Logica del primo ordine

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Logica del primo ordine"

Transcript

1 Logica del primo ordine Sistema formale sviluppato in ambito matematico formalizzazione delle leggi del pensiero strette relazioni con studi filosofici In ambito Intelligenza Artificiale logica come linguaggio formale per la rappresentazione di conoscenza semantica non ambigua sistemi formali di inferenza interesse per sistemi per la dimostrazione automatica di teoremi e studio di meccanismi efficienti per la dimostrazione Logica come strumento base in molti iniziali studi di AI logica del primo ordine come linguaggio di descrizione logica come sistema di ragionamento Estensioni della logica del primo ordine estensioni del potere espressivo (e strutturazione) estensione delle forme di inferenza (logiche non-monotone) Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 1 Grande dibattito sul ruolo della logica in AI Diverse scuole di pensiero Logicisti: logica come strumento di base per qualunque problema di AI formalizzazione logica del problem solving automatizzazione dei sistemi formali di ragionamento logico Anti-logicisti approcci non logici alla rappresentazione della conoscenza e al ragionamento Posizione intermedia logica come strumento di analisi e per fornire una semantica realizzazione concreta mediante strumenti non logici Vedremo richiami di logica del primo ordine sintassi, semantica, inferenza sistemi di dimostrazione automatica risoluzione e strategie di risoluzione logica come linguaggio base di rappresentazione e inferenza limiti della logica del prim ordine come strumenti di base per analizzare altri formalismi di AI Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 2

2 Sintassi Linguaggio caratterizzato dai seguenti insiemi: Insieme finito C di simboli di costante {c1, c2,, cn} Insieme finito V di simboli di variabile {X1, X2,, Xm} Insieme finito F di simboli di funzione {f1, f2,, fk} Insieme finito P di simboli di predicato {p1, p2,.. pl} Connettivi:,,,, Quantificatori:, Parentesi: (, ) Si definiscono quindi Termini ogni costante è un termine; ogni variabile è un termine l applicazione di un qualunque simbolo di funzione f a n termini t1,, tn produce un temine f(t1,t2,,tn) Esempi se C = {mario, maria, giovanni} V= {X,Y} F={padre, madre} sono termini: mario, maria, X, padre(x), madre(padre(maria)), Formule atomiche un predicato p P applicato a n termini è una formula atomica Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 3 Esempi: se C, V, F come prima e P= {fratello, genitore, sposato} sono formule atomiche: sposato(mario), fratello(x,y), fratello(x,maria) genitore(padre(x),x), genitore(x, padre(madre(maria))), Formule ben formate (FbF) una formula atomica è una FbF se F1 e F2 sono FbF, allora lo sono anche F1, F1 F2, F1 F2, F1 F2, F1 F2, x F1, x F1, (F1) Esempi, dati C, V, F e P come negli esempi precedenti, sono FbF sposato(mario), fratello(x,y), fratello(x,maria) sposata(maria), x genitore(padre(x),x), x( genitore(x, padre(madre(maria)))) x (sposato(x,y) Z padre(z,y))) Scope di un quantificatore data x F ( x F), si dice che F è lo scope del quantificatore variabile legata se occorre nello scope di un quantificatore, altrimenti variabile libera Formule chiuse se non contengono variabili libere Formule ground, se non contengono variabili Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 4

3 Semantica Consideriamo formule chiuse Interpretazione: dominio D in cui sono definite funzioni e relazioni interpretazione associa un elemento d D ad ogni simbolo di costante una funzione f: Dn a D ad ogni simbolo di funzione a n argomenti una relazione R Dn ad ogni simbolo di predicato con n argomenti Interpretazione I soddisfa una formula F (F è vera in I): se F è una formula atomica p(t1,,tn), allora I soddisfa F (F è vera in I) sse <I(t1),, I(tn)> I(p) se F è una formula composta allora (usuali tavole di verità) F1 è vera in I sse F1 non è vera in I F1 F2 è vera in I sse sia F1 che F2 sono vere in I F1 F2 è vera in I sse almeno una tra F1 e f2 è vera in I F1 F2 è falsa in I sse F1 è vera in I e F2 è falsa in I F1 F2 è vera in I sse F1 e F2 sono entrambe o vere o false in I x F1 è vera in I sse per ogni elemento d D si ha che F1[d/x] è vera in I x F1 è vera in I sse esiste un elemento d D per cui F1[d/x] è vera in I Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 5 Esempio D dominio dei numeri naturali, interpretazione I definita in modo ovvio pari(2) è vera in I pari(1) è falsa in I X pari(x) è vera in I Xpari(X) è falsain I X (pari(x) dispari(x)) è vera in I X (pari(x) dispari(x)) è vera in I X (pari(x) dispari(x)) è falsa in I Data una formula F F è soddisfacibile sse esiste una interpretazione I che la rende vera; I si dice un modello di F (I = F) F insoddisfacibile sse non esiste una interpretazione che la soddisfa F valida sse ogni interpretazione soddisfa F Due formula F1 e F2 sono equivalenti (F1 F2) sse sono soddisfatte dalle stesse interpretazioni Diverse equivalenze tra formule possono essere dimostrate usando le tabelle di verità, ad esempio F1 (F2 F3) (F1 F2) (F1 F3) (prop. distributiva, idem altre ) F1 F2 ( F1 F2) (leggi di demorgan, idem scambiando or e and) X p(x) X p(x). Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 6

4 Conseguenza logica una formula G è conseguenza logica di una formula F (indicato con F = G) sse ogni modello di F è anche un modello di G Esempi p(a) p(b) = p(a) p(a) p(b) = p(a) p(b) p(a) = X p(x) ma X p(x) =/= p(a) X p(x) = X p(x) X p(x) = p(a1) p(an) Teorema di dimostrazione: Se F è soddisfacibile, allora G è conseguenza logica di F sse F G è insoddidfacibile Dimostrazione se G è conseguenza logica di F allora ogni modello di F soddisfa G, quindi non soddisfa G e quindi F G è insoddisfacibile se F G è insoddisfacibile allora poiché F è soddisfacibile si deve avere che ogni modello di F non soddisfa G, ossia ogni modello di F soddisfa G e quindi G è conseguenza logica di F Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 7 Esempio p(a) p(b) = p(a) I = { a=2, b=4, p=pari } p(a) p(b) è soddisfacibile (I la rende vera) p(a) è conseguenza logica perché p(a) p(b) p(a) è insoddisfacibile Infatti p(a) non può essere contemporaneamente vera e falsa a Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 8

5 Forma a clausole Trasformazione delle formule in una forma sintattica particolare Una formula F è in forma prenessa se ha la forma Q1X1 QmXm(F) dove ogni Qi è un quantificatore Proprietà: ogni formula può essere trasformata in una equivalente in forma prenessa Esempi: X p(x) Y p(y) non è in forma prenessa X Y(p(X) p(y)) è equivalente in forma prenessa X Y(p(X) p(y)) è in forma prenessa F è in forma standard di Skolem se F è in forma prenessa e tutti i quantificatori sono universali Eliminazione dei quantificatori esistenziali sostituiti con costanti e funzioni di Skolem Yp(Y) sostitituito con p(s1) con s1 nuova costante X Yp(Y,X) sostituito con p(f(x),x) con f nuova funzione Proprietà: data F in forma prenessa e sua trasformata F in forma normale di Skolem si ha che F è soddisfacibile sse F è soddisfacibile (ma non sono equivalenti!) Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 9 Una formula F in forma normale di Skolem è in forma a clausole se F è una congiunzione di disgiunzioni (è in forma normale congiuntiva), ossia F ha la forma F: (A1 A2 An) (B1 B2 Bn) in cui ogni Ai (Bj) è una formula atomica o la sua negazione (un atomo) Ogni disgiunzione di atomi prende il nome di clasuola Una formula è un insieme (congiunzione) di clausole Un atomo o la sua negazione prende il nome di letterale Proprietà: ogni formula in forma di Skolem può essere trasformata in una formula equivalente in forma a clausole Quindi data una formula F e la sua trasformazione in un insieme S di clausole si ha che F soddisfacibile sse S è soddisfacibile per la dimostrazione automatica di teoremi è quindi sufficiente operare su forma a clausole Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 10

