiste u solo puto critico, pertato l ascissa di tale massimo è e l uica soluzioe dell equazioe assegata dal problema; - a : poiché ma h 0, o esistoo soluzioi di h () 0. e Gli zeri dell equazioe log a possoo essere iterpretati graficamete come le ascisse dei puti di itersezioe tra i grafici di f () e g (), come mostra la figura 9. =a =a =a =log =log =log e 0<a< e a= e a> e Figura 9. 7 Zaichelli Editore, 006

8 I grafici di f e g soo tageti solo per a. Ifatti le due curve soo tageti se e solo se si itersecao e hao la stessa retta tagete el puto di itersezioe. Algebricamete, questo equivale a risol- e vere il seguete sistema: g () f () g () f () a log a log. a Questo sistema è soddisfatto se e solo se e e a. e. Dobbiamo determiare l area evideziata i figura 0, dove si cosidera a come richiesto. = =log = = Figura 0. [g () f ()] d ( log ) d [ log ] d 7 ( log [ ] ) 0 log.. Scegliamo a e studiamo la fuzioe h () log. Per quato visto ei puti precedeti: - il campo di esisteza è D ]0; [; - o esistoo itersezioi co gli assi cartesiai e la fuzioe è sempre egativa perché il massimo è egativo; - i limiti agli estremi di D soo etrambi ; f (), la fuzioe è crescete i 0;, decrescete i ; e ma h ()h D (log ), come riassuto ella figura. sserviamo che o vi soo asitoti obliqui perché lim h (). Rimae ora da studiare la derivata secoda: h () 4 ( ). h'() h() 0 ma Figura. 8 Zaichelli Editore, 006

9 Risulta quidi: h () 0 ( ) 0 e questa disequazioe o è mai soddisfatta. Pertato la derivata secoda è sempre egativa e la fuzioe ha la cocavità rivolta verso il basso i tutto il campo di esisteza. Il grafico della fuzioe è riportato ella figura. (log+) =log Figura. QUESTINARI Si tratta di calcolare la somma dei primi 64 termii della progressioe geometrica a, N, co ragioe q. Poiché la somma vale: s a q, q risulta: s ,84 0 9, dove s 64 rappreseta il umero dei chicchi. Si calcola il peso m, teedo coto che 000 chicchi pesao circa 8 g. m, g 69,9 0 6 g 69,9 0 0 t. U poliedro si dice regolare quado le sue facce soo poligoi regolari cogrueti e i suoi agoloidi soo cogrueti. Pertato gli agoli delle facce di ogi suo agoloide devoo essere agoli di poligoi regolari e devoo essere almeo tre. Ioltre, per u oto teorema di geometria solida, i ogi agoloide la somma degli agoli delle facce è miore strettamete di 60. Se le facce del poliedro soo triagoli equilateri, l agolo di ogi faccia è di 60, quidi si possoo avere agoloidi di tre facce (si ottiee il tetraedo), di quattro facce (si ottiee l ottaedro), di cique facce (si ottiee l icosaedro) ma o di più, perché la loro somma sarebbe maggiore o uguale a 60 e ciò è impossibile per il suddetto teorema. Se le facce del poliedro regolare soo quadrati, l agolo di ogi faccia è di 90, quidi si può avere solo l agoloide di tre facce (si ottiee il cubo). Se le facce del poliedro regolare soo petagoi regolari, l agolo di ogi faccia è di 08, quidi si può avere l agoloide di tre facce (si ottiee il dodecaedro) ma o di più. Se le facce del poligoo regolare soo esagoi regolari, l agolo di ogi faccia è di 0 quidi o si possoo avere poliedri relativi perché la somma degli agoli di tre facce è 60 il che è impossibile. Aalogamete o è possibile costruire poliedri regolari aveti per facce poligoi regolari co più di sei lati. 9 Zaichelli Editore, 006

10 Nella figura è rappresetato il foglio di carta ABCD co area di stampa A B C D. Posto AB, BC, risulta: A B 8, B C 4. Impoiamo che l area di stampa sia 50 cm ; risulta allora: ( 8)( 4) Figura. Pertato la superficie del foglio vale: Area(ABCD) Tale area è fuzioe di. La fuzioe da miimizzare è quidi: A() A () + 0 Calcoliamo la derivata prima e studiamo il suo sego. ma A() (8 8)( 8) (8 4 ) A () 4( )( 8). ( 8) ( 8) Dalla figura 4, risulta che l area è miima per 8 e i tal caso vale 9. Il foglio di carta di superficie miima ha dimesioi 8 cm e 9 cm. cm cm A D B A' B' D' C' C 4 cm 4 cm mi + + Figura 4. 4 Si cosideri u cubo iscritto i ua circofereza. Idicato co l il lato del cubo, applicado il teorema di Pitagora al triagolo rettagolo DAG e al triagolo CDG risulta: AG AD DG AD DC CG AD. E H F G Posto AD l, AG m, si trova: l l m. Il volume del cubo iscritto è: V m m. 7 9 A D B C Poiché m 000 l, allora: V 000 9,45 l. 9 Figura 5. 5 Lo sviluppo della poteza -esima di u biomio si può otteere co la formula del biomio di Newto: (a b) k b k k 0 a a b b. ak 0 0 Zaichelli Editore, 006

11 La somma dei coefficieti dello sviluppo della poteza -esima del biomio si ottiee poedo a e b : ( ). Si ha quidi: Per k 0 l equazioe diveta 0 che è impossibile; si può quidi dividere per k 0 e diveta: cos 5k, k A = che (co le limitazioi espresse i radiati) equivale al sistema: cos 5k k 4 π 4 π B π 4 π = cos π Risolviamo il sistema graficamete (figura 6). Si trova: A cos 6 5k k 4( 0) ; k 97 Figura 6. B 0 k 5. Pertato l equazioe ammette ua sola soluzioe per: 5 k 4( 0) La fuzioe è poliomiale, quidi è cotiua ell itervallo chiuso [0; ] e derivabile ell itervallo aperto ]0; [. Pertato verifica le ipotesi del teorema di Lagrage. Calcoliamo: f () 4, f (0) 0, f (). Sostituiamo ella formula f (b ) f (a) f () e otteiamo: b a Risolviamo l equazioe: 4 0 4, Zaichelli Editore, 006

12 quidi oppure. Ne cosegue che poiché itero all itervallo [0; ], metre, poiché è u estremo dell itervallo, o soddisfa il teorema di Lagrage. 8 9 La fuzioe f () tg o è cotiua ell itervallo I perché o è defiita per (i cui preseta ua discotiuità di secoda specie). Quidi o è applicabile il teorema di esisteza degli zeri, i cui u ipotesi esseziale è la cotiuità della fuzioe i ogi puto dell itervallo chiuso e limitato. Pertato o c è cotraddizioe. Ua fuzioe reale f, diversa da zero i ogi puto del suo campo di esisteza, che soddisfa la codizioe f ()f () è la fuzioe espoeziale f () ke, co k reale. Impoedo la codizioe f (0), risulta: k e f () e, R. Qualora si abbiao competeze sulle equazioi differeziali, si può risolvere il problema cosiderado d l equazioe. d Separiamo le variabili: d d l c ke co k reale. Impoedo la codizioe (0), risulta e. 0 La derivata prima della fuzioe è: f () a cos b se che deve aullarsi per 4 per la codizioe ecessaria di estremo relativo, per cui: f 4 a b 0. Ioltre per la fuzioe deve valere : f a b. Mettedo a sistema etrambe le codizioi trovate, risulta: a b 0 a b a b b b a b La fuzioe diveta quidi: f () se cos. Co il metodo dell agolo aggiuto, si può scrivere: f () se cos se 6. che ha come periodo T. Zaichelli Editore, 006

13 Per esercitarti acora sugli argometi trattati el Svolgi il Problema Problema 8 pag. V 07 Problema 84 pag. V 08 Problema 88 pag. V 08 Problema Esercizio 79 pag. N 9 Problema pag. W 64 (puti a, b) Esercizio 500 pag. V 77 Esercizio pag. W 8 Problema 6 pag. W 40 (puto a) Quesito Problema pag. S 78 Quesito Quesito pag. 4 Quesito pag. 4 Quesito Esercizio 8 pag. V 07 Esercizio 9 pag. V 08 Quesito 4 Quesito 9 pag. W 7 Esercizio 84 pag. 80 Quesito 5 Quesito 4 pag. 40 Quesito 9 pag. 40 Quesito 6 Esercizio 676 pag. Q 8 Esercizio 678 pag. Q 8 Quesito 7 Esercizio 59 pag. V 9 Quesito 8 pag. V 6 Problema 6 pag. V 7 (puto c) Quesito 8 Esercizio 6 pag. U 96 Quesito 0 pag. U 08 (puto a) Quesito 9 Esercizio 45 pag. V 45 (secodo caso) Quesito 0 Esercizio 0 pag. V 94 Esercizio pag. V 94 Zaichelli Editore, 006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x. ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi. Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.

Dettagli

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3.

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3. Corsi di Laurea i Igegeria Edile e Architettura Prova scritta di Aalisi Matematica del 6// ) Mostrare che + si( ) cos () si( ) log(( + ) / ) = 3. Possibile soluzioe: Cosiderado dapprima il deomiatore otiamo

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

Teorema 13. Se una sere converge assolutamente, allora converge:

Teorema 13. Se una sere converge assolutamente, allora converge: Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 03: Riferimeti: R.Adams, Calcolo Differeziale.- Si cosiglia vivamete di fare gli esercizi del testo. Covergeza assoluta e

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale. Corso di laurea i Matematica Corso di Aalisi Matematica -2 Dott.ssa Sadra Lucete Fuzioi poteza ed espoeziale. Teorema. Teorema di esisteza della radice -esima. Sia N. Per ogi a R + esiste uo ed u solo

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

Serie numeriche: esercizi svolti

Serie numeriche: esercizi svolti Serie umeriche: esercizi svolti Gli esercizi cotrassegati co il simbolo * presetao u grado di difficoltà maggiore. Esercizio. Dopo aver verificato la covergeza, calcolare la somma delle segueti serie:

Dettagli

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

SERIE NUMERICHE Esercizi risolti. 2 b) n=1. n n 2 +n

SERIE NUMERICHE Esercizi risolti. 2 b) n=1. n n 2 +n SERIE NUMERICHE Esercizi risolti. Applicado la defiizioe di covergeza di ua serie stabilire il carattere delle segueti serie, e, i caso di covergeza, trovare la somma: = + b) = + +. Verificare utilizzado

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

Limiti di successioni

Limiti di successioni Argometo 3s Limiti di successioi Ua successioe {a : N} è ua fuzioe defiita sull isieme N deiumeriaturaliavalori reali: essa verrà el seguito idicata più brevemeteco{a } a èdettotermie geerale della successioe

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE LORENZO BRASCO. Teoremi di Cesaro Teorema di Stolz-Cesaro. Siao {a } N e {b } N due successioi umeriche, co {b } N strettamete positiva, strettamete crescete e ilitata. Se esiste

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie umeriche e serie di poteze Sommare u umero fiito di umeri reali è seza dubbio u operazioe che o può riservare molte sorprese Cosa succede però se e sommiamo u umero ifiito? Prima di dare delle defiizioi

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

Successioni ricorsive di numeri

Successioni ricorsive di numeri Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

Successioni. Capitolo 2. 2.1 Definizione

Successioni. Capitolo 2. 2.1 Definizione Capitolo 2 Successioi 2.1 Defiizioe Ua prima descrizioe, più ituitiva che rigorosa, di quel che itediamo per successioe cosiste i: Ua successioe è ua lista ordiata di oggetti, avete u primo ma o u ultimo

Dettagli

II-9 Successioni e serie

II-9 Successioni e serie SUCCESSIONI II-9 Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

Interesse e formule relative.

Interesse e formule relative. Elisa Battistoi, Adrea Frozetti Collado Iteresse e formule relative Esercizio Determiare quale somma sarà dispoibile fra 7 ai ivestedo oggi 0000 ad u tasso auale semplice del 5% Soluzioe Il diagramma del

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

Equazioni e contrazioni: un punto fisso //

Equazioni e contrazioni: un punto fisso // * 010 Equazioi e cotrazioi: u puto fisso // Nicola Chiriao Docete al Liceo Scietifico L. Siciliai di Catazaro [Nicola Chiriao] Nicola Chiriao è docete di Matematica e Fisica al Liceo Scietifico Siciliai

Dettagli

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30)

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30) Copyright 2005 Esselibri S.p.A. Via F. Russo, 33/D 8023 Napoli Azieda co sistema qualità certificato ISO 400: 2003 Tutti i diritti riservati. È vietata la riproduzioe ache parziale e co qualsiasi mezzo

Dettagli

Lezione n 19-20. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott. Carrabs

Lezione n 19-20. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott. Carrabs Lezioi di Riera Operativa Corso di Laurea i Iformatia Uiversità di Salero Lezioe 9- - Problema del trasporto Prof. Cerulli Dott. Carrabs Problema del Flusso a osto Miimo FORMULAZIONE mi ( i, ) A o violi

Dettagli

3.1 Il principio di inclusione-esclusione

3.1 Il principio di inclusione-esclusione Capitolo 3 Calcolo combiatorio 3.1 Il pricipio di iclusioe-esclusioe Il calcolo combiatorio prede i cosiderazioe degli isiemi fiiti particolari e e cota il umero di elemeti. Questo può dar luogo ad iteressati

Dettagli

ESERCIZI SULLE SERIE NUMERICHE

ESERCIZI SULLE SERIE NUMERICHE ESERCIZI SULLE SERIE NUMERICHE a cura di Michele Scaglia RICHIAMI TEORICI Richiamiamo brevemete i pricipali risultati riguardati le serie umeriche. Teorema (Codizioe Necessaria per la Covergeza) Sia a

Dettagli

Progressioni aritmetiche

Progressioni aritmetiche Progressioi aritmetiche Comiciamo co due esempi: Esempio Cosideriamo la successioe di umeri:, 7,, 5, 9, +4 +4 +4 +4 +4 La successioe è tale che si passa da u termie al successivo aggiugedo sempre +4. Si

Dettagli

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R.

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R. 70 Capitolo Terzo i cui α i rappreseta la rata di ammortameto del debito di u capitale uitario. Si tratta di risolvere u equazioe lieare ell icogita R. SIANO NOTI IL MONTANTE IL TASSO E IL NUMERO DELLE

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

Calcolo Combinatorio (vers. 1/10/2014)

Calcolo Combinatorio (vers. 1/10/2014) Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio

Dettagli

19 31 43 55 67 79 91 103 870,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5

19 31 43 55 67 79 91 103 870,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5 Il 16 dicembre 015 ero a Napoli. Ad u agolo di Piazza Date mi soo imbattuto el "matematico di strada", come egli si defiisce, Giuseppe Poloe immerso el suo armametario di tabelle di umeri. Il geiale persoaggio

Dettagli

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015 Corso di Elemeti di Impiati e mahie elettriche Ao Aademico 014-015 Esercizio.1 U trasformatore moofase ha i segueti dati di targa: Poteza omiale A =10 kva Tesioe omiale V 1 :V =480:10 V Frequeza omiale

Dettagli

8. Successioni di numeri reali

8. Successioni di numeri reali 8. Successioi di umeri reali 8. Progressioi umeriche Prerequisiti I umeri aturali e le operazioi su di essi Cocetto di applicazioe Cocetto di isieme ifiito Isiemi umerabili Obiettivi Compredere il cocetto

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

, l'insieme dei numeri interi relativi: 0, 1, 1, 2, 2, infinito. m dove m e n sono elementi di. Le frazioni hanno tre

, l'insieme dei numeri interi relativi: 0, 1, 1, 2, 2, infinito. m dove m e n sono elementi di. Le frazioni hanno tre Uiversità Boccoi. Ao accademico 00 00 Corso di Matematica Geerale Prof. Fabrizio Iozzi email: fabrizio.iozzi@ui-boccoi.it Lezioi / Gli isiemi umerici Gli isiemi umerici co i quali lavoreremo soo:, l'isieme

Dettagli

STIME E LORO AFFIDABILITA

STIME E LORO AFFIDABILITA TIME E LORO AFFIDABILITA L idea chiave su cui si basa l aalisi statistica è che si ossoo eseguire osservaioi su u camioe di soggetti e che da questo si ossoo comiere iferee sulla oolaioe raresetata da

Dettagli

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2 Uiversità degli Studi di Bergamo - Corsi di laurea i Igegeria Edile e Tessile Idici di posizioe e variabilità Esercitazioe 2 1. Nella seguete tabella si riporta la distribuzioe di frequeza del cosumo i

Dettagli

( ) n > n. Ora osserviamo che 2 1. ( ) è vera. ( ) una proposizione riguardante il numero intero n. Se avviene che:

( ) n > n. Ora osserviamo che 2 1. ( ) è vera. ( ) una proposizione riguardante il numero intero n. Se avviene che: ARITMETICA 1 U importate ramo della matematica è l aritmetica, o teoria dei umeri, qui itesi come umeri iteri. Ci si poe il problema di stabilire se certe relazioi possao essere soddisfatte da umeri iteri,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI Apputi di Statistica Sociale Uiversità ore di Ea LE MISURE DI VARIABILITÀ DI CARATTERI QUATITATIVI La variabilità di u isieme di osservazioi attiee all attitudie delle variabili studiate ad assumere modalità

Dettagli

CAPITOLO 5 TEORIA DELLA SIMILITUDINE

CAPITOLO 5 TEORIA DELLA SIMILITUDINE CAPITOLO 5 TEORIA DELLA SIMILITUDINE 5.. Itroduzioe La Teoria della Similitudie ha pricipalmete due utilizzi: Estedere i risultati otteuti testado ua sigola macchia ad altre codizioi operative o a ua famiglia

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1 Prova scritta di Statistica per Biotecologie 9 Aprile Programma Cristallo. Uo dei processi di purificazioe impiegati i ua certa sostaza chimica prevede di metterla i soluzioe e di filtrarla co ua resia

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

Il candidato risolva uno dei due problemi e risponda a 5 dei 10 quesiti del questionario.

Il candidato risolva uno dei due problemi e risponda a 5 dei 10 quesiti del questionario. ARTICOLO Archimede 4 7 ESAME DI STATO 7 SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI DI ORDINAMENTO Il cadidato risolva uo dei due problemi e rispoda a 5 dei quesiti del questioario. PROBLEMA Si cosiderio

Dettagli

Serie numeriche. Lorenzo Pisani Facoltà di Scienze Mm.Ff.Nn. A.A. 2007/08

Serie numeriche. Lorenzo Pisani Facoltà di Scienze Mm.Ff.Nn. A.A. 2007/08 Serie umeriche Lorezo Pisai Facoltà di Scieze Mm.Ff.N. A.A. 2007/08 Il problema di sommare i iti addedi è uo dei problemi classici dell aalisi matematica. Azi si tratta di u problema che ell atichità ha

Dettagli

Capitolo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE

Capitolo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE Capitoo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE 3.1 LA TEORIA DI WEIBULL I comportameto meccaico dee fibre di giestra e di juta è stato caratterizzato mediate o studio dea resisteza a trazioe dee fibre

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia) Massimo A. De Fracesco Uiversità di Siea December 18, 2013 1 ichiami su utilità attesa e avversioe al rischio Prima di cosiderare il

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

Soluzione del tema d esame di matematica, A.S. 2005/2006

Soluzione del tema d esame di matematica, A.S. 2005/2006 Soluzione del tema d esame di matematica, A.S. 2005/2006 Niccolò Desenzani Sun-ra J.N. Mosconi 22 giugno 2006 Problema. Indicando con A e B i lati del rettangolo, il perimetro è 2A + 2B = λ mentre l area

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

COLLEZIONE DI QUESITI

COLLEZIONE DI QUESITI versioe del 8// COLLEZIONE DI QUESITI M. SAVARESE PNI suppl. Pascal equazioe di II grado INFOR Cosiderata l equazioe i : a + b + c dove a, b, c soo umeri reali qualsiasi, co a, scrivere u algoritmo che

Dettagli

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA Corso di Laurea i Ig Edile Politecico di Bari AA 2008-2009 Prof ssa Letizia Bruetti DISPENSE DEL CORSO DI GEOMETRIA 2 Idice Spazi vettoriali Cei sulle strutture algebriche 4 2 Defiizioe di spazio vettoriale

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PROBLEMA Sia ABCD u quadrato di lato, P u puto di

Dettagli

1 Metodo della massima verosimiglianza

1 Metodo della massima verosimiglianza Metodo della massima verosimigliaza Estraedo u campioe costituito da variabili casuali X i i.i.d. da ua popolazioe X co fuzioe di probabilità/desità f(x, θ), si costruisce la fuzioe di verosimigliaza che

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia per maager. Prima versioe, marzo 2013; versioe aggiorata, marzo 2014) Massimo A. De Fracesco Uiversità di Siea March 14, 2014 1 Prezzo

Dettagli

ESAME DI STATO 2006, SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI SCIENTIFICI DI ORDINAMENTO

ESAME DI STATO 2006, SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI SCIENTIFICI DI ORDINAMENTO 4 006 Archimede ESAME DI STATO 006, SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI SCIENTIFICI DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario.

Dettagli

2.6 Paradosso di Zenone e la somma di infiniti addendi

2.6 Paradosso di Zenone e la somma di infiniti addendi .6 Paradosso di Zeoe e la somma di ifiiti addedi Si potrebbe pesare che la matematica, la braca del sapere co la più solida tradizioe di precisioe e cosisteza, sia la più immue dai paradossi. La sua storia

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

Principi base di Ingegneria della Sicurezza

Principi base di Ingegneria della Sicurezza Pricipi base di Igegeria della Sicurezza L aalisi delle codizioi di Affidabilità del sistema si articola i: (i) idetificazioe degli sceari icidetali di riferimeto (Eveti critici Iiziatori - EI) per il

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag.

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag. SERIE NUMERICHE (Cosimo De Mitri. Defiizioe, esempi e primi risultati... pag.. Criteri per serie a termii positivi... pag. 4 3. Covergeza assoluta e criteri per serie a termii di sego qualsiasi... pag.

Dettagli

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE CAPITOLO SETTIMO GLI INDICI DI FORMA SOMMARIO: 1. Itroduzioe. - 2. Asimmetria. - 3. Grafico a scatola (box plot). - 4. Curtosi. - Questioario. 1. INTRODUZIONE Dopo aver aalizzato gli idici di posizioe

Dettagli

1. Considerazioni generali

1. Considerazioni generali . osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia

Dettagli

Navigazione tramite numeri e divertimento

Navigazione tramite numeri e divertimento 60 Chapter 6 Navigazioe tramite umeri e divertimeto Vladimir Georgiev Itroduzioe La ovità pricipale el ostro approccio e l avviciameto del lavoro dei ostri Lab ai problemi della vita reale tramite la parte

Dettagli

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0 CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()

Dettagli

Dispense di Analisi Matematica II

Dispense di Analisi Matematica II Dispese di Aalisi Matematica II Domeico Cadeloro (Prima Parte) Itroduzioe Queste dispese trattao la prima parte del corso di Aalisi Matematica II. Nel primo capitolo si discutoo gli itegrali geeralizzati

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli