Appunti di Teoria dell Informazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti di Teoria dell Informazione"

Transcript

1 Corso d Telecomuncazon (Classe Qunta della specalzzazone Elettronca e Telecomuncazon) Pagna - -

2 . La teora dell nformazone La teora dell nformazone descrve l funzonamento de sstem d comuncazone sa analogc che dgtal ponendo l attenzone sul contenuto nformatvo del messaggo. Essa tratta aspett baslar qual: a) La msura dell nformazone assocata ad una sorgente. b) La msura della quanttà d nformazone trasferble attraverso un canale d comuncazone. c) L uso d codfche del messaggo per sfruttare al meglo la capactà nformatva del canale. La teora dell nformazone ha un teorema fondamentale: l teorema d Shannon. Sa data una sorgente S che emetta smbol alla veloctà R [bt/sec] ed un canale d capactà C [bt/sec], se R C allora esste un metodo d codfca della sorgente tale che la frequenza degl error al rcevtore sa arbtraramente pccola; se, nvece, R>C non esste alcun codce che consenta una equvocazone mnore d R-C.. Le sorgent Le sorgent sono dspostv che emettono messagg d natura DISCRETA o CONTINUA. In queste pagne saranno consderate solo sorgent dscrete. Qund una sorgente emetterà smbol appartenent ad un nseme numerable, detto alfabeto d sorgente; allora potremo scrvere per l generco smbolo x che x X = { x, x,..., x m } dove X è l alfabeto d sorgente e m la sua dmensone. La codfca d sorgente, ne mod che s vedranno, ha lo scopo d rdurre la RIDONDANZA e qund sfruttare al meglo la capactà del canale. 3. La quanttà d nformazone Per defnre correttamente la quanttà d nformazone è fondamentale comprendere che essa è collegata da una relazone d proporzonaltà nversa con l grado d conoscenza del messaggo. Coè, l nformazone assocata ad un evento noto è nulla; un messaggo relatvo ad un evento raro ha nvece elevato contenuto nformatvo. Pagna - -

3 Qund trattando l problema della quanttà d nformazone dal punto d vsta probablstco possamo procedere nel seguente modo. Sa S una sorgente dscreta che emette smbol x appartenent ad un alfabeto X d dmensone m. Ovvero x X = { x, x,..., x m } e sa P(x ) la probabltà d emssone del smbolo x, ovvamente sarà verfcato che m P ( x ) =. Abbamo gà detto che, detta I(x ) la quanttà d nformazone assocata all emssone del smbolo x, dovrà essere I( x ). Allora s può dare la P( x ) seguente defnzone d quanttà d nformazone assocata al smbolo x : def. I( x ) = log = log ( P( x )) P( x ) [bt]. La quanttà d nformazone vene msurata n bt e log0 ( a) convene anche rcordare la relazone log ( a ) =. 0,30 4. Entropa d una sorgente La quanttà d nformazone complessva emessa da una sorgente è tanto maggore quanto pù elevata è la capactà d scelta della sorgente stessa, ovvero quanto pù le probabltà d emssone sono unformemente dstrbute tra tutt suo smbol. Ora l entropa d sorgente H(x) msura l grado d scelta, ovvero d dspersone e d ncertezza, d una sorgente. Essa è l nformazone meda emessa dalla sorgente ed è defnta come: m m m def. = P( x = ) I( x ) P( x )log = P( x )log ( P( x )) P( x ) msurata n [bt/smbolo]. È evdente che se la sorgente non scegle, ad esempo emette un solo smbolo x j con P(x j )=, allora H(x)=0. Infatt m = P( x ) I( x ) = P( x j )log ( P( x j )) = log () = 0. Se nvece tutt smbol sono equprobabl s ha la massma dspersone, ovvero la massma possbltà d scelta, e qund Pagna - 3 -

4 m = P( x = ) I( x ) m log = log ( m) = H MAX. m m Per meglo charre quest ultmo concetto s consder l caso d una sorgente bnara con x { 0,} e P(0)=p e P()=-p. In tale caso s ha = p log ( p) ( p)log ( p) con valore massmo H MAX =log ()= bt/smbolo quando due smbol sono equprobabl. Facendo varare p nell ntervallo [0,] s ottene l seguente grafco dell entropa d una sorgente bnara. Entropa d sorgente bnara, 0,8 H(p) 0,6 0,4 0, 0 E-04 0, 0, 0,3 0,5 0,6 0,7 0,8 0,9 0,999 p 5. Rdondanza La rdondanza d sorgente è quella caratterstca per cu una sorgente d nformazone emette messagg deducbl da nformazon contenute ne messagg stess. La rduzone della rdondanza, medante opportune codfche, consente d sfruttare al meglo le caratterstche d un canale. Sono codfcator d sorgente quegl element che vengono nsert dopo la sorgente stessa allo scopo d rdurre la rdondanza del codce emesso; l messaggo è così trasformato n una successone d smbol l pù possble ndpendent tra loro ed equprobabl. La defnzone matematca d rdondanza è la seguente Pagna - 4 -

5 Rd =. H MAX S defnsce nvece Effcenza d Codfca Bnara de caratter d sorgente la seguente quanttà log (m) η =. N bt Dove per N bt s ntende l numero d bt mpegat per la codfca d sorgente, n genere superore a quell strettamente necessar. 6. Capactà nformatva d un canale dscreto La capactà nformatva d un canale dscreto è defnta come la massma quanttà d nformazone trasferble nel canale, nell untà d tempo, n modo affdable. S consder l seguente canale dscreto rumoroso x CANALE RUMOROSO y dove x sono smbol entrant e y smbol uscent. Sa H(x) l entropa d sorgente, ovvero l nformazone meda posseduta n orgne; sa H(x/y) l nformazone d dsturbo dovuta al canale. Posso qund defnre I( x; y) = H ( x / y) l nformazone che sarà posseduta alla destnazone. S defnsce Capactà d Informazone del Canale la quanttà: C S = msurata n bt/smbolo. max { I( x; y) } Conoscendo po la massma veloctà d trasmssone de smbol consentta nel canale, s può calcolare la Capactà Informatva del Canale come Massma Veloctà d Trasfermento su un Canale rumoroso. E s ha C = s CS = s max{ I( x; y) } msurata n bt/sec. Valore spesso rcavable dalla nota relazone d Shannon S C = 3,3B log0 +, N Pagna - 5 -

6 essendo B la banda passante del canale e S/N l rapporto segnale-rumore. 7. Veloctà d emssone dell nformazone S consder una sorgente che emetta smbol x X, dove X è un alfabeto d dmensone m. Sano note le probabltà P(x ) d emssone de smbol. Sa H(x) l entropa della sorgente, ovvero l nformazone meda per smbolo. S supponga, ora, che la sorgente emetta n smbol con veloctà v [smbol/sec]. In tale caso s potrà affermare che l nformazone totale trasferta è I( x) = n espressa n bt. Posso, qund, defnre la veloctà meda d emssone dell nformazone come nformazone trasmessa R =. tempo necessaro Allora, nel generco caso n esame, s avrà I( x) n R = = = v t n v msurata n bt/sec. Charamente se l nformazone è emessa n un canale dovrà essere sempre R C. Eserczo Una sorgente emette sequenze d n=4 smbol con veloctà v=000 smbol/sec. I smbol sono tutt equprobabl ed appartengono ad un alfabeto d dmensone m=8. Calcolare la mnma capactà d canale necessara. Calcolo l entropa = log (8) = 3bt/smbolo Calcolo l nformazone emessa nella sequenza I( x) = n = 4 3 = bt Calcolo la capactà mnma C = R = v = bt/sec. mn = Eserczo Una sorgente emette smbol ndpendent, appartenent ad un alfabeto d dmensone 5, con veloctà meda d emssone della nformazone Pagna - 6 -

7 R=7500bt/sec. Noto che: P = P ; P 3 = P ; P 4 = P 3 ; P 4 = P 5 calcolare l entropa d sorgente e la veloctà d emssone de smbol. Qund calcolare R nell potes d smbol equprobabl. 5 Noto che P =, sfruttando le condzon ndcate nella tracca, s calcolano le sngole probabltà che rsultano essere: P =P 3 =0, P =0,4 P 4 =P 5 =0,. Qund s calcola l entropa della sorgente come 5 P log ( ) 5 0 P = P log ( P ) = =, bt/smbolo. 0,30 D conseguenza la veloctà d emssone d sorgente sarà R 7500 v = = = 3538smbol/sec., Nell potes d smbol equprobabl s ha P = = = 0, e, qund, m 5 log0 (5) H MAX = log (5) = =,3 bt/smbolo. 0,30 In questo caso la veloctà d emssone dell nformazone sarà R v H = 3538,3 = 808 bt/sec. = MAX 8. Un esempo d codfca d sorgente: la codfca d Huffman L operazone d codfca d sorgente vene effettuata per rdurre la rdondanza ed alzare l effcenza d codfca. Ovvamente nel momento n cu s procede alla codfca d smbol non equprobabl s genereranno delle sequenze codfcate d lunghezze dverse, questo allo scopo d ottenere un codce ottmale senza equvocazone. Inzamo con l dare le seguent defnzon: N = lunghezza della parola d codce assocata al smbolo x P = probabltà d emssone del smbolo x Pagna - 7 -

8 m = numero de smbol da codfcare N = lunghezza meda della parola d codce, calcolata come m N = P N. S osserv che un codce rsulterà tanto pù effcente quanto pù N rsulterà pccola. Un codce sarà detto OTTIMALE se rspetterà la seguente condzone N +. S defnrà po EFFICIENZA DI CODIFICA la quanttà η =, N e perché s abba l nequvocabltà della codfca dovrà essere soddsfatta la seguente condzone (d Kraft): m = N K. In sntes, un codce potrà drs ottmale se saranno verfcate le seguent quattro condzon: N = H (x) η = K= N = I( x ) = log ( P ) Non rmane che esamnare l caso della codfca d Huffman e convene affrontarlo propro con un esempo. S consder una sorgente che emette smbol appartenent ad un alfabeto d dmensone m=6 con probabltà d emssone ndcate nella seguente tabella smbol probabltà X P(x )=0,3 X P(x )=0,5 X 3 P(x 3 )=0, X 4 P(x 4 )=0, X 5 P(x 5 )=0, X 6 P(x 6 )=0,05 Per operare la codfca d Huffman deve essere costruta una partcolare tabella, llustrata d seguto, seguendo le regole d seguto ndcate. Pagna - 8 -

9 Step Step Step 3 Step 4 Step 5 X =0,3 X =0,3 X =0,3 X 3456 =0,45 X =0,55 X =0,5 X =0,5 X =0,5 X =0,3 X 3456 =0,45 X 3 =0, X 3 =0, X 456 =0,5 X =0,5 X 4 =0, X 56 =0,5 X 3 =0, X 5 =0, X 4 =0, X 6 =0,05 X 56 =X 5 +X 6 =0,5 X 456 =X 4 +X 56 =0,5 X 3456 =X 3 +X 456 =0,45 X =X +X =0,55 ) Costrusc la prma colonna (step ) ordnando smbol per probabltà decrescent. ) Po crea un nuovo smbolo accoppando gl ultm due, tale smbolo avrà una probabltà par allo somma delle due che lo costtuscono. 3) Usando l nuovo smbolo crea una seconda colonna (step ), ordnando smbol sempre per probabltà decrescent. 4) Rpet le operazon de pass ) e 3), creando d volta n volta nuove colonne, fno a quando non rmangono solo due smbol raggruppat e ordnat per probabltà decrescent. Nel nostro caso l tutto termna allo step 5. Adesso la tabella va rletta da destra verso snstra, come una struttura ad albero, e ad ogn bforcazone s assegna uno 0 ed un fno a tornare a smbol orgnar. Smb. Valore Smb. Valore Smb. Valore Smb. Valore X 0 X 0 X X 3456 X 3 0 X 456 X 4 0 X 56 X 5 0 X 6 Adesso, per ogn smbolo orgnaro, non s deve fare altro che leggere l codce leggendo, da snstra a destra, la sequenza d bt che parte dall nzo del raggruppamento fno al smbolo n esame. Nel nostro esempo s verrà a generare l seguente codce: Pagna - 9 -

10 smbolo codce N X 00 X 0 X 3 0 X X X 6 4 S osserv come l codce generato è assolutamente prvo d equvocazone. Inoltra nella tabella sono ndcate anche le lunghezze delle sngole parole d codce. Calcolando l entropa della sorgente n esame s ottene H(x)=,366 bt/smbolo. Ora conoscendo l valore d N = 0,3 + 0,5 + 0, + 3 0, + 4 0, + 4 0,05 =, 4 bt/smbolo s vede che è verfcata la condzone N +. Inoltre rsulta η = 99% ed è soddsfatta la N condzone d Kraft (sull nequvocabltà), ovvero rsulta K = = + + =. Qund l codce è ottmale. Pagna - 0 -

Sorgenti Numeriche - Soluzioni

Sorgenti Numeriche - Soluzioni Sorgent umerche - Soluzon *) L anals delle frequenze con cu compaono le vare lettere n un documento n talano, comprendente 5975 caratter, ha fornto seguent dat: Lettera umero Frequenza relatva A 666. B

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

Corso di TELECOMUNICAZIONI a.a

Corso di TELECOMUNICAZIONI a.a Corso d TEECOMUNICAZIONI anno accademco 2008-2009 Element d Teora dell Informazone Introduzone Storcamente, s fa rsalre la nascta della teora dell nformazone al 1948, quando C. Shannon pubblcò l suo lavoro

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

Misure Ripetute ed Indipendenti

Misure Ripetute ed Indipendenti Msure Rpetute ed Indpendent Una delle metodologe pù semplc per valutare l affdabltà d una msura consste nel rpeterla dverse volte, nelle medesme condzon, ed esamnare dvers valor ottenut. Ovvamente, una

Dettagli

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca a.a. 9- uando studarla? Obettvo Dagramma d Lorenz Rapporto d concentrazone rea d concentrazone Esemp Sommaro La concentrazone uando studarla? Obettvo X: carattere quanttatvo tra le untà

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t Relazon lnear Uno de pù mportant compt degl esperment è quello d nvestgare la relazone tra due varabl. Il caso pù mportante (e a cu spesso c s rconduce, come vedremo è quello n cu la relazone che s ntende

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

una variabile casuale è continuase può assumere un qualunque valore in un intervallo

una variabile casuale è continuase può assumere un qualunque valore in un intervallo Varabl casual contnue Se samo nteressat alla temperatura massma gornaleraquesta è una varable casuale msurata n un ntervallo contnuoe qund è una v.c. contnua una varable casuale è contnuase può assumere

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

DBMS multimediali A L B E R T O B E L U S S I B A S I D I D A T I A N N O A C C A D E M I C O 2 0 1 1 / 2 0 1 2

DBMS multimediali A L B E R T O B E L U S S I B A S I D I D A T I A N N O A C C A D E M I C O 2 0 1 1 / 2 0 1 2 DBMS multmedal A L B E R T O B E L U S S I B A S I D I D A T I A N N O A C C A D E M I C O 2 0 1 1 / 2 0 1 2 DBMS multmedal Def: Sono DBMS che consentono d memorzzare e recuperare dat d natura multmedale:

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Incertezza di sensibilità < fluttuazione intrinseca delle misure.

Incertezza di sensibilità < fluttuazione intrinseca delle misure. Error casual no ad ora abbamo correlato la bontà d una msura alla sensbltà degl strument utlzzat. Samo partt da una stuazone n cu effettuata una sere d msure rpetute, le msure hanno tutte dato lo stesso

Dettagli

Esempi di canali DMC ed esercizi su: 1) Calcolo della capacità di canale. 2) Calcolo della probabilità di errore

Esempi di canali DMC ed esercizi su: 1) Calcolo della capacità di canale. 2) Calcolo della probabilità di errore Argoment della Lezone Esem d canal DMC ed esercz su: Calcolo della caactà d canale Calcolo della robabltà d errore 3 Verca della dsuguaglanza d Fano Eserczo Sa data una sorgente bnara con smbol ed avent

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA ELEMENTI DI STATISTICA POPOLAZIONE STATISTICA E CAMPIONE CASUALE S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..)

Dettagli

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria.

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria. SCELTA OTTIMALE DEL PROCEDIMENTO PER PESARE Il procedmento può essere pensato come una rcerca n un nseme ordnato, l peso ncognto può essere cercato con l metodo della rcerca bnara. PESI CAMPIONE IN BASE

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

Lezione 7 TEORIA DELL INFORMAZIONE. Gianluca Reali

Lezione 7 TEORIA DELL INFORMAZIONE. Gianluca Reali Lezone 7 TEORIA DELL INFORMAZIONE Ganluca Real Integrazone delle dapostve d S. Cacopard Concett ntroduttv In un sstema dgtale d telecomuncazone una sorgente trasmette nformazone, tramte un canale trasmssvo,

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

Analisi degli errori. Introduzione J. R. Taylor, Introduzione all analisi degli errori, Zanichelli, Bo 1986

Analisi degli errori. Introduzione J. R. Taylor, Introduzione all analisi degli errori, Zanichelli, Bo 1986 Anals degl error Introduzone J. R. Taylor, Introduzone all anals degl error, Zanchell, Bo 1986 Sstem d untà d msura, rappresentazone numerca delle quanttà fsche e cfre sgnfcatve Resnck, Hallday e Krane

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Propagazione delle incertezze

Propagazione delle incertezze Propagazone delle ncertezze In questa Sezone vene trattato l problema della propagazone delle ncertezze quando s msurano pù grandezze dfferent,,,z soggette a error d tpo casuale e po s utlzzano tal grandezze

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Carla Seatzu, 8 Marzo 28 Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI G. Martnes 1 G. Martnes G. Martnes 3 IL RUMORE EGLI AMPLIFICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

7. Teoria dell Informazione

7. Teoria dell Informazione 7. Teora dell Informazone 7. Introduzone Come mostrato n Fg., n un sstema dgtale d telecomuncazone una sorgente trasmette nformazone, tramte un canale trasmssvo, a una destnazone. Gl nconvenent ntrodott

Dettagli

Sistemi Intelligenti Stimatori e sistemi lineari - III

Sistemi Intelligenti Stimatori e sistemi lineari - III Sstem Intellgent Stmator e sstem lnear - III Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@d.unm.t /6 http:\\borghese.d.unm.t\

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energa e Lavoro Fnora abbamo descrtto l moto de corp (puntform) usando le legg d Newton, tramte le forze; abbamo scrtto l equazone del moto, determnato spostamento e veloctà n funzone del tempo. E possble

Dettagli

Teoria dell informazione e Meccanica Statistica

Teoria dell informazione e Meccanica Statistica Teora dell nformazone e Meccanca Statstca L. P. Gugno 2007 Rporto qu una breve rassegna dell approcco alla Meccanca Statstca medante la teora dell nformazone. Partamo dalla consderazone che la probabltà

Dettagli

Lezione 2 Codifica della informazione

Lezione 2 Codifica della informazione Lezone Codfca della nformazone Vttoro Scarano Archtettura Corso d Laurea n Informatca Unverstà degl Stud d Salerno Organzzazone della lezone La codfca della nformazone Notazone poszonale Rappresentazone

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

OPERAZIONI E INSIEMI NUMERICI

OPERAZIONI E INSIEMI NUMERICI OPERAZIONI E INSIEMI NUMERICI Per rcordare H Un'operazone bnara n un nseme non vuoto A eá una legge ce ad ogn coppa d element a,b A assoca un elemento c A. Gl element a e b s camano operand o termn dell'operazone,

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X) ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Anna Nobl 1 Defnzone e grad d lbertà S consder un corpo d massa totale M formato da N partcelle cascuna d massa m, = 1,..., N. Il corpo s dce rgdo se le dstanze mutue tra tutte le partcelle che lo compongono

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1 Unverstà d Cassno Corso d Statstca Eserctazone del 28/0/2008 Dott. Alfonso Psctell Eserczo Il seguente data set rporta la rlevazone d alcun caratter su un collettvo d 20 soggett. Soggetto Età Resdenza

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 17 13 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? 2/19? Fgura 1: ( 5y

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA CAPITOLO 33 LA CORRENTE ELETTRICA CONTINUA 1 L INTENSITÀ DELLA CORRENTE ELETTRICA 1! v! a t! F m e! E m t v! e t m! E Fssato l ntervallo d tempo t, s può scrvere! v! E 2 Q t 4,0 10 2 A 5,0 s 0,20 C 3 t

Dettagli

y. E' semplicemente la media calcolata mettendo

y. E' semplicemente la media calcolata mettendo COME FUNZIONA L'ANOVA A UN FATTORE: SI CONFRONTANO TANTE MEDIE SCOMPONENDO LA VARIABILITA' TOTALE Per testare l'potes nulla che la meda d una varable n k popolazon sa la stessa, s suddvde la varabltà totale

Dettagli

Teoria dei Segnali Rumore granulare

Teoria dei Segnali Rumore granulare Teora de Segnal Rumore granulare Valentno Lberal Dpartmento d Fsca Unverstà degl Stud d Mlano valentno.lberal@unm.t Teora de Segnal Rumore granulare 24 gennao 211 Valentno Lberal (UnMI) Teora de Segnal

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Intelligenza Artificiale II. Ragionamento probabilistico Rappresentazione. Marco Piastra. Intelligenza Artificiale II - AA 2007/2008

Intelligenza Artificiale II. Ragionamento probabilistico Rappresentazione. Marco Piastra. Intelligenza Artificiale II - AA 2007/2008 Intellgenza rtfcale II Ragonamento probablstco Rappresentazone Marco astra Ragonamento probablstco: rappresentazone - arte Mond possbl sottonsem event artzon e varabl aleatore robabltà Margnalzzazone Condzonal

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Reti di Telecomunicazione

Reti di Telecomunicazione Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc Ret d Telecomuncazone Prof. Fabo Martgnon F. Martgnon: Ret d Telecomuncazone Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nformate per la mca Dr. Sergo Brutt Eserctazone d anals de dat II INERCALAIN GRAPHIE ANDE Eserctazone - galvanometra Cclazon galvanostate d una cella elettromca In questa eserctazone studeremo

Dettagli

Propagazione degli errori

Propagazione degli errori Propagazone degl error Msure drette: la grandezza sca vene msurata drettamente (ad es. Spessore d una lastrna). Per questo tpo d msure, la teora dell errore svluppata nelle lezone precedent é sucente per

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Esame di Teoria dei Segnali e Comunicazioni Elettriche

Esame di Teoria dei Segnali e Comunicazioni Elettriche Esame d Teora de Segnal e Comuncazon Elettrche Appello del 07/02/2013 Un segnale passabasso x(t), avente denstà spettrale d potenza costante e par a 1 W/Hz fno alla frequenza d 10 khz e 0 altrove, entra

Dettagli

Statistica Descrittiva

Statistica Descrittiva Statstca Descrttva Corso d Davd Vettur Dat osservat Sano note le seguent msure dello spessore d una lastra d materale polmerco espresse n mllmetr 3.71 3.83 3.85 3.96 3.84 3.8 3.94 3.55 3.76 3.63 3.88 3.86

Dettagli

IL MODELLO DI MACK. Materiale didattico a cura di Domenico Giorgio Attuario Danni di Gruppo Società Cattolica di Assicurazioni

IL MODELLO DI MACK. Materiale didattico a cura di Domenico Giorgio Attuario Danni di Gruppo Società Cattolica di Assicurazioni IL MODELLO DI MACK Materale ddattco a cura d Domenco Gorgo Attuaro Dann d Gruppo Socetà Cattolca d Asscurazon CHAIN-LADDE CLASSICO Metodo pù utlzzato per la stma della rserva snstr. Semplctà. Dstrbuton-ree

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 17/10/2006 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 17/10/2006 Dott. Alfonso Piscitelli. Esercizio 1 Unverstà d Cassno Corso d Statstca Eserctazone del 7/0/006 Dott. Alfonso Psctell Eserczo Il seguente data set rporta la rlevazone d alcun caratter su un collettvo d 0 soggett. Soggetto Sesso Età Reddto

Dettagli

1) Codifica di sorgente sub-ottima: algoritmi di Shannon, Shannon-Fano.

1) Codifica di sorgente sub-ottima: algoritmi di Shannon, Shannon-Fano. Argoment della Lezone ) Codfca d sorgente sub-ottma: algortm d Shannon, Shannon-Fano. 2) Codfca d sorgente basata su blocch 3) Sorgent con memora 4) Codfca d sorgent d Markov 5) Codfca unversale e codfca

Dettagli

Modello del Gruppo d Acquisto

Modello del Gruppo d Acquisto InVMall - Intellgent Vrtual Mall Modello del Gruppo d Acqusto Survey L attvtà svolta per la realzzazone dell attvtà B7 Defnzone del Gruppo d Acqusto e de Relatv Algortm d Inferenza, prevsta dal captolato

Dettagli

Campo elettrico. F E q. Qq k r. r q r

Campo elettrico. F E q. Qq k r. r q r Campo elettrco In passato s potzzava che le nterazon (lumnose, elettrche) potessero vaggare a veloctà nfnta, per cu due carche poste ad una certa dstanza avrebbero dovuto stantaneamente rsentre d una forza

Dettagli

TEORIA DELL INFORMAZIONE ED ENTROPIA FEDERICO MARINI

TEORIA DELL INFORMAZIONE ED ENTROPIA FEDERICO MARINI TEORIA DELL INFORMAZIONE ED ENTROPIA DI FEDERICO MARINI 1 OBIETTIVO DELLA TEORIA DELL INFORMAZIONE Dato un messaggio prodotto da una sorgente, l OBIETTIVO è capire come si deve rappresentare tale messaggio

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Le operazioni che vogliamo realizzare sono. Supporremo che una tabella T abbia i seguenti attributi: 1. Table(T): costruisce una tabella vuota T.

Le operazioni che vogliamo realizzare sono. Supporremo che una tabella T abbia i seguenti attributi: 1. Table(T): costruisce una tabella vuota T. tabelle dnamche Tabelle dnamche Spesso non s conosce a pror quanta memora serve per memorzzare una struttura dat (tabella d dat ~ array, tabella hash, heap, stack, ecc.. Può captare qund d allocare una

Dettagli

Capitolo 9 - Teoria dell informazione

Capitolo 9 - Teoria dell informazione Aunt d Comuncazon Elettrche Aunt d Catolo 9 - Teora dell nformazone Introduzone alla teora dell nformazone... Sorgente dscreta senza memora... entroa (del rmo ordne) della sorgente...4 Rcham d Teora de

Dettagli

Misure dirette utilizzate per il calcolo della misura indiretta X:

Misure dirette utilizzate per il calcolo della misura indiretta X: Propagazone degl error Msure drette utlzzate per l calcolo della msura ndretta X: ( ) a a a = ± Δ b = ( b ± Δ b) Il calcolo dell errore assoluto X ( espresso nella stessa untà d msura della grandezza X

Dettagli

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami Archtetture artmetche Corso d Organzzazone de Calcolator Maragovanna Sam 27-8 8 Sommator: : Full Adder s = x y c + x y c + x y c + x y c Full Adder x y c s x y c = x y + x c + + y c c + Full Adder c x

Dettagli

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON 3 CAMPIOAMETO DI ROULLI E DI POISSO 3. ITRODUZIOE In questo captolo esamneremo due schem d camponamento che dversamente dal camponamento casuale semplce non producono campon d dmensone fssa ma varable.

Dettagli

La sincronizzazione. (Libro) Trasmissione dell Informazione

La sincronizzazione. (Libro) Trasmissione dell Informazione La sncronzzazone (Lbro) Problem d sncronzzazone La trasmssone e la dverstà tra gl OL del trasmetttore e del rcevtore ntroducono (anche n assenza d fadng) un errore d d frequenza, d fase e d camponamento

Dettagli

L ANALISI MONOVARIATA: Variabilità e mutabilità. Prof. Maria Carella

L ANALISI MONOVARIATA: Variabilità e mutabilità. Prof. Maria Carella L AALISI MOOVARIATA: Varabltà e mutabltà Prof. Mara Carella Varabltà Le msure d tendenza centrale non sono suffcent alla comprensone de fenomen. Una sntes approprata deve tener conto del modo n cu s dstrbuscono

Dettagli

E' il rapporto tra la quantità di carica che attraversa una sezione del conduttore e l'intervallo di tempo impiegato.

E' il rapporto tra la quantità di carica che attraversa una sezione del conduttore e l'intervallo di tempo impiegato. Corrent e crcut Corrent e crcut corrente: la quanttà d carca che attraversa una superfce nell untà d tempo Q t lm t0 Q t dq dt 1 Ampere (A) = 1 C/s E' l rapporto tra la quanttà d carca che attraversa una

Dettagli

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE CORRETT RPPREETZIOE DI U RIULTTO: LE CIFRE IGIFICTIVE Defnamo cfre sgnfcatve quelle cfre che esprmono realmente l rsultato d una msura, o del suo errore, coè che non sono completamente ncluse nell ntervallo

Dettagli

ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA. Notazione: x i = i-esima modalità della variabile X

ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA. Notazione: x i = i-esima modalità della variabile X ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA Notazone: x = -esma modaltà della varable X Nel caso d dstrbuzon n class: x = Lmte superore della classe -esma x -1 = Lmte nferore della classe

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Distribuzione di Boltzmann. Nota

Distribuzione di Boltzmann. Nota Dstrbuzone d Boltzmann ota Tutto l soggetto trattato deve n realta essere nserto nel quadro concettuale della meccanca statstca, che non e trattato n questo corso. Quest cenn sono solo un breve rchamo

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

03/03/2012. Campus di Arcavacata Università della Calabria

03/03/2012. Campus di Arcavacata Università della Calabria Campus d Arcavacata Unverstà della Calabra Corso d statstca RENDE a.a 0-00 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 Concentrazone Un altro aspetto d un nseme d dat che s aggunge alla meda e alla varabltà è costtuto

Dettagli

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita Teora degl error Processo d msura defnsce una grandezza fsca. Sstema oggetto. Apparato d msura 3. Sstema d confronto La msura mplca un gudzo sull uguaglanza tra la grandezza ncognta e la grandezza campone

Dettagli

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali.

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali. FRAME 0.1. Contents 1. Varabl aleatore 1 1.1. Introduzone 1 1.2. Varabl aleatore dscrete 2 1.3. Valore atteso (Meda) e Varanza 3 1.4. Varabl aleatore bnomal e d Posson 4 1.1. Introduzone. 1. Varabl aleatore

Dettagli

Lezione n La concentrazione

Lezione n La concentrazione 1 La concentrazone Corso d Laurea: Economa Azendale Nello studo de fenomen economc e socal descrtt attraverso caratter quanttatv d tpo trasferble può essere nteressante analzzare la cosddetta concentrazone

Dettagli

L arcobaleno. Giovanni Mancarella. n = n = n = α( o )

L arcobaleno. Giovanni Mancarella. n = n = n = α( o ) Govann Mancarella L arcobaleno I(α) (a.u.) n =.3338 n =.336 39 40 4 4 43 α( o ) In questa nota utlzzeremo l termne dstrbuzone per ndcare la denstà d probabltà d una varable casuale. Il fenomeno dell arcobaleno

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro omponent www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-0) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura nel

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli