1 Se dy = x converge ==> y(x) è definita perogni x > 0. se diverge è definita solo in [0, x] 2. f definita perogni y > y0

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 Se dy = x converge ==> y(x) è definita perogni x > 0. se diverge è definita solo in [0, x] 2. f definita perogni y > y0"

Transcript

1 Punti Critici, classificazione e studio: equazione autonoma del prim'ordine: y' = f(y) con f C1 in I. studiamo il PC: y' = f(y) && y(0) = y0. y0 in I quindi PC ha una sola soluzione locale se f(y0) = 0 allora y(x) = y0 (costante) se f(y0) > 0 allora supponiamo y(x) in J (intorno di 0) ==> f(y(x)) > 0 poiché se fosse 0 avrebbe due soluzioni (viola unicità locale PC) y(x) monotona crescente poiché y'(x)= f(y(x)) > 0 se f(y) = 0 in a,b e supponiamo che a < y0 < b e f(y) > 0 per a < y < b ==> y(x) risulta crescente e limitata tra (a,b) definita su R e lim(x - )y(x) = a && lim(x + )y(x) = b poichè se avesse un limite c in (a,b), y'(x) risulterebbe convergente al numero positivo f(c) e questo è incompatibile con l'asintoto orizzontale per x->+ se a destra di y0 non esistono altri zeri per f distinguiamo i seguenti casi: 1. f ammette asintoto verticale per y = y1 > y0. y1 1 Se dy = x converge ==> y(x) è definita perogni x > 0 y0 f y se diverge è definita solo in [0, x] 2. f definita perogni y > y0 y0 1 Se dy = s converge ==> y(x) è definita per x < s f y se diverge è definita per x > 0 [se f(y) maggiorata da Ay + B l'integrale diverge] Punti critici per un sistema lineare: Abbiamo un sistema lineare autonomo (non compare t al secondo membro) x' = f(x,y) && y' = g(x,y) con f,g C1 (PC ok). Quindi per unicità locale, due traiettorie x(t) e y(t) non possono intersecarsi. Se φ(t) è soluzione allora φ(t+t0) sarà anch'essa soluzione e quindi, se passano nello stesso punto in istanti diversi, si intersecheranno anche nel medesimo istante. Orbite del sistema: non soluzioni ma il loro sostegno ovvero le loro immagini. Per sistemi autonomi φ(t+t0) al variare di t0 sono tutte associate alla stessa orbita. Punti critici/stazionari: sono (x,y) tali che f(x,y) = g(x,y) = 0; in corrispondenza di tali punti x(t) = x e y(t) = y sono soluzioni del sistema. Stabilità soluzioni di sistema lineare: Sia (x,y) un punto critico isolato per il sistema. Si dice stabile se perogni > 0 possiamo trovare δ > 0 tale che ogni soluzione a distanza minore di δ per t > 0 rimanga ad una distanza anche minore di Se inoltre per t + tutte le soluzioni con distanza inferiore di δ convergono al p. critico esso si dice asintoticamente stabile Applicato alle equazioni del prim'ordine: un p. critico y0 risulta a.stab. se f'(y0) < 0 e instabile se maggiore. In caso di uguaglianza non si può dire. Analizziamo il sistema di eq. diff. lin homog. a coeff. cost. con matrice dei coeff. [a, b; c,d] invertibile==>unico punto critico (0,0) passa solo la traiettoria costante. Casi possibili: 1. Autovalori reali distinti: il discriminante associato all'eq. è (a-d) 2 +4bc > 0 e la matrice è diagonalizzabile associabile ad un sistema {x'=λ1x && y'=λ2y} di soluzione x(t) = C1e λ1t y(t) = C2e λ2t

2 Studio traiettorie: Autovalori negativi: traiettorie convergenti verso O detta nodo stabile. Autovalori positivi: traiettorie divergono, O nodo instabile. Segno opposto: O è sella/colle instabile 2. Autovalori coincidenti: λ= (a+d)/2 se b = c = 0 matrice diagonale di sistema {x' = λx && y' = λy} orbite rettilinee, O detta stella: λ>0 instabile, λ<0 stabile. b!= 0, c = 0 {x' = λx + y && y' = λy} di soluzione x(t) = (C1+C2t)e λt, y(t) = C2e λt. Il cambiamento di variabile per avere sistema canonico è: {u = x/b, v = [(a-d)/2b]x + y} ==> {u' = [(a+d)/2]u + v && v' = [(a+d)/2]v} c!= 0 come sopra ma: {u = x-[(a-d)/2c]y && v = y/c} ==> {u' = [(a+d)/2]u && v' = u+[(a+d)/2]v} In questi ultimi due casi O è nodo improprio, stabile se λ<0, instabile se λ>0 3. Autovalori complessi coniugati: (a-d) 2 +4bc < 0 λ 1,2 = α + β*i Il cambiamento di variabile: {u = cx + (a-α)y && v = βy} ==> {x' = αx -βy && y' = βx + αy} In coordinate polari {x = rcosθ && y = rsinθ} ==> {r' = αr && θ' = β} Il cui risultato è r(t) = C1e αt && θ(t) = βt +C2 Se α = 0, O stabile e le traiettorie sono cerchi concentrici Se α < 0, spirali verso O, detto fuoco stabile. Se α > 0, spirali divergenti. O = fuoco instabile. Teorema: un sistema lineare ha nell'origine un punto critico stabile con autovalori immaginari puri; as. stab. se autovalori reali e negativi oppure complessi con parti reali negative; instabile negli altri casi. Δ = (a-d) 2 +4bc = tr 2 (A)-4det(A), tr(a) = a+d 1) Δ > 0 : a) det(a)>0: nodo, stabile se tr(a) <0 e instabile se tr(a)>0 b) det(a)<0: sella, instabile 2) Δ = 0 : a) se b = c = 0 : stella b) se b 0 oppure c 0: nodo improprio in entrambi i casi la stabilità asintotica si ha se tr(a)<0 e la instabilità se tr(a)>0 3) Δ < 0 : a) se tr(a) = 0 : centro, stabile ma non asintoticamente stabile b) se tr(a) 0 : fuoco, asintoticamente stabile se tr(a)<0, instabile se tr(a)>0. Problemi con condizioni a limiti: Ci occupiamo di eq. diff. di 2 ordine che soddisfino condizioni che vincolano il comportamento della soluzione alla frontiera di un intervallo. {u'' + u = f(t) && u(0) = u(π) = 0} possono esistere 0, limitate o soluzioni. Teorema dell'alternativa: consideriamo (PL):{ u'' +a1u' +a0u = f; α0u(a) +α1u'(a) = α; β0u(b) + β1u'(b) = β. } e il relativo (Plhom) coi secondi membri nulli.se (PLhom) ha solo la sol. banale allora (PL) ha una ed una sola sol. perogni f continua e perogni α,β. Studio degli autovalori della derivata seconda: I valori λ tali che esistano soluzioni non banali di {u''+λu=0 && u(a)=u(b)= 0} sono detti autovalori della derivata seconda in (a,b) e le sol. sono autofunzion. Gli autovalori sono λ k = (k 2 π 2 )/(b-a) con k!= 0. Le autofunzioni sono e k (t) = sin[(kπ)(t-a)/(b-a)].

3 Per il teo. alterna. Se λ!= λ k allora esiste una ed una sola soluzione per (PL) Invece se fossero uguali esisterebbe una soluzione del (PL) {u''+λu=f && u(a)=u(b)= 0} b s.se a f t e k dt=0 Sistemi non lineari e Integrali primi: sistema autonomo in R n : x' = f(x) con soluzione α(t) integrale primo del sistema: una funzione E: R n R tale che perogni α(t), la funzione E(α(t)) = cost Se α ed E sono C1 le possiamo derivare dunque: 0 = grad(e(α(t)))*α'(t) = grad(e(α(t)))*f(α(t)) gli integrali primi sono le funzioni che soddisfano grad(e(x))*f(x) = 0 geometricamente: il gradiente è in ogni punto ortogonale al campo f Es. in due variabili: {x' = f(x,y) && y' = g(x,y)}, noi cerchiamo E tale che: {Ex = -g(x,y) && Ey = f(x,y)} E esiste s.se il campo (-g,f) è irrotazionale oppure in generale se esiste una funzione φ = φ(x,y) tale che il campo (-φ(x,y)g(x,y), φ(x,y)f(x,y)) sia irrotazionale e noi cerchiamo: {Ex = -φ(x,y)g(x,y) && Ey = φ(x,y)f(x,y)} questo, in un insieme semplicemente connesso, significa che il gradiente di E è ortogonale al campo (f,g) e quindi E è integrale primo. Sistemi lineari a coeff. costanti: è facile applicare l'es di prima e si ricava: E = -c*x 2 /2 +d*y*x +b*y 2 /2 dove [a,b;c,d] è la matrice dei coeff. Sistemi Hamiltoniani: data la funzione H = H(x,y) con x,y R n e consideriamo: {x' = -Hy && y' = Hx} H risulta un integrale primo dato che grad(h) è ovunque ortogonale al campo. y H(x,y) = 0 Hy s ds x Hx s ds Un sist è Ham s.se la df/dx = - dg/dy. Sistema di Lotke-Volterra: analizza l'andamento delle popolazioni di due specie in competizione. x(t) prede, y(t) predatori {x (t) = x(a-by) && y (t) = y(-c+dx)} dove indica la derivata rispetto al tempo. L'eq. differenziale che deriva dal sistema è: y '= dy dx = y c dx x a by detta eq. alle orbite la cui soluzione è: -by +alogy = dx -clogx + C e, se si riesce ad esplicitare, E(x,y) = C Metodo di Liapunov per la stabilità di un sistema autonomo: sistema autonomo in R n per cui O sia punto di eq. isolato. Una funzione V(x) definita intorno a O e derivabile si dice di Liapunov se: V(0) = 0; V(x) > 0; grad(v(x))*f(x) < 0; ==>teorema: se, verificate le 2 condizioni sopra, esiste una f.d.l. per il sistema ==> O è un punto di eq. stabile. grad(v(x))* f(x) < 0 se verificata anche questa O è as.stab. (potrebbe essere un fuoco) Nel caso in cui esista un integrale primo E(x,y) con minimo nel punto di eq. (x0,y0) la funzione V(x,y) = E(x,y) E(x0,y0) è f.d.l.

4 Per una funz di L-V, nel primo quadrante, il solo punto di eq. è (c/d, a/b) e possiamo trovare l'integrale primo E(x,y) tale che sia f.d.l. ma il punto di eq. sarà solamente stabile poichè presenta orbite periodiche. Vediamo come adattare i risultati del caso lineare a un caso bidimensionale. Supponiamo (x,y) = (0,0) punto di eq. per la fun f 2 (x,y) +g 2 (x,y) Se poniamo a = fx(0,0); b = fy(0,0); c = gx(0,0); d = gy(0,0), si può scrivere: {x' = ax +by +inf(x,y) && y' = cx +dy +int(x,y)}, con int e inf funzioni infinitesime di ordine superiore al primo che trascureremo (linearizzazione). Teorema di linearizzazione: Se il sistema ha un fuoco, un nodo o una sella vicino ad O mantiene la proprietà di as. stab. o instab.; nel caso in cui il sistema linearizzato ha nell'o un p.di eq. di tipo centro non è garantito Altra differenza tra caso lineare e non è che se c'è as. Stab. nell'o, tutte le orbite vi convergono per t + mentre per i non lineari, possiamo garantire questa convergenza solo per punti abbastanza vicini all'eq. Bacino di attrazione: l'insieme dei punti (x,y) tali che le soluzioni passanti a un certo istante t0 per (x,y) convergono ad un punto di eq. P Ciclo limite: Soluzione periodica tale che esista un intorno tubolare della sua orbita tale che non contenga altre orbite periodiche comunque presenti localmente all'esterno di questo intorno. Teorema di Pincaré-Bendixon: Se (x(t), y(t)) è soluzione del sistema {x' = f(x,y) && y' = g(x,y)} definita per t > 0, contenuta in una regione chiusa o limitata del piano, che non contiene punti critici, allora tale soluzione è periodica o tende ad un ciclo limite. Modelli: Popolazione:a=fatt.crescita; b=fatt.morte; h=fatt.prelievo logistico: {x'=x(a-bx) && x(0) = N} il fattore di crescita decresce linearmente all'aumentare della pop. prelievo costante: f(x) = x(a-bx)-h Epidemie:a=fatt.contagio; b=fatt.guarigione SIS: x=infetti; y=suscettibili; x+y=n {x'=ax(n-x)-bx && x(0) = x0} SIR: x=infetti; y=suscettibili;n-x-y=rimossi {x' = axy-bx && y'= -axy} Ultime speranze: En.Pot.(sist ad 1 grado di libertà): U(x) = (0 x)[x'']dx Se U(x) è limitata inferiormente le soluzioni sono sicuramente definite... Coordinate Polari: {ρρ' = xx' + yy' && ρ 2 θ' = y'x x'y sapendo che x 2 + y 2 =ρ 2, trovo i punti critici e ne ipotizzo la stabilità... (PL): Trovo la soluzione "con Rouché-Capelli" e la sostituisco nel sistema attraverso opportune derivazioni-condizioni ai limiti,trovo poi il determinante della matrice associata; i valori che la annullano vanno sostituiti nella soluzione. eq.diff.second'ordine: autovalori complessi coniugati: λ = a + b*i x(t) = e -at *[c1*cos(bt) +c2*sin(bt)] Thanks to rayman and mashiro

5 Teorema di Prolungamento. Data l equazione y = f(t, y), soddisfacente le ipotesi del Teorema di Esistenza ed Unicità locale in una striscia S = (a, b) R. Se inoltre f(t, y) A + B y per ogni (t, y) S, allora la soluzione al problema di Cauchy assegnato in (t0, y0) S può essere prolungata a tutto [a, b]. I Lemmi che seguono riassumono condizioni di verifica immediata (o quasi) che garantiscono l applicabilità del Teorema di Prolungamento: ed Unicità locale in una striscia S = (a, b) R, se f(t, y) M per ogni (t, y) S, allora la soluzione al problema di Cauchy assegnato in (t0, y0) S può essere prolungata a tutto [a, b]. ed Unicità locale in una striscia S = (a, b) R, ed inoltre fy(t, y) M esiste ed è limitata per ogni (t, y) S, allora la soluzione al problema di Cauchy assegnato in (t0, y0) S può essere prolungata a tutto [a,b]. E' possibile verificare che è possibile applicare il Teorema di Prolungamento ad una funzione globalmente lipschitziana in S (cio e che soddisfa la (2.2) con una costante di lipschitz: L che è indipendente dall intorno scelto). ed Unicità locale in una striscia S = (a, b) R, ed inoltre esiste L > 0 tale che f(t, y1) f(t, y2) L y1 y2 per ogni (t, y1), (t, y2) S allora la soluzione al problema di Cauchy assegnato in (t0, y0) S può essere prolungata a tutto [a, b].

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo).

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo). 1 Modelli matematici Un modello è un insieme di equazioni e altre relazioni matematiche che rappresentano fenomeni fisici, spiegando ipotesi basate sull osservazione della realtà. In generale un modello

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione POLITECNICO di BARI - A.A. 0/03 Corso di Laurea in INGEGNERIA Informatica e dell Automazione Problema Sia f :[0, +[! R una funzione continua. La funzione composta g() =f(kk) è c o n t i n u a? Problema

Dettagli

Calcolo differenziale per funzioni di più variabili reali

Calcolo differenziale per funzioni di più variabili reali CAPITOLO 3 Calcolo differenziale per funzioni di più variabili reali Scopo di questo capitolo è studiare le principali caratteristiche dei grafici di funzioni di più variabili, con particolare attenzione

Dettagli

Universitá di Firenze. Che cosa é realmente successo ai colloqui di pace di Parigi fra Henry Kissinger e Le Duc Tho

Universitá di Firenze. Che cosa é realmente successo ai colloqui di pace di Parigi fra Henry Kissinger e Le Duc Tho Universitá di Firenze FACOLTÁ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Matematica Che cosa é realmente successo ai colloqui di pace di Parigi fra Henry Kissinger e Le Duc Tho What

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Il sistema di Rossler

Il sistema di Rossler Il sistema di Rossler Il sistema di Rossler è considerato il più semplice sistema di terzo ordine a tempo continuo capace di manifestare comportamenti di tipo caotico. = = + (1) = + Questo sistema presenta

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello

FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello Una funzione di due variabili Ë una funzione in cui per ottenere un valore numerico bisogna speciöcare il valore di 2 variabili x e y, non pi di

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

Laboratorio di Elettrotecnica

Laboratorio di Elettrotecnica 1 Laboratorio di Elettrotecnica Rappresentazione armonica dei Segnali Prof. Pietro Burrascano - Università degli Studi di Perugia Polo Scientifico Didattico di Terni 2 SEGNALI: ANDAMENTI ( NEL TEMPO, NELLO

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

F (x) = f(x) per ogni x I. Per esempio:

F (x) = f(x) per ogni x I. Per esempio: Funzioni Primitive (Integrali Indefiniti) (l.v.) Pur essendo un argomento che fa parte del Calcolo Differenziale, molti autori inseriscono funzioni primitive nel capitolo sul Calcolo Integrale, in quanto

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI

Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI CAMPI SCALARI Sono dati: un insieme aperto A Â n, un punto x = (x, x 2,, x n )T A e una funzione f : A Â Si pone allora il PROBLEMA

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 5-31 ottobre 2005 Outline 1 Il problema di Cauchy Il problema

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Nota: Eventi meno probabili danno maggiore informazione

Nota: Eventi meno probabili danno maggiore informazione Entropia Informazione associata a valore x avente probabilitá p(x é i(x = log 2 p(x Nota: Eventi meno probabili danno maggiore informazione Entropia di v.c. X P : informazione media elementi di X H(X =

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

Introduzione. Classificazione delle non linearità

Introduzione. Classificazione delle non linearità Introduzione Accade spesso di dover studiare un sistema di controllo in cui sono presenti sottosistemi non lineari. Alcuni di tali sottosistemi sono descritti da equazioni differenziali non lineari, ad

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono essere

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

FORME DIFFERENZIALI IN R 3 E INTEGRALI

FORME DIFFERENZIALI IN R 3 E INTEGRALI FORME DIFFERENZIALI IN R 3 E INTEGRALI CLADIO BONANNO Contents 1. Spazio duale di uno spazio vettoriale 1 1.1. Esercizi 3 2. Spazi tangente e cotangente 4 2.1. Esercizi 6 3. Le forme differenziali e i

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

Equazioni non lineari

Equazioni non lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Trovare il valore x R tale che f (x) = 0,

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Φ(t,ẋ,ẍ,...,x (n) ) = 0.

Φ(t,ẋ,ẍ,...,x (n) ) = 0. 2 INTRODUZIONE ALLE EQUAZIONI DIFFERENZIALI ORDINARIE Si chiamano equazioni differenziali le equazioni in cui le incognite sono funzioni di una o più variabili indipendenti, ed in cui compaiano non solo

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

Anno 5 Funzioni inverse e funzioni composte

Anno 5 Funzioni inverse e funzioni composte Anno 5 Funzioni inverse e funzioni composte 1 Introduzione In questa lezione impareremo a definire e ricercare le funzioni inverse e le funzioni composte. Al termine di questa lezione sarai in grado di:

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

Equazioni differenziali e alle differenze

Equazioni differenziali e alle differenze CAPITOLO 2 Equazioni differenziali e alle differenze Introduciamo le equazioni differenziali e alle differenze partendo da un semplice problema: quello di studiare la crescita di una popolazione. Indichiamo

Dettagli

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)).

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)). Calcolo differenziale Il teorema di Rolle TEOREMA DI ROLLE Ipotesi f continua su [a, b] f derivabile per lo meno su (a,b) f(a) = f(b) Tesi Esiste almeno un punto c in (a, b) tale che Giustificazione con

Dettagli

Equazioni differenziali alle derivate parziali: un introduzione.

Equazioni differenziali alle derivate parziali: un introduzione. Capitolo 2 Equazioni differenziali alle derivate parziali: un introduzione. 2.1 Considerazioni preliminari Data una funzione f:ω R N R, con N un numero naturale sufficientemente grande, diremo equazione

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

3. SPAZI VETTORIALI CON PRODOTTO SCALARE

3. SPAZI VETTORIALI CON PRODOTTO SCALARE 3 SPAZI VETTORIALI CON PRODOTTO SCALARE 31 Prodotti scalari Definizione 311 Sia V SV(R) Un prodotto scalare su V è un applicazione, : V V R (v 1,v 2 ) v 1,v 2 tale che: i) v,v = v,v per ogni v,v V ; ii)

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli

Equazioni non lineari

Equazioni non lineari CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA ELETTRICA Equazioni non lineari Metodi iterativi per l approssimazione di radici Corso di calcolo numerico 2 01/11/2010 Manuela Carta INDICE Introduzione Metodo

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

Corso di Analisi Numerica - AN2. Parte 3: metodi alle differenze. per Equazioni Differenziali Ordinarie. Roberto Ferretti

Corso di Analisi Numerica - AN2. Parte 3: metodi alle differenze. per Equazioni Differenziali Ordinarie. Roberto Ferretti Corso di Analisi Numerica - AN2 Parte 3: metodi alle differenze per Equazioni Differenziali Ordinarie Roberto Ferretti Qualche richiamo analitico Filosofia generale dei metodi alle differenze: i metodi

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli