Generatore di Forza Elettromotrice

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Generatore di Forza Elettromotrice"

Transcript

1 CIRCUITI ELETTRICI

2 Corrente Elettrica 1. La corrente elettrica è un flusso ordinato di carica elettrica. 2. L intensità di corrente elettrica (i) è definita come la quantità di carica che attraversa una sezione nell unità di tempo: i = Q/t 3. L unità di misura S.I. è il coulomb al secondo (C/s) che prende il nome speciale di ampere (A) e che rappresenta l unità di base elettrica nel S.I. 4. Il suo verso è fissato convenzionalmente come quello percorso dai portatori di carica positiva. Una corrente elettrica viene generata mediante campi elettrici (e quindi ddp): 1. attraverso un ampolla in cui è stato fatto un vuoto, nei tubi catodici e nei tubi radiogeni (generatori di raggi X) 2. Nelle soluzioni elettrolitiche 3. Nei conduttori, entro cui le cariche sono libere di muoversi, in condizioni diverse dall equilibrio elettrostatico (quindi in presenza di un generatore elettrico)

3 Generatore di Forza Elettromotrice Perché gli stessi elettroni compiano un percorso chiuso (circuito), o comunque in modo continuativo, è necessario lavoro per trasportare (riportare) le cariche positive da potenziali negativi a potenziali positivi (viceversa per le cariche negative). Il lavoro è di tipo elettrico (compiuto cioè da una forza elettrica) e quindi direttamente proporzionale alla quantità di carica trasportata, inoltre è svolto da un dispositivo detto GENERATORE. Si definisce FORZA ELETTROMOTRICE (f.e.m.) del generatore il lavoro svolto per trasportare l unità di carica positiva dal terminale (polo) negativo a quello positivo dello stesso generatore. L unità di misura S.I. della f.e.m. è il J/C che viene detto volt (V), in omaggio ad Alessandro Volta, inventore della pila elettrica. Un generatore di f.e.m. rende possibile generare correnti elettriche nei circuiti elettrici.

4 Regimi della Corrente Elettrica A seconda del tipo di generatore elettrico, il REGIME della corrente elettrica in un circuito può essere: continuo (d.c.) se la corrente non cambia (intensità costante nel tempo) alternato (a.c.) se (i) cambia nel tempo con legge sinusoidale, passando con regolarità da un verso a quello opposto con una certa frequenza f,spesso rappresentata dalla frequenza angolare o pulsazione ω (ω = 2πf). La frequenza della c.a. industriale è 50 Hz in Europa e 60 Hz in America variabile (un SEGNALE ELETTRICO varia nel tempo, la sua forma può quindi contenere informazione). Ogni segnale elettrico (complesso) può essere scomposto in opportuni segnali sinusoidali (teorema di Fourier)

5 Prima legge di Ohm Per un conduttore elettrico in condizioni ideali (ohmico) vale la legge di Ohm: la tensione elettrica ai suoi capi e la corrente elettrica che l attraversa sono direttamente proporzionali. Il rapporto V/i è quindi una caratteristica del conduttore che non cambia né al variare di V né di i. Questa caratteristica viene chiamata RESISTENZA ELETTRICA, infatti definisce quanti volt sono necessari per ottenere un ampere di corrente in quel conduttore. L unità di misura volt /ampere (V/A) prende il nome speciale di ohm (Ω). V/i =: R Un conduttore con una resistenza di 5 Ω necessita di 5 V per ottenere 1 A.

6 Seconda legge di Ohm Inoltre, la resistenza elettrica di un conduttore dipende linearmente dalla lunghezza del conduttore (l) e (inversamente) dall ampiezza della sua sezione (A). Il rapporto tra resistenza e lunghezza per unità di ampiezza di sezione, è una caratteristica del materiale di cui è composto il conduttore che prende il nome di RESISTIVITA ρ del materiale. R =ρ l/a Ciò suddivide i materiali in conduttori, isolanti e semiconduttori. La cute presenta resistività molto differenti a seconda che sia secca o bagnata. La resistività dipende anche da altri parametri, tra cui la temperatura del conduttore (termometri a resistenza elettrica)

7 Effetto Joule L energia elettrica degli elettroni in un conduttore viene quindi dissipata (tramite gli urti con il reticolo cristallino) in calore. Tale fenomeno, chiamato effetto joule, è utilizzato in alcune applicazioni come le lampadine a incandescenza, le stufette elettriche e in tutti i dispositivi che producono calore elettricamente. Altre volte costituisce un effetto indesiderato: sia perché l energia dissipata è degradata e non può essere integralmente recuperata, sia perché il calore può essere causa di incendio:

8 Effetto Joule Si può facilmente derivare la formula che esprime la relazione tra la potenza elettrica dissipata e la corrente elettrica nell effetto joule: Si consideri un conduttore sottoposto a tensione elettrica e, quindi, percorso da corrente. L energia perduta per unità di tempo (la potenza dissipata), si trova considerando che nell unità di tempo una carica pari a i è passata attraverso una tensione V. L energia perduta (convertita in calore) è quindi pari a i per V. P (eff. Joule) = V I Si ricorda che la potenza è espressa in watt Certe volte conviene esprimere la relazione precedente in termini di sola corrente: P = i 2 R da cui risulta chiaro che gli elettrodomestici in cui circola molta corrente sono (a parità di tensione applicata) quelli che consumano di più. Inoltre, dato che la resistenza non può ridursi oltre un certo valore, si capisce il perché l energia elettrica viene trasportata dalla centrale alle città mediante cavi di alta tensione (fino a 380 kv per le linee di trasmissione): a una grande tensione, infatti, può essere corrisposta una piccola corrente, e,quindi, una piccola potenza dissipata i 2 R) Analogamente, la potenza dissipata può essere espressa in funzione della tensione elettrica: P = V 2 / R

9 Circuiti Elettrici La corrente è utilizzata nei circuiti elettrici, dove il suo valore varia ramo per ramo secondo un progetto specifico che ne assicura il funzionamento. Un circuito elettrico è costituito da una serie di DISPOSITIVI ELETTRICI (vedi oltre) collegati tra loro da un conduttore (un filo di rame, una sottile lamina di rame nei circuiti stampati, un cavo, ecc.).

10 Bipoli elettrici I dispositivi elettrici possono essere considerati BIPOLI caratterizzati da un polo d ingresso (della corrente) e uno di uscita. Tra i poli, posti in tensione, circola la corrente che attraversa il bipolo. Se la relazione tra tensione e corrente è semplice (lineare), il dispositivo (bipolo) è detto lineare. Si distinguono dispositivi ATTIVI E PASSIVI: i primi generano tensione, ovvero energia elettrica, consumandone di altro tipo (sono GENERATORI o sorgenti di f.e.m. le batterie che convertono energia chimica in elettrica e le DINAMO o gli ALTERNATORI che generano energia elettrica da energia meccanica) i secondi, viceversa, determinano cadute di tensione, convertendo energia elettrica in altro tipo. Sono dispositivi passivi lineari: il resistore (energia elettrica viene dissipata in calore); il condensatore (l energia elettrica è immagazzinata come energia di campo elettrico) e l induttore (l energia elettrica è immagazzinata come energia del campo magnetico). i u

11 Collegamenti I bipoli possono essere collegati in SERIE quando l uscita del primo è collegata all ingresso del secondo o in PARALLELO, se ingresso e uscita del primo dispositivo sono collegati a ingresso e uscita del secondo dispositivo. Nel caso di collegamento in serie, quindi, i due dispositivi sono attraversati dalla stessa corrente mentre la tensione ai capi del collegamento è pari alla somma delle tensioni ai capi di ogni bipolo; in un collegamento in parallelo vale il contrario.

12 Generatore di fem Tenendo conto della (piccola) resistenza interna del generatore (r), la relazione tra tensione ai capi del generatore (Vfem) e intensità di corrente che lo attraversa (i) è la seguente: V fem = ±fem - r i dove fem è la forza elettromotrice del generatore (generalmente indicata) e il segno positivo o negativo va scelto a seconda che, nel verso di percorrenza scelto per la corrente, si attraversa il generatore rispettivamente dall elettrodo (terminale) (-) a quello (+) oppure viceversa. Da tutto ciò segue che la fem di un generatore è pari alla tensione ai suoi capi solo se può essere trascurato il termine (r i) (es. a circuito aperto, cioè se i=0) + - Si mostra facilmente che per una serie di generatori: Vserie = Vfem

13 Resistore Un resistore è un dispositivo (passivo, lineare, localizzato) formato da un conduttore la cui resistenza è relativamente elevata (tanto da poter trascurare la resistenza elettrica del filo conduttore di collegamento del circuito) E già stato detto che attraversando un resistore (un conduttore) nel verso scelto per la corrente, la caduta (da cui il segno meno) di potenziale è data da V R = - R i Che esprime la relazione tra V e i per un resistore L energia elettrica viene dissipata dal resistore, sottoforma di calore, con una potenza (v. legge di Joule): P = I 2 r

14 Resistenza Equivalente Si dimostra facilmente (dalla stessa definizione, ma anche applicando il metodo di Kirchoff) che: Rserie = R (la resistenza della serie è maggiore di ogni resistenza componente) 1/Rparallelo = 1/R (la resistenza del parallelo è minore di ogni resistenza componente, e in un parallelo di N resistenze uguali, la resistenza totale è pari a 1/N delle resistenze componenti )

15 Carica elettrostatica nei conduttori e nei condensatori Il potenziale di un conduttore elettricamente carico (un conduttore in equilibrio elettrostatico è un sistema equipotenziale) è direttamente proporzionale alla quantità di carica accumulata La carica elettrica accumulata per unità di potenziale elettrico del conduttore è chiamata CAPACITA ELETTRICA del conduttore e dipende dalle sue dimensioni e dalla sua forma Q Conduttore /V Cconduttore = C Un dispositivo finalizzato all accumulo di carica elettrica (+Q e Q) è Il CONDENSATORE, costituito da due armature metalliche contrapposte (e divise da un dielettrico) tra le quali è stabilita una ddp. Il condensatore può essere quindi utilizzato come (una potente) riserva di energia elettrica da utilizzarsi al momento opportuno e che si manifesta con una scarica (anche rapida e molto intensa): Applicazioni: memorie accessorie e temporanee nei PC, flash, Defibrillatori

16 Condensatore elettrico In un condensatore elettrico, la tensione applicata tra le armature è direttamente proporzionale alla quantità di carica accumulata nelle stesse (uguale e contraria nelle due armature), ma diversa da condensatore a condensatore. Il rapporto tra quantità di carica accumulata e tensione alle armature è una caratteristica del condensatore che prende il nome di CAPACITA ELETTRICA del condensatore, cioè: Q/V C = C l unità S.I. è il coulomb su volt (C/V) che prende il nome di farad (F); il valore dei condensatori nei circuiti più comuni va da pochi pf ai μf In un condensatore a facce piane, la capacità elettrica dipende direttamente dall area delle facce delle armature, inversamente dalla loro distanza, e dalla costante elettrica del mezzo interposto (es. mica o carta) C = A/d

17 Capacità Equivalente Si dimostra facilmente che un sistema di più condensatori collegati in parallelo o in serie ha una capacità complessiva (o equivalente, o totale) data rispettivamente dalle relazioni: 1/Cs = 1/C; Cp = C Si nota che la capacità di in una serie di N condensatori (come per le resistenze in parallelo): 1. diminuisce con il numero di condensatori collegati; 2. è più piccola di quella di ciascun condensatore componente; 3. nel caso che le capacità siano tutte uguali, la capacità complessiva è pari a 1/N della capacità di ognuno.

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2 COENTE ELETTICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V isolati tra loro V > V 1 V V 1 Li colleghiamo mediante un conduttore Fase transitoria: sotto

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica Corrente elettrica LA CORRENTE ELETTRICA CONTINUA Cos è la corrente elettrica? La corrente elettrica è un flusso di elettroni che si spostano dentro un conduttore dal polo negativo verso il polo positivo

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

approfondimento Corrente elettrica e circuiti in corrente continua

approfondimento Corrente elettrica e circuiti in corrente continua approfondimento Corrente elettrica e circuiti in corrente continua Corrente elettrica e forza elettromotrice La conduzione nei metalli: Resistenza e legge di Ohm Energia e potenza nei circuiti elettrici

Dettagli

Generatore di forza elettromotrice f.e.m.

Generatore di forza elettromotrice f.e.m. Generatore di forza elettromotrice f.e.m. Un dispositivo che mantiene una differenza di potenziale tra una coppia di terminali batterie generatori elettrici celle solari termopile celle a combustibile

Dettagli

Corrente elettrica stazionaria

Corrente elettrica stazionaria Corrente elettrica stazionaria Negli atomi di un metallo gli elettroni periferici non si legano ai singoli atomi, ma sono liberi di muoversi nel reticolo formato dagli ioni positivi e sono detti elettroni

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

Corrente Elettrica. dq dt

Corrente Elettrica. dq dt Corrente Elettrica Finora abbiamo considerato le cariche elettriche fisse: Elettrostatica Consideriamole adesso in movimento! La carica in moto forma una corrente elettrica. L intensità di corrente è uguale

Dettagli

Carica positiva e carica negativa

Carica positiva e carica negativa Elettrostatica Fin dal 600 a.c. si erano studiati alcuni effetti prodotti dallo sfregamento di una resina fossile, l ambra (dal cui nome in greco electron deriva il termine elettricità) con alcuni tipi

Dettagli

Corrente elettrica. La disputa Galvani - Volta

Corrente elettrica. La disputa Galvani - Volta Corrente elettrica La disputa Galvani - Volta Galvani scopre che due bastoncini di metalli diversi, in una rana, ne fanno contrarre i muscoli Lo interpreta come energia vitale Volta attribuisce il fenomeno

Dettagli

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Induzione magnetica INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Che cos è l induzione magnetica? Si parla di induzione magnetica quando si misura una intensità di corrente diversa da zero che attraversa

Dettagli

Campo elettrico per una carica puntiforme

Campo elettrico per una carica puntiforme Campo elettrico per una carica puntiforme 1 Linee di Campo elettrico A. Pastore Fisica con Elementi di Matematica (O-Z) 2 Esercizio Siano date tre cariche puntiformi positive uguali, fisse nei vertici

Dettagli

La corrente elettrica

La corrente elettrica Lampadina Ferro da stiro Altoparlante Moto di cariche elettrice Nei metalli i portatori di carica sono gli elettroni Agitazione termica - moto caotico velocità media 10 5 m/s Non costituiscono una corrente

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Esercizio 1 (9 punti): Una distribuzione di carica è costituita da un guscio sferico

Dettagli

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA Evidenza dell interazione magnetica; sorgenti delle azioni magnetiche; forze tra poli magnetici, il campo magnetico Forza magnetica su una carica in moto; particella

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa si attraggono.

Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa si attraggono. 2012 11 08 pagina 1 Carica elettrica Esistono cariche elettriche di due tipi: positiva e negativa. Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa

Dettagli

funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/

funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/ mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/ funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI Struttura dell'atomo (nucleo, protoni, neutroni, elettroni); cariche elettriche elementari (elettrone,

Dettagli

Analogia tra il circuito elettrico e il circuito idraulico

Analogia tra il circuito elettrico e il circuito idraulico UNIVERSITÁ DEGLI STUDI DELL AQUILA Scuola di Specializzazione per la Formazione degli Insegnanti nella Scuola Secondaria Analogia tra il circuito elettrico e il circuito idraulico Prof. Umberto Buontempo

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

RIASSUNTO DI FISICA 3 a LICEO

RIASSUNTO DI FISICA 3 a LICEO RIASSUNTO DI FISICA 3 a LICEO ELETTROLOGIA 1) CONCETTI FONDAMENTALI Cariche elettriche: cariche elettriche dello stesso segno si respingono e cariche elettriche di segno opposto si attraggono. Conduttore:

Dettagli

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Come detto precedentemente la legge di ohm lega la tensione e la corrente con un altro parametro detto "resistenza". Di seguito sono presenti

Dettagli

CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007

CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007 CORRENTE ELETTRICA INTRODUZIONE Dopo lo studio dell elettrostatica, nella quale abbiamo descritto distribuzioni e sistemi di cariche elettriche in quiete, passiamo allo studio di fenomeni nei quali le

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

Q t CORRENTI ELETTRICHE

Q t CORRENTI ELETTRICHE CORRENTI ELETTRICHE La corrente elettrica è un flusso di particelle cariche. L intensità di una corrente è definita come la quantità di carica netta che attraversa nell unità di tempo una superficie: I

Dettagli

Elettricità e magnetismo

Elettricità e magnetismo E1 Cos'è l'elettricità La carica elettrica è una proprietà delle particelle elementari (protoni e elettroni) che formano l'atomo. I protoni hanno carica elettrica positiva. Gli elettroni hanno carica elettrica

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

La corrente e le leggi di Ohm

La corrente e le leggi di Ohm La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.

Dettagli

isolanti e conduttori

isolanti e conduttori 1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

[simbolo della grandezza elettrica] SIMBOLO ELETTRICO E FOTO GRANDEZZA ELETTRICA NOME CATEGORIA UNITA DI MISURA

[simbolo della grandezza elettrica] SIMBOLO ELETTRICO E FOTO GRANDEZZA ELETTRICA NOME CATEGORIA UNITA DI MISURA NOME SIMBOLO ELETTRICO E FOTO CATEGORIA GRANDEZZA ELETTRICA [simbolo della grandezza elettrica] UNITA DI MISURA Accumulatore, batteria, pila E un in tempo; per specificare questa categoria si parla comunque

Dettagli

Michele D'Amico (premiere) 6 May 2012

Michele D'Amico (premiere) 6 May 2012 Michele D'Amico (premiere) CORRENTE ELETTRICA 6 May 2012 Introduzione La corrente elettrica può essere definita come il movimento ordinato di cariche elettriche, dove per convenzione si stabilisce la direzione

Dettagli

La corrente e le leggi di Ohm

La corrente e le leggi di Ohm La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.

Dettagli

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

Fisica II. 4 Esercitazioni

Fisica II. 4 Esercitazioni Fisica Esercizi svolti Esercizio 4. n un materiale isolante si ricava una semisfera di raggio r m, sulla cui superficie si deposita uno strato conduttore, che viene riempita di un liquido con ρ 5 0 0 Ωm.

Dettagli

Tesina di scienze. L Elettricità. Le forze elettriche

Tesina di scienze. L Elettricità. Le forze elettriche Tesina di scienze L Elettricità Le forze elettriche In natura esistono due forme di elettricità: quella negativa e quella positiva. Queste due energie si attraggono fra loro, mentre gli stessi tipi di

Dettagli

Prova intercorso di Fisica 2 dott. Esposito 27/11/2009

Prova intercorso di Fisica 2 dott. Esposito 27/11/2009 Prova intercorso di Fisica 2 dott. Esposito 27/11/2009 Anno di corso: 1) Una carica puntiforme q=-8.5 10-6 C è posta a distanza R=12 cm da un piano uniformemente carico condensità di carica superficiale

Dettagli

Principi di ingegneria elettrica. Lezione 15 a. Sistemi trifase

Principi di ingegneria elettrica. Lezione 15 a. Sistemi trifase rincipi di ingegneria elettrica Lezione 15 a Sistemi trifase Teorema di Boucherot La potenza attiva assorbita da un bipolo è uguale alla somma aritmetica delle potenze attive assorbite dagli elementi che

Dettagli

LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE

LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE MODULO : Analisi dei circuiti lineari in regime sinusoidale PREMESSA L analisi dei sistemi elettrici lineari, in regime sinusoidale, consente di determinare

Dettagli

Programmazione Modulare

Programmazione Modulare Indirizzo: BIENNIO Programmazione Modulare Disciplina: FISICA Classe: 2 a D Ore settimanali previste: (2 ore Teoria 1 ora Laboratorio) Prerequisiti per l'accesso alla PARTE D: Effetti delle forze. Scomposizione

Dettagli

1. La corrente elettrica

1. La corrente elettrica . Elettrodinamica. La corrente elettrica Finora abbiamo studiato situazioni in cui le cariche elettriche erano ferme. Nell elettrodinamica si studia il moto delle cariche elettriche. Una corrente elettrica

Dettagli

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica Liceo Scientifico G. TARANTINO ALUNNO: Pellicciari Girolamo VG PRIMA LEGGE DI OHM OBIETTIVO: Verificare la Prima leggi di Ohm in un circuito ohmico (o resistore) cioè verificare che l intensità di corrente

Dettagli

Potenza elettrica nei circuiti in regime sinusoidale

Potenza elettrica nei circuiti in regime sinusoidale Per gli Istituti Tecnici Industriali e Professionali Potenza elettrica nei circuiti in regime sinusoidale A cura del Prof. Chirizzi Marco www.elettrone.altervista.org 2010/2011 POTENZA ELETTRICA NEI CIRCUITI

Dettagli

1 di 3 07/06/2010 14.04

1 di 3 07/06/2010 14.04 Principi 1 http://digilander.libero.it/emmepi347/la%20pagina%20di%20elettronic... 1 di 3 07/06/2010 14.04 Community emmepi347 Profilo Blog Video Sito Foto Amici Esplora L'atomo Ogni materiale conosciuto

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il campo magnetico 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz 1 Lezione 1 - Fenomeni magnetici I campi magnetici possono essere

Dettagli

CORRENTE ELETTRICA. φ 1

CORRENTE ELETTRICA. φ 1 COENTE ELETTCA lim t Q/ tdq/dt ntensità di corrente φ φ > φ φ La definizione implica la scelta di un verso positivo della corrente. Per convenzione, il verso positivo della corrente è parallelo al moto

Dettagli

Sistemi Elettrici. Debora Botturi ALTAIR. http://metropolis.sci.univr.it. Debora Botturi. Laboratorio di Sistemi e Segnali

Sistemi Elettrici. Debora Botturi ALTAIR. http://metropolis.sci.univr.it. Debora Botturi. Laboratorio di Sistemi e Segnali Sistemi Elettrici ALTAIR http://metropolis.sci.univr.it Argomenti Osservazioni generali Argomenti Argomenti Osservazioni generali Componenti di base: resistori, sorgenti elettriche, capacitori, induttori

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

Condensatore elettrico

Condensatore elettrico Condensatore elettrico Sistema di conduttori che possiedono cariche uguali ma di segno opposto armature condensatore La presenza di cariche crea d.d.p. V (tensione) fra i due conduttori Condensatore piano

Dettagli

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1 CAPITOLO I CORRENTE ELETTRICA Copyright ISHTAR - Ottobre 2003 1 INDICE CORRENTE ELETTRICA...3 INTENSITÀ DI CORRENTE...4 Carica elettrica...4 LE CORRENTI CONTINUE O STAZIONARIE...5 CARICA ELETTRICA ELEMENTARE...6

Dettagli

Flusso del campo magnetico

Flusso del campo magnetico Lezione 19 Flusso del campo magnetico Il flusso magnetico o flusso di B attraverso una superficie aperta delimitata da un contorno chiuso e dato da Se il contorno chiuso e un circuito, il flusso in questione

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua 1 UNIVERSITÀ DIGENOVA FACOLTÀDISCIENZEM.F.N. LABORATORIO IA Cenni sui circuiti elettrici in corrente continua Anno Accademico 2001 2002 2 Capitolo 1 Richiami sui fenomeni elettrici Esperienze elementari

Dettagli

Elettrostatica. 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici

Elettrostatica. 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici Elettrostatica 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici Prof. Giovanni Ianne 1 L ELETTRIZZAZIONE PER STROFINIO Un

Dettagli

Componenti elettronici. Condensatori

Componenti elettronici. Condensatori Componenti elettronici Condensatori Condensatori DIELETTRICO La proprietà fondamentale del condensatore, di accogliere e di conservare cariche elettriche, prende il nome di capacità. d S C = Q V Q è la

Dettagli

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.)

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.) Macchine elettriche parte Macchine elettriche Generalità Definizioni Molto spesso le forme di energia in natura non sono direttamente utilizzabili, ma occorre fare delle conversioni. Un qualunque sistema

Dettagli

PROGRAMMA DEFINITIVO di Tecnologie Elettrico-Elettroniche e Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZANINELLO LORIS

PROGRAMMA DEFINITIVO di Tecnologie Elettrico-Elettroniche e Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZANINELLO LORIS ISTITUTO VERONESE MARCONI Sede di Cavarzere (VE) PROGRAMMA DEFINITIVO di Tecnologie Elettrico-Elettroniche e Applicazioni Docente: VARAGNOLO GIAMPAOLO Insegnante Tecnico Pratico: ZANINELLO LORIS Classe

Dettagli

Istituto Tecnico dei Trasporti e Logistica Nautico San Giorgio Genova A/S 2012/2013 Programma Didattico Svolto Elettrotecnica ed Elettronica

Istituto Tecnico dei Trasporti e Logistica Nautico San Giorgio Genova A/S 2012/2013 Programma Didattico Svolto Elettrotecnica ed Elettronica Docenti: Coppola Filippo Sergio Sacco Giuseppe Istituto Tecnico dei Trasporti e Logistica Nautico San Giorgio Genova A/S 2012/2013 Programma Didattico Svolto Classe 3A2 Elettrotecnica ed Elettronica Modulo

Dettagli

Fisica Generale - Modulo Fisica II Esercitazione 5 Ingegneria Gestionale-Informatica CARICA E SCARICA DEL CONDENSATORE

Fisica Generale - Modulo Fisica II Esercitazione 5 Ingegneria Gestionale-Informatica CARICA E SCARICA DEL CONDENSATORE AIA E SAIA DEL ONDENSATOE a. Studiare la scarica del condensatore della figura che è connesso I(t) alla resistenza al tempo t=0 quando porta una carica Q(0) = Q 0. Soluzione. Per la relazione di maglia,

Dettagli

Conduzione e Corrente Elettrica

Conduzione e Corrente Elettrica Conduzione e Corrente Elettrica I conduttori (metallici) sono solidi costituiti da atomi disposti in maniera ordinata nello spazio, che hanno perso uno o più elettroni (negativi) che sono liberi dimuoversinello

Dettagli

Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte.

Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte. Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte. Obiettivi generali. L insegnamento di Elettrotecnica, formativo del profilo professionale e propedeutico, deve fornire agli allievi

Dettagli

Storia dei generatori di tensione e della corrente elettrica

Storia dei generatori di tensione e della corrente elettrica Storia dei generatori di tensione e della corrente elettrica Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia 1778 Alessandro Volta, in analogia al potenziale gravitazionale definito

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

Definizione di mutua induzione

Definizione di mutua induzione Mutua induzione Definizione di mutua induzione Una induttanza produce un campo magnetico proporzionale alla corrente che vi scorre. Se le linee di forza di questo campo magnetico intersecano una seconda

Dettagli

Energia e potenza nei circuiti monofase in regime sinusoidale. 1. Analisi degli scambi di energia nel circuito

Energia e potenza nei circuiti monofase in regime sinusoidale. 1. Analisi degli scambi di energia nel circuito Energia e potenza nei circuiti monofase in regime sinusoidale 1. Analisi degli scambi di energia nel circuito I fenomeni energetici connessi al passaggio della corrente in un circuito, possono essere distinti

Dettagli

20) Ricalcolare la resistenza ad una temperatura di 70 C.

20) Ricalcolare la resistenza ad una temperatura di 70 C. ISTITUTO TECNICO AERONAUTICO G.P. CHIRONI NUORO Anno Sc. 2010/2011 Docente: Fadda Andrea Antonio RACCOLTA DI TEST ED ESERCIZI CLASSE 3^ 1) Quali particelle compongono un atomo? A) elettroni, protoni, neutroni

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 7: Forze elettriche e magnetiche

CdL Professioni Sanitarie A.A. 2012/2013. Unità 7: Forze elettriche e magnetiche L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Unità 7: Forze elettriche e magnetiche Forza elettrica e corrente Carica elettrica e legge di Coulomb

Dettagli

L'energia elettrica e le altre grandezze elettriche

L'energia elettrica e le altre grandezze elettriche 1. Circuito elettrico elementare L'energia elettrica e le altre grandezze elettriche Cominciamo ad analizzare i fenomeni elettrici con una descrizione dei componenti fondamentali di un circuito elettrico,

Dettagli

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO CORRENTE CONTINUA: FENOMENI FISICI E PRINCIPI FONDAMENTALI - Richiami sulle unità di misura e sui sistemi di unità di misura. - Cenni sulla struttura e sulle proprietà elettriche della materia. - Le cariche

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un CLASSE Seconda DISCIPLINA Fisica ORE SETTIMANALI 3 TIPO DI PROVA PER GIUDIZIO SOSPESO Test a risposta multipla MODULO U.D Conoscenze Abilità Competenze Enunciato del primo principio della Calcolare l accelerazione

Dettagli

LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015

LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015 LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015 Insegnante: LUCIA CERVELLI Testo in uso: Claudio Romeni FISICA E REALTA Zanichelli Su alcuni

Dettagli

Unità 12. La corrente elettrica

Unità 12. La corrente elettrica Unità 12 La corrente elettrica L elettricità risiede nell atomo Modello dell atomo: al centro c è il nucleo formato da protoni e neutroni ben legati tra di loro; in orbita intorno al nucleo si trovano

Dettagli

Come ottengo la CORRENTE ELETTRICA

Come ottengo la CORRENTE ELETTRICA COS È L ELETTRICITÀ Come ottengo la CORRENTE ELETTRICA si produce con i generatori di corrente che possono essere chimici, meccanici oppure utilizzare l'energia del sole Generatori meccanici che producono

Dettagli

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014 Prof.ssa Piacentini Veronica La corrente elettrica La corrente elettrica è un flusso di elettroni

Dettagli

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016 Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016 FISICA ELETTROMAGNETISMO FISICA MODERNA classe 5 B MAG. 2016 Esercitazione di Fisica in preparazione all Esame di Stato A.S. 2015-2016

Dettagli

ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA NAUTICO SAN GIORGIO NAUTICO C.COLOMBO. CLASSE 3 A sez. 3CI

ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA NAUTICO SAN GIORGIO NAUTICO C.COLOMBO. CLASSE 3 A sez. 3CI CLASSE 3 A sez. 3CI MATERIA: Elettrotecnica, laboratorio 1. Contenuti del corso DOCENTI: SILVANO Stefano FERRARO Silvano Unità didattica 1: Gli strumenti di misura Il concetto di misura, errori di misura

Dettagli

Corso di Laurea Triennale in TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA. Corso Integrato di Misure Elettriche ed Elettroniche

Corso di Laurea Triennale in TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA. Corso Integrato di Misure Elettriche ed Elettroniche UNIVERSITÀ DI GENOVA - FACOLTÀ DI MEDICINA E CHIRURGIA Corso di Laurea Triennale in TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA Corso Integrato di Misure Elettriche ed Elettroniche Modulo

Dettagli

ISTITUTO TECNICO AERONAUTICO A. FERRARIN - CATANIA

ISTITUTO TECNICO AERONAUTICO A. FERRARIN - CATANIA ISTITUTO TECNICO AERONAUTICO A. FERRARIN - CATANIA A. S. 2012-2013 ELETTROTECNICA, ELETTRONICA, AUTOMAZIONE CLASSE 3 Sez. C Prof. Fiorio Walter - Prof. Distefano Antonino LIVELLO DI PARTENZA: La classe

Dettagli

Corrente elettrica. Daniel Gessuti

Corrente elettrica. Daniel Gessuti Corrente elettrica Daniel Gessuti indice 1 Definizioni 1 Definizione di corrente 1 Definizione di resistenza 2 2 Effetto Joule 3 Circuiti in parallelo 4 3 Circuiti in serie 5 4 Il campo magnetico 5 Fenomeni

Dettagli

Istituto di formazione professionale Don Bosco

Istituto di formazione professionale Don Bosco Istituto di formazione professionale Don Bosco Settore elettrico ELETTROTECNICA Eserciziario A.S. 204 205 CIRCUITI ELETTRICI, CAMPI ELETTRICI E MAGNETICI e MACCHINE ELETTRICHE Fabio PANOZZO 4 Capitolo

Dettagli

UNIVERSITA DEGLI STUDI DI FIRENZE Facoltà di Scienze M.F.N. Corso di Laurea in Matematica. Prof. Andrea Stefanini

UNIVERSITA DEGLI STUDI DI FIRENZE Facoltà di Scienze M.F.N. Corso di Laurea in Matematica. Prof. Andrea Stefanini UNIVERSITA DEGLI STUDI DI FIRENZE Facoltà di Scienze M.F.N. Corso di Laurea in Matematica Prof. Andrea Stefanini Appunti aggiuntivi al corso di LABORATORIO DI FISICA 2 CIRCUITI IN CORRENTE CONTINUA Anno

Dettagli

ENERGIA ELETTRICA: Generatori e tipi di collegamento. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico 2012-13 -

ENERGIA ELETTRICA: Generatori e tipi di collegamento. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico 2012-13 - ENERGIA ELETTRICA: Generatori e tipi di collegamento Quando un conduttore in movimento attraversa le linee di forza di un campo magnetico, nel conduttore si genera una forza elettromotrice indotta in grado

Dettagli

PROGRAMMA DI ESAME PER IL CONSEGUIMENTO DELLA PATENTE DI RADIOAMATORE

PROGRAMMA DI ESAME PER IL CONSEGUIMENTO DELLA PATENTE DI RADIOAMATORE PROGRAMMA DI ESAME PER IL CONSEGUIMENTO DELLA PATENTE DI RADIOAMATORE PARTE ^ - QUESTIONI RIGUARDANTI LA TECNICA, IL FUNZIONAMENTO E LA REGOLAMENTAZIONE A. - QUESTIONI DI NATURA TECNICA.- ELETTRICITA',

Dettagli

CORSO DI SCIENZE E TECNOLOGIE APPLICATE PROGRAMMAZIONE DIDATTICA DI ELETTRONICA A.S. 2014-2015 CLASSE III ELN

CORSO DI SCIENZE E TECNOLOGIE APPLICATE PROGRAMMAZIONE DIDATTICA DI ELETTRONICA A.S. 2014-2015 CLASSE III ELN 1. ATOMO MODULI Modelli atomici; Bohr-Sommerfield; Teoria delle bande e classificazione dei materiali; 2. CORRENTE, TENSIONE, RESISTENZA Corrente elettrica; Tensione elettrica; Resistenza elettrica, resistori,

Dettagli

PROGRAMMA PREVENTIVO: Tecnologie Elettrico-Elettroniche e Applicazioni. Modulo n 1: STRUTTURA DELLA MATERIA E FENOMENI ELETTRICI CONTENUTI OBIETTIVI

PROGRAMMA PREVENTIVO: Tecnologie Elettrico-Elettroniche e Applicazioni. Modulo n 1: STRUTTURA DELLA MATERIA E FENOMENI ELETTRICI CONTENUTI OBIETTIVI ISTITUTO D ISTRUZIONE SUPERIORE "G. VERONESE - G. MARCONI" SEZIONE ASSOCIATA G. MARCONI Via T. Serafin, 15-30014 CAVARZERE (VE) Tel. 0426/51151 - Fax 0426/310911 E-mail: ipsiamarconi@ipsiamarconi.it -

Dettagli

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA Concetti e grandezze fondamentali CAMPO ELETTRICO: è un campo vettoriale di forze,

Dettagli

MISURE DI GRANDEZZE ELETTRICHE

MISURE DI GRANDEZZE ELETTRICHE MISURE DI GRANDEZZE ELETTRICHE La tecnologia oggi permette di effettuare misure di grandezze elettriche molto accurate: precisioni dell ordine dello 0,1 0,2% sono piuttosto facilmente raggiungibili. corrente:

Dettagli