6 Dimostrazione automatica di teoremi Procedure automatiche per dimostrare se una formula è valida o insoddisfacibile e quindi in grado di dimostrare se una formula G è conseguenza logica di una formula F In generale per dimostrare che F è insoddisfacibile si dovrebbero verificare tutte le possibili interpretazioni Risultato importante di Herbrand [1930] consente di limitare l analisi a una classe di interpretazioni (interpretazioni di Herbrand) definire un modo automatico per la verifica di soddisfacibilità usando una forma di rappresentazione particolare delle formule: il principio di risoluzione [Robinson 65] realizzazione efficiente a calcolatore del principio di risoluzione e costruzione di dimostratori automatici di teoremi realizzazione di linguaggi di programmazione (e di rappresentazione della conoscenza) basati su tale principio (programmazione logica) Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 11 Universo di Herbrand dato un insieme S di clausole, l universo di Herbrand H(S) per s è definito come H(S) contiene i simboli di costante che occorrono in S se f è un simbolo di funzione n-aria che occorre in S e h1,, hn sono elementi di H(S), allora anche f(h1,..,hn) sta in H(S) Esempio se S={p(a), p(x), q(y), q(f(y)} H(S)={a, f(a), f(f(a),.. } Base di Herbrand dato un insieme S di clausole e l universo di Herbrand H(S) per S, la base di Herbrand B(S) è l insieme delle istanze ground delle formule atomiche (atomi) che occorrono in S Esempio dati S e H(S) come nell esempio precedente B(S) ={p(a), p(f(a)), p(f(f(a)),.., q(a), q(f(a)), q(f(f(a)),. } Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 12

7 Interpretazione di Herbrand interpretazione di un insieme S di clausole in cui il cui dominio è l universo di Herbrand H(S) ogni simbolo di costante è interpretato sulla corrispondente costante in H(S) ogni simbolo di funzione è interpretato come una funzione che trasforma h1,.., hn in f(h1,.., hn) (tutti in H(S)) ogni simbolo di predicato in una relazione su B(S) Osservazione definire una interpretazione di Herbrand corrisponde a dire quale sottoinsieme della base di Herbrand è vera nell interpretazione Interpretazioni di Herbrand giocano un ruolo importante in quanto ci si può limitare ad esse nella dimostrazione di teoremi, infatti: Un insieme S di clausole è insoddisfacibile sse non esiste una interpretazione di Herbrand che lo soddisfa quindi nel processo di dimostrazione ci si può limitare a considerare tali interpretazioni Vedremo principio di Risoluzione basato su tale idea Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 13 Regole di inferenza Regole di inferenza: regole sintattiche che permettono di derivare formule da altre formule Esempio: modus ponens A A B B data regola di inferenza R, la possibilità di derivare una formula F da un insieme di formule K indicato con K -R- F Correttezza di R: se K -R- F allora K = F Completezza di R: se K = F allora K -R- F Esempio modus ponens è regola corretta ma non completa Una singola regola di inferenza per dedurre nuove formule da altre formule e che opera sulla forma a clausole regola opera su clausole regola di inferenza corretta e completa per la forma a clausole regola facilmente meccanizzabile Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 14

8 Caso della logica proposizionale La regola di risoluzione Due letterali si dicono opposti se uno è la negazione dell altro date due clausole con letterali opposti C1: L C1 C2: L C2 un risolvente di C1 e C2 è la clausola C: C1 C2 C1: L C1 C2: L C2 C: C1 C2 Proprietà: C è conseguenza logica di C1 e C2 Esempi P Q P R P Q P R S Q R Q R S Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 15 caso della logica del primo ordine sostituzioni e unificazione regola di risoluzione Sostituzione una sostituzione è un insieme finito di coppie del tipo {t1/x1,, tn/xn} in cui ogni ti è un termine e ogni Xi è una variabile (e le variabili sono distinte) sia E una espressione (termine o formula) e s= {t1/x1,, tn/xn} una sostituzione, allora Es è l espressione che si ottiene sostituendo in modo simultaneo le occorrenze di ogni Xi con ti in E Esempi P(X,Y) {a/x, f(b)/y} = P(a,f(b)) P(X,Y) {Y/X, f(b)/y} = P(Y,f(b)) Composizione di sostituzioni date due sostituzioni s1 = {t1/x1,, tn/xn} e s2 = {t 1/Y1,, t m/ym} la sostituzione composta s1 s2 (o s1s2) è definita come s1s2 = {t1s2/x1,, tns2/xn, t 1/Y1,, t m/ym} Esempio: {a/x, f(y)/z} {b/y} = {a/x, f(b)/z, b/y} Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 16

9 Sostituzione più generale: una sostituzione s è più generale di una sostituzione t sse esiste una sostituzione r tale per cui t=sr esempio: s= {Y/X} più generale di t= {a/x} infatti r= {a/y} Unificatore date due espressioni (termini o formule) E1 e E2, una sostituzione s è un unificatore per E1 e E2 sse E1s = E2s Esempio s= {a/x, f(b)/y} è un unificatore per E1=p(X,f(b)) E2=p(a,Y) Unificatore più generale: sostituzione più generale che unifica due espressioni Esempio s= {Z/X, f(b)/y} è l unificatore più generale per E1=p(X,f(b)) E2=p(Z,Y) s= {a/x, f(b)/y, a/z} non è l unificatore più generale per E1=p(X,f(b)) E2=p(Z,Y) Unificazione due espressioni E1 ed E2 sono unificabili se esiste un unificatore Esempio E1=p(X,f(b)) E2=p(a,Y) sono unificabili E1=p(X,X) E2=p(Y,f(Y)) non sono unificabili Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 17 Algoritmo di unificazione: algoritmo che determina l unificatore più generale di due espressioni E1 ed E2 SOST unifica(termine E1, E2, SOST s) { termine a,b; SOST s1; if (s==fail) return(fail); a=e1s; b=e2s if (a e b sono costanti e a==b) return(s); if (a è una variabile e b un termine e a non occorre in b) return(s {b/a}); if (b è una variabile e a un termine e b non occorre in a) return(s {a/b}); if (a e b sono termini composti con lo stesso simbolo di funzione e stesso numero di argomenti) { for(int i=1; i n, i++) { s1= unifica(i-esimo termine di a, i-esimo termine di b, s); s = s s1 }; return(s) } else return(fail) } Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 18

10 Risoluzione Date due clausole C1 e C2 con letterali opposti C1: L C1 C2: L C2 con L e L unificabili e s unificatore più generale Un risolvente è la calusola C: (C1 C2 )s C1: L C1 C2: L C2 Esempi C: (C1 C2 )s p(x) q(x) p(a) r(b) p(x,y) q(f(x),y) q(f(a),z) r(b) q(a) r(b) p(a,z) r(b) Anche nel caso della logica del prim ordine il risolvente è conseguenza logica delle due clausole Risoluzione è regola di inferenza corretta e completa Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 19 Dimostrazione per refutazione Dimostrazione di teoremi: data teoria T, dimostrare che A segue logicamente da T Equivalente a dimostrare che T A inconsistente si considera l insieme di clausole formato da T e A si verifica se da questo insieme si riesce a derivare una contraddizione contraddizione: due clausole formate da un singolo letterale L e L che quando risolte producono la clausola vuota Esempio dati T= {p(x) q(x) r(x), p(a), s(a), s(x) q(x) } e A=r(a) in forma a clausole { p(x) q(x) r(x), p(a), s(a), s(x) q(x) } verificare che { p(x) q(x) r(x), p(a), s(a), s(x) q(x) } { r(a) } è inconsistente p(x) q(x) r(x), p(a) q(a) r(a) s(x) q(x) p(a) s(a) s(a) p(a) s(a) Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 20

11 Dimostrazione = ricerca insieme di clausole applicare risoluzione tra calusole produce nuove clausole: grafo (albero) di risoluzione obiettivo: arrivare alla clausola vuota stretegia: costruzione dell albero effettuando la ricerca della clausola vuota spazio di ricerca ampio: strategie di risoluzione strategia dell insieme di supporto poiché T è consistente è inutile risolvere tra di loro clausole di T T insieme di supporto ad ogni passo si risolvono clausole in cui al più una è nell insieme di supporto input-resolution si definicse come insieme di input quello formato dalle clausole di T e A ad ogni passo una delle due clausole deve essere una di input risoluzione lineare ad ogni passo risolvo la clausola ottenuta dalla risoluzione precedente con una delle altre (di input o ottenuta ad un passo precedente) risoluzione linear-input ad ogni passo risolvo la clausola ottenuta dalla risoluzione precedente con una di quelle di input Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 21 Osservazione: non tutte le strategie sono complete Es. linear-input in generale non è completa; è completa solo su linguaggi ristretti (clausole di Horn) Strategie di ricerca simili a quelle usate in problem solving in AI profondità ampiezza ricerca euristica varie euristiche lunghezza delle clausole predicati presenti nelle clausole... Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 22

12 Applicazioni AI della logica classica Dimostrazione automatica di teoremi Logica come linguaggio di rappresentazione della conoscenza e dimostrazione di teoremi come forma di ragionamento Logic Programming Limiti della logica come forma di rappresentazione struttura piatta delle clausole Altri linguaggi di rappresentazione hanno semantica in termini logici ad esempio frame o reti semantiche possono essere formalizzati in termini logici Quindi logica permette di caratterizzare le forme di ragionamento Limiti della logica nel modellare il ragionamento umano logiche non-standard Console, Botta - Dip. Informatica, Univ. Torino First Order Logic 23

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 14 marzo 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano risultare

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Il calcolo dei predicati per R.C. Agenti logici: la logica del prim ordine. Esempio: il mondo dei blocchi. Concettualizzazione

Il calcolo dei predicati per R.C. Agenti logici: la logica del prim ordine. Esempio: il mondo dei blocchi. Concettualizzazione Il calcolo dei predicati per R.C. Agenti logici: la logica del prim ordine Sintassi, semantica, inferenza Maria Simi a.a. 2014-2015 Nella logica dei predicati abbiamo assunzioni ontologiche più ricche:

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

Logica del primo ordine

Logica del primo ordine Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_4 V1.3 Logica del primo ordine Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile.

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile. Deduzione automatica La maggior parte dei metodi di deduzione automatica sono metodi di refutazione: anziché dimostrare direttamente che S A, si dimostra che S { A} è un insieme insoddisfacibile (cioè

Dettagli

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare Linguaggi del I ordine - semantica Per dare significato ad una formula del I ordine bisogna specificare Un dominio Un interpretazione Un assegnamento 1 Linguaggi del I ordine - semantica (ctnd.1) Un modello

Dettagli

Che cosa abbiamo fatto fin ora. Perché? Agente basato su conoscenza. Introduzione alla rappresentazione della conoscenza

Che cosa abbiamo fatto fin ora. Perché? Agente basato su conoscenza. Introduzione alla rappresentazione della conoscenza Che cosa abbiamo fatto fin ora Introduzione alla rappresentazione della conoscenza ovvero Come costruire agenti basati su conoscenza e dotati di capacità di ragionamento Maria Simi, 2014/2015 Abbiamo trattato:

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Algebra Relazionale. algebra relazionale

Algebra Relazionale. algebra relazionale Algebra Relazionale algebra relazionale Linguaggi di Interrogazione linguaggi formali Algebra relazionale Calcolo relazionale Programmazione logica linguaggi programmativi SQL: Structured Query Language

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati Tipologie di pianificatori Pianificazione Intelligenza Artificiale e Agenti II modulo Pianificazione a ordinamento parziale (POP) (HTN) pianificazione logica (SatPlan) Pianificazione come ricerca su grafi

Dettagli

Dall italiano al linguaggio della logica proposizionale

Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Enunciati atomici e congiunzione In questa lezione e nelle successive, vedremo come fare

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Può la descrizione quantomeccanica della realtà fisica considerarsi completa?

Può la descrizione quantomeccanica della realtà fisica considerarsi completa? Può la descrizione quantomeccanica della realtà fisica considerarsi completa? A. Einstein, B. Podolsky, N. Rosen 25/03/1935 Abstract In una teoria completa c è un elemento corrispondente ad ogni elemento

Dettagli

Prolog: aritmetica e ricorsione

Prolog: aritmetica e ricorsione Capitolo 13 Prolog: aritmetica e ricorsione Slide: Aritmetica e ricorsione 13.1 Operatori aritmetici In logica non vi è alcun meccanismo per la valutazione di funzioni, che è fondamentale in un linguaggio

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04 I numeri reali Note per il corso di Analisi Matematica 1 G. Mauceri a.a. 2003-04 2 I numeri reali Contents 1 Introduzione 3 2 Gli assiomi di campo 3 3 Gli assiomi dell ordine 4 4 Valore assoluto 5 5 I

Dettagli

Corso di teoria dei modelli

Corso di teoria dei modelli Corso di teoria dei modelli Alessandro Berarducci 22 Aprile 2010. Revised 5 Oct. 2010 Indice 1 Introduzione 2 2 Linguaggi del primo ordine 3 2.1 Linguaggi e strutture......................... 3 2.2 Morfismi................................

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Logica predicativa del prim ordine

Logica predicativa del prim ordine Logica predicativa del prim ordine Eugenio G. Omodeo Anno accademico 2007/ 08 Contents 1 Linguaggi per la logica predicativa del prim ordine 5 1.1 Sintassi di un linguaggio predicativo........................

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Alla pagina successiva trovate la tabella

Alla pagina successiva trovate la tabella Tabella di riepilogo per le scomposizioni Come si usa la tabella di riepilogo per le scomposizioni Premetto che, secondo me, questa tabella e' una delle pochissime cose che in matematica bisognerebbe "studiare

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Introduzione allo Scilab Parte 3: funzioni; vettori.

Introduzione allo Scilab Parte 3: funzioni; vettori. Introduzione allo Scilab Parte 3: funzioni; vettori. Felice Iavernaro Dipartimento di Matematica Università di Bari http://dm.uniba.it/ iavernaro felix@dm.uniba.it 13 Giugno 2007 Felice Iavernaro (Univ.

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI. IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 2 2. Numeri primi: definizioni. 4 2.1. Fare la lista dei numeri primi.

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole: Concetti di base Fondamenti di Informatica - D. Talia - UNICAL 1 Algebra di Boole E un algebra basata su tre operazioni logiche OR AND NOT Ed operandi che possono

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Non-monotonic reasoning

Non-monotonic reasoning Logica classica Non-monotonic reasoning modella alcuni aspetti del modo di ragionare umano ma richiede conoscenza completa conoscenza consistente conoscenza fissa che non varia nel tempo Ragionamento in

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Abstract Data Type (ADT)

Abstract Data Type (ADT) Abstract Data Type Pag. 1/10 Abstract Data Type (ADT) Iniziamo la nostra trattazione presentando una nozione che ci accompagnerà lungo l intero corso di Laboratorio Algoritmi e Strutture Dati: il Tipo

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

Nota: Eventi meno probabili danno maggiore informazione

Nota: Eventi meno probabili danno maggiore informazione Entropia Informazione associata a valore x avente probabilitá p(x é i(x = log 2 p(x Nota: Eventi meno probabili danno maggiore informazione Entropia di v.c. X P : informazione media elementi di X H(X =

Dettagli

Elementi di semantica denotazionale ed operazionale

Elementi di semantica denotazionale ed operazionale Elementi di semantica denotazionale ed operazionale 1 Contenuti! sintassi astratta e domini sintattici " un frammento di linguaggio imperativo! semantica denotazionale " domini semantici: valori e stato

Dettagli

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO Così come avviene per i numeri ( 180 = 5 ), la scomposizione in fattori di un polinomio è la trasformazione di un polinomio in un prodotto di più polinomi irriducibili

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Permutazione degli elementi di una lista

Permutazione degli elementi di una lista Permutazione degli elementi di una lista Luca Padovani padovani@sti.uniurb.it Sommario Prendiamo spunto da un esercizio non banale per fare alcune riflessioni su un approccio strutturato alla risoluzione

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Fondamenti di Teoria delle Basi di Dati

Fondamenti di Teoria delle Basi di Dati Fondamenti di Teoria delle Basi di Dati Riccardo Torlone Parte 6: Potenza espressiva del calcolo Calcolo su domini, discussione Pregi: dichiaratività Difetti: "verbosità": tante variabili! espressioni

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Tipicamente un elaboratore è capace di trattare domini di dati di tipi primitivi

Tipicamente un elaboratore è capace di trattare domini di dati di tipi primitivi TIPI DI DATO Tipicamente un elaboratore è capace di trattare domini di dati di tipi primitivi numeri naturali, interi, reali caratteri e stringhe di caratteri e quasi sempre anche collezioni di oggetti,

Dettagli

Gli array. Gli array. Gli array. Classi di memorizzazione per array. Inizializzazione esplicita degli array. Array e puntatori

Gli array. Gli array. Gli array. Classi di memorizzazione per array. Inizializzazione esplicita degli array. Array e puntatori Gli array Array e puntatori Laboratorio di Informatica I un array è un insieme di elementi (valori) avente le seguenti caratteristiche: - un array è ordinato: agli elementi dell array è assegnato un ordine

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro Lo Spettro primo di un anello Carmelo Antonio Finocchiaro 2 Indice 1 Lo spettro primo di un anello: introduzione 5 1.1 Le regole del gioco................................ 5 1.2 Prime definizioni e risultati

Dettagli

Indicizzazione terza parte e modello booleano

Indicizzazione terza parte e modello booleano Reperimento dell informazione (IR) - aa 2014-2015 Indicizzazione terza parte e modello booleano Gruppo di ricerca su Sistemi di Gestione delle Informazioni (IMS) Dipartimento di Ingegneria dell Informazione

Dettagli

NUMERI RAZIONALI E REALI

NUMERI RAZIONALI E REALI NUMERI RAZIONALI E REALI CARLANGELO LIVERANI. Numeri Razionali Tutti sanno che i numeri razionali sono numeri del tio q con N e q N. Purtuttavia molte frazioni ossono corrisondere allo stesso numero, er

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

3. TEORIA DELL INFORMAZIONE

3. TEORIA DELL INFORMAZIONE 3. TEORIA DELL INFORMAZIONE INTRODUZIONE MISURA DI INFORMAZIONE SORGENTE DISCRETA SENZA MEMORIA ENTROPIA DI UNA SORGENTE NUMERICA CODIFICA DI SORGENTE 1 TEOREMA DI SHANNON CODICI UNIVOCAMENTE DECIFRABILI

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Istruzioni per il controllo di ciclo - ciclo a condizione generica

Istruzioni per il controllo di ciclo - ciclo a condizione generica Istruzioni per il controllo di ciclo - ciclo a condizione generica Permette di ripetere l esecuzione di un blocco di istruzioni finchè non viene verificata una condizione logica. Sintassi istruzione_1...

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni

Dettagli

Ambienti di sviluppo integrato

Ambienti di sviluppo integrato Ambienti di sviluppo integrato Un ambiente di sviluppo integrato (IDE - Integrated Development Environment) è un ambiente software che assiste i programmatori nello sviluppo di programmi Esso è normalmente

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi Elementi di teoria degli insiemi 1 Insiemi e loro elementi 11 Sottoinsiemi Insieme vuoto Abbiamo già osservato che ogni numero naturale è anche razionale assoluto o, in altre parole, che l insieme dei

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Cenni su algoritmi, diagrammi di flusso, strutture di controllo

Cenni su algoritmi, diagrammi di flusso, strutture di controllo Cenni su algoritmi, diagrammi di flusso, strutture di controllo Algoritmo Spesso, nel nostro vivere quotidiano, ci troviamo nella necessità di risolvere problemi. La descrizione della successione di operazioni

Dettagli

Ascrizioni di credenza

Ascrizioni di credenza Ascrizioni di credenza Ascrizioni di credenza Introduzione Sandro Zucchi 2014-15 Le ascrizioni di credenza sono asserzioni del tipo in (1): Da un punto di vista filosofico, i problemi che pongono asserzioni

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli