Sorgenti Numeriche - Soluzioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sorgenti Numeriche - Soluzioni"

Transcript

1 Sorgent umerche - Soluzon *) L anals delle frequenze con cu compaono le vare lettere n un documento n talano, comprendente 5975 caratter, ha fornto seguent dat: Lettera umero Frequenza relatva A 666. B C D E F 6.4 G H 63.5 I 66. J K L M Lettera umero Frequenza relatva O P 67.7 Q R S T U V W X Y Z 66. a) Assumendo smbol ndpendent, determnare lentropa d tale sorgente b) Come s modfca lentropa se s tene conto che la lettera Q sempre seguta dalla lettera U? Soluzone: a) Rcordamo brevemente la defnzone d frequenza relatva d presentazone: n P ( A ) lm A M M Questa defnzone, detta anche frequentsta, assoca all evento A generco un numero reale P(A) chamato probabltà dell evento A tale che: P( A) ; la probabltà dell evento è dunque ottenuta come rapporto tra l numero n A d volte n cu l evento stesso s verfca nel numero M d prove dell espermento casuale,quando M è molto grande. Rcordamo noltre che due event A e B s dcono statstcamente ndpendent o ndpendent se: n cu, P( A B) P( A B) P ( A, B) P( A) P( B), è la probabltà congunta de due event.

2 Con queste consderazon comprendamo che la frequenza relatva d presentazone è da ntenders come la probabltà che ha un generco smbolo d essere emesso. Dalla tabella che c vene fornta,ne rcavamo un altra nella quale è ndcata, per ogn smbolo,la quanttà d nformazone assocata al smbolo stesso ;tale quanttà s rcava con la formula usuale : p [bt],,..,6 q log log p Lettera (Evento A) umero n ) ( A Frequenza relatva Quantt d Informazone Assocata Lettera (Evento A) umero n ) ( A Frequenza relatva Quantt d Informazone assocata A B O C P D Q E R F S G T H U I V J W K X L Y M Z (Con : M 5975 ndchamo n numero d prove total) Utlzzamo ora la defnzone d entropa d sorgente (valore sperato d una varable casuale dscreta): H p [] q p q p log p log ( p ) [bt/smbolo] Poché l calcolo rsulta oneroso se ne fornsce solo l rsultato : H[] q bt smbolo b)ello spazo de smbol sappamo che esste una correlazone tra l carattere Q e l

3 carattere U n quanto, nella lngua talana, la lettera U segue sempre la Q senza alcuna eccezone(eccetto la parole soqquadro e soqquadrone!). Defnamo dunque un nuovo smbolo QU d cu occorre conoscere la probabltà che esso ha d essere emesso. La lettera U può apparre o da sola oppure n concomtanza con la lettera Q. Poché la lettera Q deve essere trasmessa 66 volte allora sgnfca che 66 U non verranno pù trasmesse scchè l numero totale d caratter da trasmettere passerà da M 5975 a : M caratter. Subto notamo la forza della tecnca della codfca che s manfesta con una rduzone della rdondanza da cu scatursce un numero mnore d caratter da trasmettere. Rsulta charo che tutte le frequenze relatve d presentazone non sono pù valde n quanto l numero d caratter complessvo è cambato ( M ). QU compare 66 volte ne caratter, allora : P ( QU) 4.47 P ( U).54 In sntes, se s rcalcolano tutte le frequenze relatve d presentazone s pervene ad un nuovo valore dell entropa che rsulta maggore n quanto la codfca ntroduce smbol che tendono ad essere statstcamente ndpendent ed equprobabl. Il bt rate è rdotto n quanto l numero d caratter da trasmettere è sgnfcatvamente mnore. *) Una pagna d testo scrtto contene medamente 4 rghe con 6 caratter per cascuna rga. Supponendo che caratter del testo sano rappresentat medante l codce ASCII esteso (8 bt), determnare l tempo necessaro per la trasmssone d una pagna supponendo d dsporre d un sstema d trasmssone che opera alla veloct d 4 bt/s. Soluzone: La prma operazone da compere consste nel calcolare l numero d caratter che compongono una sngola pagna d testo. Se ndchamo con l numero d caratter per pagna, con λ l numero d caratter e con r l numero d rghe, ottenamo: λ r caratter/pagna Il codce ASCII esteso utlzza n 8 bt per codfcare ogn sngolo carattere. Se chamamo M l numero totale d bt per pagna ottenamo : M n bt 3

4 Il sstema d trasmssone opera ad una veloctà R 4 bt/s ; l tempo T necessaro per la completa trasmssone dell ntero testo rsulta : T M 9 8s R 4 n cu T 8 s rappresenta la rsposta al questo. 3*) Una sorgente produce messagg costtut da sole cfre decmal (da a 9); le probablt assocate a var smbol sono le seguent: 7 P() P() P() P(9) 6 6 Calcolare lentropa della sorgente (approssmare log 7 3). Soluzone : Indchamo lo spazo (nseme) de smbol della sorgente come : {,..., m,..., m } {,,,..., 9 } M m con,,..9. I smbol della sorgente formano una partzone dello spazo de smbol, ovvero : M (m ) (m m m j Poché P(M) deve essere: )...(m ) j P( m ) P Se smbol fossero equprobabl rsulterebbe : P(m ). Rcordamo la defnzone d quanttà d nformazone assocata al generco smbolo della sorgente : p [bt] q log log p Essa c rcorda che smbol meno probabl portano assocata una quanttà d nformazone maggore (base per l logartmo : msuramo l nformazone n bt). Eseguamo calcol : 4

5 7 log ( p ) log ( log ( 7) log ( 6) ) ( 3 4) bt 6 q Gl altr smbol hanno tutt la stessa probabltà d essere emess e portano dunque assocata la stessa quanttà d nformazone.calcolamo solo q : q log log ( 6) 4 p bt La quanttà meda d nformazone emessa dalla sorgente vene fornta propro dall entropa H[q]; rcordamone la defnzone e po applchamola: H p [] q p q p log p log ( p ) [bt/smbolo] H[q] p q p q + p q bt/smbolo B: Se smbol fossero stat equprobabl e ndpendent avremmo ottenuto la massma entropa H[q] n: log log ( ) n bt 4*) Una sorgente produce messagg che utlzzano un alfabeto d 6 smbol, comprendente le cfre decmal (da a 9) e 6 smbol specal (spazo,., +, -, *, /). Le probablt assocate alle cfre decmal sono per tutte ugual a 5 56, mentre quelle assocate a smbol specal sono per tutte ugual a 56. Determnare lentropa della sorgente (approssmare log 5 4 7) Soluzone: Indchamo lo spazo de smbol come : M { m },..., m..., m {,,,...,9,spazo,..., /},,,5. Per lo spazo de smbol,valgono tutte le consderazon gà fatte nell eserczo 3. Come emerge dalla defnzone d entropa, non occorre calcolare prelmnarmente la quanttà d nformazone assocata a cascun smbolo poché cò è effettuato mplctamente nella defnzone stessa. Calcolamo dunque drettamente l entropa : 5

6 H 9 5 [] q p log ( p ) p log ( p ) p log ( p ) 5 56 log log bt 3.4 smbolo ( 56) ( log ( 5) log ( 56) ) *) Una sorgente, che rappresenta rsultat del concorso Totocalco, produce messagg che utlzzano un alfabeto d 3 smbol (, X, ). La probablt assocata al smbolo e par a, quella assocata al smbolo X e par a 3 8 e quella assocata al smbolo e par a 8. Determnare lentropa della sorgente (approssmare log 3 6) Soluzone : Indchamo ancora lo spazo de smbol come : {,..., m..., m } {X,, } M m,, Indchamo con p P(X). Samo n grado d calcolare mmedatamente l entropa : H [] q p log ( p ) p log ( p ) 3 3 log log ( ) + log () 8 bt smbolo 6*) Un fle d testo della dmensone d Mbyte vene trattato con un programma d compressone (come ad esempo Wnzp) ottenendo come rsultato un fle compresso della dmensone d 6 Kbyte Rcavare un lmte superore per lentropa del fle d testo orgnaro. Soluzone : Chamamo M l numero d byte del fle orgnaro ed M l numero d byte del fle compresso. 6

7 el caso d codfca ASCII s utlzzano n8 bt per poter rappresentare tutt gl 56 possbl smbol. Se tuttava potzzamo d lavorare con caratter che non sano equpropabl e ndpendent allora l entropa d sorgente (testo orgnaro) sarà una quanttà potetca : [ q] n H Possamo supporre che l entropa relatva al fle compresso abba un valore par a : [ q] n H Poché la tecnca d compressone tende ad elmnare la rdondanza e ad ottenere smbol statstcamente ndpendent ed equprobabl s deduce che l entropa d nformazone del testo compresso sarà maggore d quella del testo orgnaro e, nel caso mglore (entropa massma),avrà valore massmo par ad n : e per smbol ndpendent ed equprobabl : Il rapporto d compressone η è dato da : [ q] n n H [ q] n n H M 6 Kbyte η.6 (6%) M Kbyte Dato che l entropa fornsce l numero medo d bt per smbolo, nel caso del fle compresso con entropa massma possamo scrvere : bt H [ q] n 8 smbolo Il fle compresso contene un numero C d smbol par a: byte smbolo 6 Kbyte C 644 smbol byte smbolo Il prmo fle ha scuramente un numero C maggore d caratter; possamo scrvere la seguente dsequazone: 7

8 6Kbyte Kbyte 6kbyte Kbyte C C n n n H [ q] ottenamo : Kbyte byte bt H[] q Kbyte smbolo smbolo bt smbolo ossa: bt H[ q] smbolo 8

Appunti di Teoria dell Informazione

Appunti di Teoria dell Informazione Corso d Telecomuncazon (Classe Qunta della specalzzazone Elettronca e Telecomuncazon) Pagna - - . La teora dell nformazone La teora dell nformazone descrve l funzonamento de sstem d comuncazone sa analogc

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione.

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione. Msure ndpendent della stessa grandezza, cascuna con una dversa precsone. Consderamo d avere due msure o n generale della stessa grandezza, ndpendent, caratterzzate da funzone denstà d probabltà d Gauss.

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA ELEMENTI DI STATISTICA POPOLAZIONE STATISTICA E CAMPIONE CASUALE S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..)

Dettagli

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali.

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali. FRAME 0.1. Contents 1. Varabl aleatore 1 1.1. Introduzone 1 1.2. Varabl aleatore dscrete 2 1.3. Valore atteso (Meda) e Varanza 3 1.4. Varabl aleatore bnomal e d Posson 4 1.1. Introduzone. 1. Varabl aleatore

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

1) Le medie e le varianze calcolate su n osservazioni relative alle variabili quantitative X ed Y sono tali che. σ x

1) Le medie e le varianze calcolate su n osservazioni relative alle variabili quantitative X ed Y sono tali che. σ x TEORIA 1) Le mede e le varanze calcolate su n osservazon relatve alle varabl quanttatve X ed Y sono tal che 1 e. Consderando le corrspondent varabl standardzzate delle seguent affermazon rsulta vera 1

Dettagli

Lezione 2 Codifica della informazione

Lezione 2 Codifica della informazione Lezone Codfca della nformazone Vttoro Scarano Archtettura Corso d Laurea n Informatca Unverstà degl Stud d Salerno Organzzazone della lezone La codfca della nformazone Notazone poszonale Rappresentazone

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica 23 e 30 marzo 2017

Tutorato di Complementi di Analisi Matematica e Statistica 23 e 30 marzo 2017 Tutorato d Complement d Anals Matematca e Statstca 23 e 30 marzo 2017 Gl esercz con l smbolo eo sono tratt da prove d esame del 2016 ( eo gorno/mese eo) Esercz dagl ncontr precedent 3. Una varable X può

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

DBMS multimediali A L B E R T O B E L U S S I B A S I D I D A T I A N N O A C C A D E M I C O 2 0 1 1 / 2 0 1 2

DBMS multimediali A L B E R T O B E L U S S I B A S I D I D A T I A N N O A C C A D E M I C O 2 0 1 1 / 2 0 1 2 DBMS multmedal A L B E R T O B E L U S S I B A S I D I D A T I A N N O A C C A D E M I C O 2 0 1 1 / 2 0 1 2 DBMS multmedal Def: Sono DBMS che consentono d memorzzare e recuperare dat d natura multmedale:

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

Esercitazione 1 del corso di Statistica 2

Esercitazione 1 del corso di Statistica 2 Eserctazone del corso d Statstca rof. Domenco Vstocco Dott.ssa aola Costantn 8 Aprle 008 Eserczo n. S consder un campone d 00 student d cu s conoscono le seguent probabltà dstnt secondo l sesso (Mmascho,

Dettagli

una variabile casuale è continuase può assumere un qualunque valore in un intervallo

una variabile casuale è continuase può assumere un qualunque valore in un intervallo Varabl casual contnue Se samo nteressat alla temperatura massma gornaleraquesta è una varable casuale msurata n un ntervallo contnuoe qund è una v.c. contnua una varable casuale è contnuase può assumere

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Esercitazione 8 del corso di Statistica (parte 1)

Esercitazione 8 del corso di Statistica (parte 1) Eserctazone 8 del corso d Statstca (parte ) Dott.ssa Paola Costantn Eserczo Marzo 0 Un urna rossa contene 3 pallne banche, nere e galla. S consder l estrazone d due pallne. S calcol la probabltà d estrarre:.

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Teoria dell informazione e Meccanica Statistica

Teoria dell informazione e Meccanica Statistica Teora dell nformazone e Meccanca Statstca L. P. Gugno 2007 Rporto qu una breve rassegna dell approcco alla Meccanca Statstca medante la teora dell nformazone. Partamo dalla consderazone che la probabltà

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercz d Probabltà e Statstca Samuel Rota Bulò 25 maggo 2007 Funzon d v.a., meda, varanza, moda, medana, quantl e quartl. Vettor aleator, denst condzonata, covaranza, correlazone. Eserczo 1 Sa Y ax + b

Dettagli

Calcolo del Throughput del TCP

Calcolo del Throughput del TCP Calcolo del Throughput del TCP Modello Perodco Legge dell nverso della p Obettvo: determnare l throughput X(t) n termn d bt/s d una sorgente che mpega l TCP per trasmettere suo dat ad un destnataro. Sano

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Analisi degli errori. Introduzione J. R. Taylor, Introduzione all analisi degli errori, Zanichelli, Bo 1986

Analisi degli errori. Introduzione J. R. Taylor, Introduzione all analisi degli errori, Zanichelli, Bo 1986 Anals degl error Introduzone J. R. Taylor, Introduzone all anals degl error, Zanchell, Bo 1986 Sstem d untà d msura, rappresentazone numerca delle quanttà fsche e cfre sgnfcatve Resnck, Hallday e Krane

Dettagli

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof. Ragni Ferrara 05 luglio 2017

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof. Ragni Ferrara 05 luglio 2017 Matematca Fnanzara aa 2016-17 Prof Ragn Ferrara 05 luglo 2017 Cognome Nome matrcola Frma e posta elettronca (solo per ch non s è regstrato sul sto) NOTA BENE: s accetta una sola correzone nel gruppo d

Dettagli

rendere più veloce il trasferimento dei dati, per esempio attraverso una rete;

rendere più veloce il trasferimento dei dati, per esempio attraverso una rete; Corso: Gestone ed elaborazone grand mol d dat Lezone del: 29 maggo 2006 Argomento: Introduzone alla compressone de dat: tecnche d compressone, msure d performance, entropa della sorgente, modell statstc

Dettagli

Corso di TELECOMUNICAZIONI a.a

Corso di TELECOMUNICAZIONI a.a Corso d TEECOMUNICAZIONI anno accademco 2008-2009 Element d Teora dell Informazone Introduzone Storcamente, s fa rsalre la nascta della teora dell nformazone al 1948, quando C. Shannon pubblcò l suo lavoro

Dettagli

Esercizi di econometria: serie 1

Esercizi di econometria: serie 1 Esercz d econometra: sere Eserczo E data la popolazone dell Abruzzo classcata n se categore d reddto ed n tre class d età come segue: Reddto: () L... 4.. () L. 4.. 8.. () L. 8.... (4) L..... () L.....

Dettagli

Carla Seatzu, 18 Marzo 2008

Carla Seatzu, 18 Marzo 2008 8. Ret d Code Carla Seatzu, 8 Marzo 008 Nella maggor parte de process produttv rsulta troppo restrttvo consderare una sola rsorsa. Esempo: lea tandem arrv µ µ v partenze V sono dverse stazon cu una parte

Dettagli

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 2:

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 2: Costruzone d macchne Modulo d: Progettazone probablstca e affdabltà Marco Beghn Lezone : Probabltà condzonata e varabl casual Probabltà condzonata: La probabltà d un evento A (r)valutata quando è noto

Dettagli

Propagazione delle incertezze

Propagazione delle incertezze Propagazone delle ncertezze In questa Sezone vene trattato l problema della propagazone delle ncertezze quando s msurano pù grandezze dfferent,,,z soggette a error d tpo casuale e po s utlzzano tal grandezze

Dettagli

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t Relazon lnear Uno de pù mportant compt degl esperment è quello d nvestgare la relazone tra due varabl. Il caso pù mportante (e a cu spesso c s rconduce, come vedremo è quello n cu la relazone che s ntende

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

PRIMA PROVA INTERMEDIA DI STATISTICA CLEA (COD. 5047/4038/371/377) 3 Novembre 2004 COMPITO A1

PRIMA PROVA INTERMEDIA DI STATISTICA CLEA (COD. 5047/4038/371/377) 3 Novembre 2004 COMPITO A1 PRIMA PROVA INTERMEDIA DI STATISTICA CLEA (COD. 5047/4038/37/377) 3 Novembre 004 Cognome Numero d matrcola Nome COMPITO A A fn della valutazone s terrà conto solo ed esclusvamente d quanto rportato negl

Dettagli

Misure Ripetute ed Indipendenti

Misure Ripetute ed Indipendenti Msure Rpetute ed Indpendent Una delle metodologe pù semplc per valutare l affdabltà d una msura consste nel rpeterla dverse volte, nelle medesme condzon, ed esamnare dvers valor ottenut. Ovvamente, una

Dettagli

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω Metod d anals Eserczo Anals alle magle n presenza d sol generator ndpendent d tensone R s J R Determnare le tenson sulle resstenze sapendo che: s s 0 R R 5.Ω s J R J R R 5Ω R 0Ω R 6Ω R 5 Dsegnamo l grafo,

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

Le condizioni di funzionamento delle condotte di adduzione

Le condizioni di funzionamento delle condotte di adduzione Le condzon d funzonamento delle condotte d adduzone Ret a dramazon aperte): tutte le portate ncognte possono essere unvocamente determnate dalle equazon d contnutà. Moto assolutamento turbolento α = 2

Dettagli

Le condizioni di funzionamento delle condotte di adduzione

Le condizioni di funzionamento delle condotte di adduzione Le condzon d funzonamento delle condotte d adduzone Ret a dramazon (aperte): tutte le portate ncognte possono essere unvocamente determnate dalle equazon d contnutà. Moto assolutamento turbolento (α =

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Carla Seatzu, 8 Marzo 28 Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto

Dettagli

Sistemi Intelligenti Stimatori e sistemi lineari - III

Sistemi Intelligenti Stimatori e sistemi lineari - III Sstem Intellgent Stmator e sstem lnear - III Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@d.unm.t /6 http:\\borghese.d.unm.t\

Dettagli

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1 Varabl aleatore dscrete Probabltà e Statstca I - a.a. 04/05 - Defnzone Una varable aleatora è una funzone che assoca ad ogn esto dello spazo campone d un espermento casuale un numero. L nseme de possbl

Dettagli

Statistica di Bose-Einstein

Statistica di Bose-Einstein Statstca d Bose-Ensten Esstono sstem compost d partcelle dentche e ndstngubl che non sono soggette al prncpo d esclusone. In quest sstem non esste un lmte al numero d partcelle che possono essere osptate

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

Misure dirette utilizzate per il calcolo della misura indiretta X:

Misure dirette utilizzate per il calcolo della misura indiretta X: Propagazone degl error Msure drette utlzzate per l calcolo della msura ndretta X: ( ) a a a = ± Δ b = ( b ± Δ b) Il calcolo dell errore assoluto X ( espresso nella stessa untà d msura della grandezza X

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

Corso di Tecniche elettromagnetiche per la localizzazione e il controllo ambientale. Test scritto del 08 / 09 / 2005

Corso di Tecniche elettromagnetiche per la localizzazione e il controllo ambientale. Test scritto del 08 / 09 / 2005 Corso d Tecnche elettromagnetche per la localzzazone e l controllo ambentale Test scrtto del 8 / 9 / 5 S rsponda alle seguent domande marcando con un segno le rsposte che s reputano corrette. S rsolva

Dettagli

VERIFICA DI MATEMATICA 1^F Liceo Sportivo 23 aprile 2018 Rispondere su un foglio protocollo e riconsegnare entro le ore 12:45 NOME E COGNOME

VERIFICA DI MATEMATICA 1^F Liceo Sportivo 23 aprile 2018 Rispondere su un foglio protocollo e riconsegnare entro le ore 12:45 NOME E COGNOME VERIFICA DI MATEMATICA ^F Lceo Sportvo 3 aprle 08 Rspondere su un foglo protocollo e rconsegnare entro le ore :45 NOME E COGNOME Consderamo la funzone f (a3 a+(a ). Determnare seguent valor: f (6) ; f

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 17/10/2006 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 17/10/2006 Dott. Alfonso Piscitelli. Esercizio 1 Unverstà d Cassno Corso d Statstca Eserctazone del 7/0/006 Dott. Alfonso Psctell Eserczo Il seguente data set rporta la rlevazone d alcun caratter su un collettvo d 0 soggett. Soggetto Sesso Età Reddto

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1 Unverstà d Cassno Corso d Statstca Eserctazone del 28/0/2008 Dott. Alfonso Psctell Eserczo Il seguente data set rporta la rlevazone d alcun caratter su un collettvo d 20 soggett. Soggetto Età Resdenza

Dettagli

L ANALISI MONOVARIATA: Variabilità e mutabilità. Prof. Maria Carella

L ANALISI MONOVARIATA: Variabilità e mutabilità. Prof. Maria Carella L AALISI MOOVARIATA: Varabltà e mutabltà Prof. Mara Carella Varabltà Le msure d tendenza centrale non sono suffcent alla comprensone de fenomen. Una sntes approprata deve tener conto del modo n cu s dstrbuscono

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

y. E' semplicemente la media calcolata mettendo

y. E' semplicemente la media calcolata mettendo COME FUNZIONA L'ANOVA A UN FATTORE: SI CONFRONTANO TANTE MEDIE SCOMPONENDO LA VARIABILITA' TOTALE Per testare l'potes nulla che la meda d una varable n k popolazon sa la stessa, s suddvde la varabltà totale

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON 3 CAMPIOAMETO DI ROULLI E DI POISSO 3. ITRODUZIOE In questo captolo esamneremo due schem d camponamento che dversamente dal camponamento casuale semplce non producono campon d dmensone fssa ma varable.

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio I Appello d Calcolo delle Probabltà Cognome: Laurea Trennale n Matematca 24/5 Nome: 29 gennao 25 Emal: Se non è espressamente ndcato l contraro, per la soluzone degl esercz è possble usare tutt rsultat

Dettagli

Modelli di variabili casuali

Modelli di variabili casuali Modell d varabl casual Un modello d v.c. è una funzone f() che assoca ad ogn valore d una v.c. X la corrspondente probabltà. Obettvo: calcolo della probabltà per tutt valor che X può assumere Per le v.c.

Dettagli

OPERAZIONI E INSIEMI NUMERICI

OPERAZIONI E INSIEMI NUMERICI OPERAZIONI E INSIEMI NUMERICI Per rcordare H Un'operazone bnara n un nseme non vuoto A eá una legge ce ad ogn coppa d element a,b A assoca un elemento c A. Gl element a e b s camano operand o termn dell'operazone,

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

L arcobaleno. Giovanni Mancarella. n = n = n = α( o )

L arcobaleno. Giovanni Mancarella. n = n = n = α( o ) Govann Mancarella L arcobaleno I(α) (a.u.) n =.3338 n =.336 39 40 4 4 43 α( o ) In questa nota utlzzeremo l termne dstrbuzone per ndcare la denstà d probabltà d una varable casuale. Il fenomeno dell arcobaleno

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Laboratorio di Matematica e Informatica 1

Laboratorio di Matematica e Informatica 1 Laboratoro d Matematca e Informatca 1 Matteo Mondn Antono E. Porreca matteo.mondn@gmal.com porreca@dsco.unmb.t Dpartmento d Informatca, Sstemstca e Comuncazone Unverstà degl Stud d Mlano - Bcocca 10 Gennao

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012 CdL n SCIENZE DELL ORGANIZZAZIONE ESAME d STATISTICA ESERCIZIO 1 (+.5+.5+3) La tabella seguente rporta la dstrbuzone d frequenza del peso X n gramm d una partta d mele provenent da un certo frutteto. X=peso

Dettagli

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann FISICA DEI FLUIDI Lezone 5-5 Maggo 202 Le equazon per le varabl macroscopche: moment dell equazone d Boltzmann Teorema H a parte, non è facle estrarre altre consderazon general sulla funzone denstà d probabltà

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 17 Luglio Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 17 Luglio Attenzione: Cognome... Nome.. Archtettura degl Elaborator Classe 3 Prof.ssa Anselmo Appello del 17 Luglo 2014 Attenzone: Inserre propr dat nell apposto spazo sottostante e n testa a questa pagna. Preparare un documento

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 Le tabelle d crescta Nella tabella sono rportat dat relatv alle altezze mede delle bambne dalla nascta fno a un anno d età. Stablsc se esste una relazone lneare tra

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

La likelihood. , x 3. , x 2. ,...x N

La likelihood. , x 3. , x 2. ,...x N La lkelhood È dato un set d msure {x 1, x 2, x 3,...x N } (cascuna delle qual può essere multdmensonale) Supponamo che la pdf (f) dpenda da un parametro (anch'esso eventualmente multdmensonale) La verosmglanza

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

L ANALISI MONOVARIATA: Variabilità e mutabilità. Prof. Maria Carella

L ANALISI MONOVARIATA: Variabilità e mutabilità. Prof. Maria Carella L AALISI MOOVARIATA: Varabltà e mutabltà Prof. Mara Carella Varabltà Le msure d tendenza centrale non sono suffcent alla comprensone de fenomen. Una sntes approprata deve tener conto del modo n cu s dstrbuscono

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria.

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria. SCELTA OTTIMALE DEL PROCEDIMENTO PER PESARE Il procedmento può essere pensato come una rcerca n un nseme ordnato, l peso ncognto può essere cercato con l metodo della rcerca bnara. PESI CAMPIONE IN BASE

Dettagli

CPM: Calcolo del Cammino Critico

CPM: Calcolo del Cammino Critico Supponamo d conoscere per ogn attvtà A = (,j) la sua durata t j t j j Calcolamo l tempo al pù presto n cu può nzare o fnre una attvtà. Supponamo d dover calcolare l tempo al pù presto n cu s possono nzare

Dettagli

Lezione 7 TEORIA DELL INFORMAZIONE. Gianluca Reali

Lezione 7 TEORIA DELL INFORMAZIONE. Gianluca Reali Lezone 7 TEORIA DELL INFORMAZIONE Ganluca Real Integrazone delle dapostve d S. Cacopard Concett ntroduttv In un sstema dgtale d telecomuncazone una sorgente trasmette nformazone, tramte un canale trasmssvo,

Dettagli

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X) ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa

Dettagli

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese Sstem Intellgent Relazone tra ottmzzazone e statstca - IV Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@dunmt Anals dell

Dettagli

ESERCIZI SULLE VARIABILI CASUALI DISCRETE

ESERCIZI SULLE VARIABILI CASUALI DISCRETE ESERCIZI SULLE VARIABILI CASUALI DISCRETE 1) S lanca un dado. Rappresentare la varable casuale: X = " facca mnore d tre ". 2) S lancano due dad. Rappresentare la varable casuale: X = "somma delle facce

Dettagli

INDICE. Matrici e Determinanti. Scaricabile su: TEORIA. Definizione e tipologia di matrici. Operazioni tra matrici

INDICE. Matrici e Determinanti. Scaricabile su:   TEORIA. Definizione e tipologia di matrici. Operazioni tra matrici P r o f. Gu d of r a n c h n Anteprma Anteprma Anteprma www. l e z o n. j md o. c o m Scarcale su: http://lezon.jmdo.com/ Matrc e Determnant INDICE TEORIA Defnzone e tpologa d matrc Operazon tra matrc

Dettagli

LAVORO ESTIVO 4CO1 / 4 CO2

LAVORO ESTIVO 4CO1 / 4 CO2 LVORO ESTIVO CO / CO LE EQUZIONI ESPONENZILI 7 7 7 LE DISEQUZIONI ESPONENZILI 7 LE EQUZIONI LOGRITMICHE [ ] [ ] log log log log log log log log log ln ln ln ln ln ln log log log LE DISEQUZIONI LOGRITMICHE

Dettagli