3. Esercitazioni di Teoria delle code

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3. Esercitazioni di Teoria delle code"

Transcript

1 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33

2 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come s procede? S analzzano temp e modaltà d attesa degl utent n dverse code. S cerca la correlazone tra l numero d arrv e l numero d servz. Se problem sono semplfcabl s rsolvono per va analtca, altrment s procede alla smulazone. Poltecnco d Torno Pagna 2 d 33

3 Ottmzzazone del sstema d servzo Ottmzzare un sstema d servzo sgnfca: mnmzzare la somma de cost dovut all attesa dell utenza e de cost dovut all attvazone del servzo. Poltecnco d Torno Pagna 3 d 33

4 Andament qualtatv de cost d un sstema d servzo Costo medo d attesa Effcenza del servzo Somma de cost Costo medo Ottmzzare è poszonars sul mnmo Costo medo del servzo Costo fsso Effcenza del servzo Effcenza del servzo Il costo fsso è dovuto all esstenza del servzo Poltecnco d Torno Pagna 4 d 33

5 tempo d servzo Notazone d Kendall cardnaltà della popolazone da cu provengono gl arrv u/v/w/x/y/z tempo d nterarrvo numero d server dscplna della coda capactà del sstema d servzo Poltecnco d Torno Pagna 5 d 33

6 Notazon π n (t) : probabltà che c sano n utent nel sstema d servzo all stante t ( ) n Π t, z πn ( t) z : funzone generatrce d probabn ltà d π n (t) dπ ( ) ( t, z) N t dz : valore medo del numero d z utent present nel sstema d servzo Poltecnco d Torno Pagna 6 d 33

7 Notazon (cont.) λ(t) : frequenza d nter-arrvo µ(t) : frequenza d servzo L(t) N(t) - (t) : lunghezza meda della coda ove ( t ) λ µ ( t ) ( t ) è l fattore d utlzzo Poltecnco d Torno Pagna 7 d 33

8 Rsultato d Lttle In un sstema d servzo stazonaro valgono le seguent relazon: N(t) T t (t)λ(t) L(t) T c (t)λ(t) ove T t (t) : valore atteso del tempo speso da un utente nel sstema d servzo T c (t) : valore atteso del tempo speso da un utente n coda Poltecnco d Torno Pagna 8 d 33

9 M/M/ Legge degl arrv e de servz d tpo possonano Supponamo λ x λ e µ x µ, costant. Condzone d ergodctà: λ\µ < Probabltà d avere x utent nel sstema: π x x ( ) Probabltà d non avere attesa: π Poltecnco d Torno Pagna 9 d 33

10 M/M/ (contnua) Probabltà d avere almeno h utent nel sstema: π h ( ) ( ) h All equlbro : h 2 N L T t T c µ µ Poltecnco d Torno Pagna d 33

11 Eserczo proposto Ad un autolavaggo arrvano 8 clent all ora, con dstrbuzone d Posson. L autolavaggo può servre 2 clent all ora e la coda è d tpo M/M/. I dat precedent corrspondono a: λ8 ; µ2 ; λ\µ < S possono determnare tutt parametr presentat n precedenza, semplcemente applcando le defnzon. Poltecnco d Torno Pagna d 33

12 M/M/ con scoraggamento degl arrv Ad un casello autostradale non s può sfuggre alla coda, ma ad un autolavaggo sì. Per rappresentare questa possbltà d scelta: µ x µ ( servz non sono nfluenzat dalla coda) λ x x a +, a λ a e µ : fattore d utlzzo Poltecnco d Torno Pagna 2 d 33

13 M/M/ con scoraggamento degl arrv (contnua) La funzone d ergodctà camba. Se anche λ>µ,lo scoraggamento degl arrv lmta la lunghezza della coda. a Condzone d ergodctà: Parametr del sstema d servzo: π N x x! a µ a µ σ 2 N x e a µ, T t, x e N, T λ a µ c T t µ,l T µ c λ Poltecnco d Torno Pagna 3 d 33

14 M/M//k :sstema d servzo con capactà k a ( costante) se x < k λ µ x x µ ( costante) x se x k Sa noltre : a µ Poltecnco d Torno Pagna 4 d 33

15 M/M//k :sstema d servzo con capactà k Le probabltà d equlbro sono date da: π π π x x k + ( ) k+ x x k x > k π k rappresenta la probabltà d equlbro per un utente d trovare la coda pena ed è detta fattore d perdta nello stato d equlbro. Poltecnco d Torno Pagna 5 d 33

16 M/M/n s Il sstema è dotato d n s canal d dstrbuzone del servzo. La capactà del sstema è llmtata. λ µ x x λ xb se x ns nsb se x > ns λ < condzoned ergodctà n b s Tutt canal s consderano ugual Poltecnco d Torno Pagna 6 d 33

17 Eserczo Calcolare l tempo medo d attesa n coda per una scala moble dat: massma portata: 2 passegger/gradno veloctà scala: gradno/sec numero medo d arrv: /mn arrv possonan Il problema è modellzzable M/D/ (D: la veloctà della scala è costante) Poltecnco d Torno Pagna 7 d 33

18 Soluzone dell eserczo Il tempo medo d attesa è: T c λ 2µ µ S conosce: λ passegger/mnuto S calcola: µ2 passegger/mnuto Da cu: T c,25mn,5sec Poltecnco d Torno Pagna 8 d 33

19 Eserczo 2 S determn l numero d casell necessar ad un uscta autostradale per avere un numero medo d utent mnore d 5. Il sstema è caratterzzato da: traffco medo d utent n uscta dstrbuto unformemente e par a 85 vecol (supposto dstrbuto unformemente dalle 7 alle 2) la percentuale d utent vacard è del 5% l numero medo d servz/ora a casell normal è 2, a casell vacard è 6 S us un modello M/M/n s Poltecnco d Torno Pagna 9 d 33

20 Soluzone dell eserczo 2 S ndvduano 2 sstem separat: casell vacard casell normal Casell vacard I vecol n una gornata sono 425. Per cu λ425/3 vecol/ora 326,9 vecol/ora E noto µ6 vecol/ora λ/µ.545 potzzando n s S può verfcare che N<5: N/( ).2 vecol Poltecnco d Torno Pagna 2 d 33

21 Soluzone dell eserczo 2 (contnua) Casell normal S ha: λ326,9 vecol/ora e µ2 vecol/ora Ovvamente o 2 canal non sono suffcent. Servono almeno tre canal. Con 3 canal s ottene N9 che non soddsfa le specfche. S prova con quattro canal ottenendo un valore mnore d 5. Poltecnco d Torno Pagna 2 d 33

22 Eserczo 3 S ha un sstema caratterzzato da: λ2/8 vecol/ora,5 vecol/ora µ/3 vecol/mnuto2 vecol/ora Utlzzando un modello M/M/ s calcol la lunghezza meda della coda ed l tempo medo d attesa del servzo. Con un modello M/M/;k4 la probabltà d perdta del clente successvo. Poltecnco d Torno Pagna 22 d 33

23 M/M/ L ÄT t M/M/;k π k λ µ Soluzone dell eserczo 3 2 ì(, vecol ñ) 2 k ( ) π k + ore 4,4 Poltecnco d Torno Pagna 23 d 33

24 Eserczo 4 S consder un sstema d servzo caratterzzato da: tempo d nter-arrvo esponenzalmente dstrbuto e con valore atteso par a /λ n, con nnumero d utent nel sstema d servzo tempo d servzo esponenzalmente dstrbuto con valore atteso par a /µ n Sano po: 4.) λ µ (2 + b ) a 4.2) λ µ ( + 2 a) a + + a Poltecnco d Torno Pagna 24 d 33

25 Eserczo 4 (contnua) S calcolno: le probabltà d equlbro e la condzone d ergodctà sotto la quale queste probabltà esstono e sono unvoche la relatva funzone generatrce delle probabltà d equlbro l valore atteso per l numero d utent nel sstema d servzo nello stato d equlbro la probabltà d trovare non pù d h utent nello stato d equlbro Poltecnco d Torno Pagna 25 d 33

26 Poltecnco d Torno Pagna 26 d 33 Poltecnco d Torno Soluzone dell eserczo 4. Dato che λ e µ sono funzon crescent d s può ntrodurre: S possono qund calcolare le probabltà: b a µ λ con, 2 + +, h h j j j j h h j j π π

27 Soluzone dell eserczo 4. (contnua) Tenendo conto che: j j ( + ) s possono rcavare le probabltà d equlbro : π π ( ( ) + ) 2 ( ) 2 Poltecnco d Torno Pagna 27 d 33

28 Soluzone dell eserczo 4. (contnua) La funzone generatrce delle probabltà d equlbro rsulta: ( ) Π z 2 ( z) ( 2 ( ) ( + ) z 2 da cu l valore atteso N, per l numero d utent nello stato d equlbro: ) N( ) dπ( z) dz z 2 Poltecnco d Torno Pagna 28 d 33

29 Soluzone dell eserczo 4. (contnua) La probabltà d avere meno d h utent nel sstema vale: Pr( n h) ( h + h n 2) π h+ n + ( h h n n ( n + ) ( ) + ) h+ 2 2 Poltecnco d Torno Pagna 29 d 33

30 Poltecnco d Torno Pagna 3 d 33 Poltecnco d Torno Soluzone dell eserczo 4.2 S può ntrodurre la seguente notazone: S possono qund calcolare le probabltà: ( ) ( )( ) a µ λ con, , h h j j j j h h j j π π

31 Soluzone dell eserczo 4.2 (contnua) Tenendo conto che: ( + ) ( +! ) ( ) j j s possono rcavare le probabltà d equlbro : π π! + ( + )! Poltecnco d Torno Pagna 3 d 33

32 Soluzone dell eserczo 4.2 (contnua) La funzone generatrce delle probabltà d equlbro rsulta: Π( z)! + ( + ) z! z ( z) e + z da cu l valore atteso N, per l numero d utent nello stato d equlbro: dπ( z) N( ) dz z Poltecnco d Torno Pagna 32 d 33

33 Soluzone dell eserczo 4.2 (contnua) La probabltà d avere meno d h utent nel sstema vale: Pr( n h) h n h n n+ h π n n n! + + ( n +! ) ( h )! Poltecnco d Torno Pagna 33 d 33

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

Corso di Automazione Industriale 1. Capitolo 7

Corso di Automazione Industriale 1. Capitolo 7 1 Corso d Automazone Industrale 1 Captolo 7 Teora delle code e delle ret d code Introduzone alla Teora delle Code La Teora delle Code s propone d svluppare modell per lo studo de fenomen d attesa che s

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016

POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016 POLITECNICO DI BARI - DICATECh Corso d Laurea n Ingegnera Ambentale e del Terrtoro IDRAULICA AMBIENTALE - A.A. 015/016 ESONERO 15/01/016 ESERCIZIO 1 S consder la rete aperta n fgura, nella quale le portate

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014 Dpartmento d Economa Azendale e Stud Gusprvatstc Unverstà degl Stud d Bar Aldo Moro Corso d Macroeconoma 2014 1.Consderate l seguente grafco: LM Partà de tass d nteresse LM B A IS IS Y E E E Immagnate

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

I fabbisogni standard nel settore sanitario Commento allo schema di decreto legislativo

I fabbisogni standard nel settore sanitario Commento allo schema di decreto legislativo Federalsmo I fabbsogn standard nel settore santaro Commento allo schema d decreto legslatvo Guseppe Psauro Premessa La defnzone del sstema d fnanzamento della santà è charamente un momento fondamentale

Dettagli

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria 2 Modello IS-LM 2. Gl e ett della poltca monetara S consderun modello IS-LM senzastatocon seguent datc = 0:8, I = 00( ), L d = 0:5 500, M s = 00 e P =. ) S calcolno valor d equlbro del reddto e del tasso

Dettagli

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements Torna al programma Sstema per la garanza della qualtà ne sstem automatc d msura alle emsson: applcazone del progetto d norma pren 14181:2003. Rsultat dell esperenza n campo presso due mpant plota. Cprano

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Modello idraulico - Rapporto tecnico. (Rev. 0b)

Modello idraulico - Rapporto tecnico. (Rev. 0b) ASAP LIFE06/ENV/IT/000255 ASAP_D4-3_ModelloIdraulcoRappTecnco_IT_0b 1/20 LIFE06/ENV/IT/255 A.S.A.P. Actons for Systemc Aqufer Protecton The ASAP proect s partally funded by the European Unon LIFE Programme

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri Scelta dell Ubcazone d un Impanto Industrale Corso d Progettazone Impant Industral Prof. Sergo Cavaler I fattor ubcazonal Cost d Caratterstche del Mercato Costruzone Energe Manodopera Trasport Matere Prme

Dettagli

Apprendimento Automatico e IR: introduzione al Machine Learning

Apprendimento Automatico e IR: introduzione al Machine Learning Apprendmento Automatco e IR: ntroduzone al Machne Learnng MGRI a.a. 2007/8 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e produzone Unverstà d Roma Tor Vergata mal: {moschtt,basl}@nfo.unroma2.t 1

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand Collusone (Cabral cap.8 PRN capp. 13-14) Accord tact o esplct per aumentare l potere d mercato e pratcare prezz pù elevat rspetto all equlbro non cooperatvo corrspondente Esste un vantaggo dalla collusone

Dettagli

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007 STATISTICA SOCIALE Corso d laurea n Scenze Turstche, a.a. 07/08 Esercz 6 novembre07 Eserczo La Tabella contene alcun dat relatv a 6 lavorator delle azende Alfa e Beta. Tabella Lavorator delle azende Alfa

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Teoria delle Decisioni

Teoria delle Decisioni La teora delle decson Teora delle Decson L oggetto della Decson Theory è la decsone ntesa come scelta tra alternatve Esemp: se ntrodurre o meno d un nuovo prodotto, se rnnovare un mpanto oppure aprrne

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività Metod d Ottmzzazone mod. Modell er la anfcazone delle attvtà Paolo Dett Dartmento d Ingegnera dell Informazone e Scenze Matematche Unverstà d Sena Metod d Ottmzzazone mod. Modell er la anfcazone delle

Dettagli

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS Delberazone 20 ottobre 2004 Approvazone delle condzon general d accesso e d erogazone del servzo d rgassfcazone d gnl predsposte dalla socetà Gnl Itala Spa (delberazone n. 184/04) L AUTORITÀ PER L ENERGIA

Dettagli

FORMAZIONE ALPHAITALIA

FORMAZIONE ALPHAITALIA ALPHAITALIA PAG. 1 DI 13 FORMAZIONE ALPHAITALIA IL SISTEMA DI GESTIONE PER LA QUALITA Quadro ntroduttvo ALPHAITALIA PAG. 2 DI 13 1. DEFINIZIONI QUALITA Grado n cu un nseme d caratterstche ntrnseche soddsfa

Dettagli

Economia del Lavoro. Argomenti del corso

Economia del Lavoro. Argomenti del corso Economa del Lavoro Argoment del corso Studo del funzonamento del mercato del lavoro. In partcolare, l anals economca nerente l comportamento d: a) lavorator, b) mprese, c) sttuzon nel processo d determnazone

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Reti di Telecomunicazione

Reti di Telecomunicazione Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc Ret d Telecomuncazone Prof. Fabo Martgnon F. Martgnon: Ret d Telecomuncazone Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone

Dettagli

Modelli decisionali su grafi - Problemi di Localizzazione

Modelli decisionali su grafi - Problemi di Localizzazione Modell decsonal su graf - Problem d Localzzazone Massmo Paolucc (paolucc@dst.unge.t) DIST Unverstà d Genova Locaton Problems: modell ed applcazon Decson a medo e lungo termne (panfcazone) Caratterstche

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Controllo e schedulng delle operazon Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Organzzazone della produzone PRODOTTO che cosa ch ORGANIZZAZIONE PROCESSO come FLUSSO DI PRODUZIONE

Dettagli

RELAZIONE TECNICA. Introduzione. 1 Finalità e requisiti delle attività di dispacciamento nel mercato elettrico liberalizzato

RELAZIONE TECNICA. Introduzione. 1 Finalità e requisiti delle attività di dispacciamento nel mercato elettrico liberalizzato Allegato n. 1 a Prot AU/01/130 RELAZIONE TECNICA PRESUPPOSTI PER L ADOZIONE DI SCHEMA DI CONDIZIONI PER L EROGAZIONE DEL PUBBLICO SERVIZIO DI DISPACCIAMENTO DELL ENERGIA ELETTRICA SUL TERRITORIO NAZIONALE

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

La tua area riservata Organizzazione Semplicità Efficienza

La tua area riservata Organizzazione Semplicità Efficienza Rev. 07/2012 La tua area rservata Organzzazone Semplctà Effcenza www.vstos.t La tua area rservata 1 MyVstos MyVstos è la pattaforma nformatca rservata a rvendtor Vstos che consente d verfcare la dsponbltà

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Capitolo 2 Dati e Tabelle

Capitolo 2 Dati e Tabelle Captolo 2 Dat e Tabelle La Descrzone della Popolazone La descrzone d una popolazone passa attraverso due fas: 1. la formazone de dat statstc 2. la sntes de dat La formazone del dato statstco prevede: ()

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli

METODI BAYESIANI PER IL CONTROLLO STATISTICO DI QUALITA

METODI BAYESIANI PER IL CONTROLLO STATISTICO DI QUALITA Unverstà degl Stud d Bresca Poltecnco d Mlano Unverstà degl Stud d Pava Unverstà degl Stud d Lecce Dottorato d Rcerca n TECNOLOGIE E SISTEMI DI LAVORAZIONE XII CICLO METODI BAYESIANI PER IL CONTROLLO STATISTICO

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica Fotogrammetra Scopo della fotogrammetra è la determnazone delle poszon d punt nello spazo fsco a partre dalla msura delle poszon de punt corrspondent su un mmagne fotografca. Ovvamente, affnché questo

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006 Smulazone seconda prova Tema assegnato all esame d stato per l'abltazone alla professone d geometra, 006 roposte per lo svolgmento pubblcate sul ollettno SIFET (Socetà Italana d Fotogrammetra e Topografa)

Dettagli

COMANDO PROVINCIALE VIGILI DEL FUOCO DI MILANO ALLEGATA AL PROGETTO DI LAVORI DI COSTRUZIONE NUOVA PALESTRA SCOLASTICA POLIVALENTE

COMANDO PROVINCIALE VIGILI DEL FUOCO DI MILANO ALLEGATA AL PROGETTO DI LAVORI DI COSTRUZIONE NUOVA PALESTRA SCOLASTICA POLIVALENTE COMUNE DI SEREGNO PROVINCIA DI MONZA BRIANZA COMANDO PROVINCIALE VIGILI DEL FUOCO DI MILANO ALLEGATA AL PROGETTO DI LAVORI DI COSTRUZIONE NUOVA PALESTRA SCOLASTICA POLIVALENTE ATTIVITÀ NORMATA (D.M. 18.03.1996

Dettagli

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2)

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2) ALLEGATO 1 (Allegato A, paragrafo 2) Indcazon per l calcolo della prestazone energetca d edfc non dotat d mpanto d clmatzzazone nvernale e/o d produzone d acqua calda santara 1. In assenza d mpant termc,

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

MODELLO SPEDITIVO PER LA PREVISIONE DELLA DISPONIBILITÀ IDRICA NEL BACINO DEL PO IN PERIODI DI SICCITA

MODELLO SPEDITIVO PER LA PREVISIONE DELLA DISPONIBILITÀ IDRICA NEL BACINO DEL PO IN PERIODI DI SICCITA U.O. Protezone Cvle MODELLO SPEDITIVO PER LA PREVISIONE DELLA DISPONIBILITÀ IDRICA NEL BACINO DEL PO IN PERIODI DI SICCITA Centro Funzonale Component del gruppo d lavoro: Nomnatvo Ente Tel. Fax Ing. Maurzo

Dettagli

La taratura degli strumenti di misura

La taratura degli strumenti di misura La taratura degl strument d msura L mportanza dell operazone d taratura nasce dall esgenza d rendere l rsultato d una msura rferble a campon nazonal od nternazonal del msurando n questone affnché pù msure

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Il campionamento casuale semplice

Il campionamento casuale semplice Il camponamento casuale semplce Metod d estrazone del campone. robabltà d nclusone. π = n N π j = n N n 1 N 1 Stmatore corretto del totale e della meda. Ŷ = Nȳ e ˆȲ = ȳ Varanza degl stmator corrett. V

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

Lezione n.13. Regime sinusoidale

Lezione n.13. Regime sinusoidale Lezone 3 Regme snusodale Lezone n.3 Regme snusodale. Rcham sulle funzon snusodal. etodo de fasor e fasor. mpedenza ed ammettenza. Dagramm fasoral 3. Potenza n regme snusodale 3. Potenza attva e reattva

Dettagli

Metastability, Nonextensivity and Glassy Dynamics in a Class of Long Range Hamiltonian Models

Metastability, Nonextensivity and Glassy Dynamics in a Class of Long Range Hamiltonian Models Alessandro Pluchno Metastablty, Nonextensvty and Glassy Dynamcs n a Class of Long Range Hamltonan Models Dscussone Tes per l consegumento del ttolo Febbrao 2005 Tutor: Prof.A.Rapsarda E-mal: alessandro.pluchno@ct.nfn.t

Dettagli

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30 1) Dato un carattere X l rapporto tra devanza entro e devanza totale è 0.25 e la devanza totale è 40. La devanza tra vale: a) 10 b) 20 c) 30 2) Data una popolazone normalmente dstrbuta con meda 10 e varanza

Dettagli

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca ONTOI UTOMTII Ingegnera della Gestone Industrale e della Integrazone d Impresa http://www.automazone.ngre.unmore.t/pages/cors/ontrollutomatcgestonale.htm MODEI DI SISTEMI Ing. ug Bagott Tel. 05 0939903

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE In presenza d una almentazone alternata snusodale tutte le grandezze elettrche saranno alternate snusodal. Le equazon d funzonamento n regme comunque varale

Dettagli

Esercitazione 8 del corso di Statistica (parte 1)

Esercitazione 8 del corso di Statistica (parte 1) Eserctazone 8 del corso d Statstca (parte ) Dott.ssa Paola Costantn Eserczo Marzo 0 Un urna rossa contene 3 pallne banche, nere e galla. S consder l estrazone d due pallne. S calcol la probabltà d estrarre:.

Dettagli

TECNICHE DI PROGRAMMAZIONE

TECNICHE DI PROGRAMMAZIONE TECNICHE DI PROGRAMMAZIONE IPOTESI SOTTOSTANTE: TECNICHE LINEARI (COEFFICIENTI FISSI DI PRODUZIONE) PREVISIONI (vendte, prezz de ben e de fattor) medante tecnche estrapolatve, econometrche e d mercato

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

Bonus Cap Certificates con sottostante Allianz SE, AXA SA, Assicurazioni Generali S.p.A.

Bonus Cap Certificates con sottostante Allianz SE, AXA SA, Assicurazioni Generali S.p.A. Bonus Cap Certfcates con sottostante Allanz SE, AXA SA, Asscurazon General S.p.A. Dal 7 febbrao fno al 1 marzo solo su ISIN: DE000HV8AKJ8 Sottostante: Allanz SE, AXA SA, Asscurazon General S.p.A. Scadenza:

Dettagli

6.1. Moody s KMV Credit Portfolio Manager

6.1. Moody s KMV Credit Portfolio Manager 6.. Moody s MV Credt Portfolo Manager 6... La struttura del modello L mpanto d Moody s MV (MMV) è costtuto dal modello d Merton e da un approcco d tpo fattorale per la stma delle correlazon. Attualmente,

Dettagli

Codice di Stoccaggio Capitolo 7 Bilanciamento e reintegrazione dello stoccaggio

Codice di Stoccaggio Capitolo 7 Bilanciamento e reintegrazione dello stoccaggio Codce d Stoccaggo Captolo 7 Blancamento e rentegrazone dello stoccaggo 7.4 Corrspettv per servz d stoccaggo L UTENTE è tenuto a corrspondere a STOGIT, per la prestazone de servz, gl mport dervant dall

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Napol Parthenope acoltà d Ingegnera Corso d Metod Probablstc Statstc e Process Stocastc docente: Pro. Vto Pascazo 20 a Lezone: /2/2003 Sommaro Dstrbuzon condzonate: CD, pd, pm Teorema della

Dettagli

Questo è il secondo di una serie di articoli, di

Questo è il secondo di una serie di articoli, di DENTRO LA SCATOLA Rubrca a cura d Fabo A. Schreber Il Consglo Scentfco della rvsta ha pensato d attuare un nzatva culturalmente utle presentando n ogn numero d Mondo Dgtale un argomento fondante per l

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

Indici di misurazione del potere di mercato

Indici di misurazione del potere di mercato Indc d msurazone del potere d mercato Metod tradzonal: tass d rendmento, margn e q d Tobn Indc d concentrazone Metod presuntv d Ganmara Martn Introduzone Le teore de mercat concorrenzal e non concorrenzal

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Regolazione incentivante per i servizi di trasporto locale *

Regolazione incentivante per i servizi di trasporto locale * Regolazone ncentvante per servz d trasporto locale * d Andrea Botan e Carlo Cambn # Abstract La recente rforma de trasport pubblc local ha fssato un lmte superore a trasferment erogabl alle azende da parte

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli