ESERCIZIO 1 DATI NUMERICI. COMPITO A: m 1 = 2 kg m 2 = 6 kg θ = 25 µ d = 0.18 COMPITO B: m 1 = 2 kg m 2 = 4 kg θ = 50 µ d = 0.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZIO 1 DATI NUMERICI. COMPITO A: m 1 = 2 kg m 2 = 6 kg θ = 25 µ d = 0.18 COMPITO B: m 1 = 2 kg m 2 = 4 kg θ = 50 µ d = 0."

Transcript

1 ESERCIZIO 1 Due blocchi di massa m 1 e m sono connessi da un filo ideale libero di scorrere attorno ad una carrucola di massa trascurabile. I due blocchi si muovono su un piano inclinato di un angolo rispetto all orizzontale. Se il coefficiente di attrito dinamico tra il piano e i due corpi è µ d, si determinino: a) il vettore a dell accelerazione di m nel sistema di riferimento rappresentato in figura; b) il modulo T della tensione del filo c) il lavoro W attr,1 compiuto dalla forza di attrito dinamico sul corpo m 1 durante il moto da quota h 1 a quota h rispetto alla base del piano inclinato. DATI NUMERICI COMPITO A: m 1 = kg m = 6 kg θ = 5 µ d = 0.18 COMPITO B: m 1 = kg m = 4 kg θ = 50 µ d = 0.3 SOLUZIONI a-b) Il diagramma delle forze è: Applicando i F i = m a ai due corpi lungo x e y, nel sistema di riferimento indicato figura, considerando che, essendo la carrucola priva di massa, le due

2 tensioni sono uguali ed essendo il filo inestensibile, le due accelerazioni sono uguali in modulo ma opposte; si ottiene il seguente sistema di equazioni: N 1 m 1 g cos θ = 0 (1a) T F ad,1 m 1 g sin θ = m 1 a 1 (1b) N m g cos θ = 0 (1c) T + F ad, m g sin θ = m a (1d) a 1 = a = a (1e) Inoltre: { Fad,1 = µ d N 1 = µ d m 1 g cos θ (a) F ad, = µ d N = µ d m g cos θ (b) Dalla 1b e 1d, tramite 1e, a e b, si ottiene. { T µd m 1 g cos θ m 1 g sin θ = m 1 a (3a) T + µ d m g cos θ m g sin θ = m a (3b) che sottratte danno: µ d (m 1 + m )g cos θ + (m m 1 )g sin θ = (m 1 + m )a da cui si ottiene: a) a = g [ µ d cos θ + m ] m 1 sin θ m 1 + m Inserendo il valore appena trovato di a nella 3a si ottiene: da cui: T = m 1 g sin θ + µ d m 1 g cos θ µ d m 1 cos θ + m 1 m m 1 m 1 + m sin θ = = m 1 + m 1 m + m 1 m m 1 g sin θ m 1 + m b) T = m 1m m 1 + m g sin θ c) Il lavoro W attr,1 compiuto dalla forza di attrito dinamico sul corpo m 1 è dato da: h sin θ W ad,1 = F ad,1 d s = µ d m 1 g cos θdx cos α h 1 sin θ û x = µ d m 1 g h h 1 tan θ

3 essendo α l angolo tra la forza di attrito F as,1 (data dalla a) e lo spostamento d s e pari a π. Mentre h 1 e h sono le posizioni x, iniziale e finale lungo il sin θ sin θ piano inclinato corrispondenti alle quote h 1 e h rispettivamente. Dunque: c) W ad,1 = µ d m 1 g h h 1 tan θ SOLUZIONI NUMERICHE COMPITO A: a) a = 0.47 m/s û x b) T = 1.4 N c) W ad,1 = 1.51 J COMPITO B: a) a = 0.61 m/s û x b) T = 0. N c) W ad,1 = 1.97 J

4 - ESERCIZIO - Una piattaforma circolare omogenea di massa M e raggio R si trova su un piano orizzontale e può ruotare attorno ad un asse verticale fisso, passante per il suo centro O. Sul bordo della piattaforma è montata una molla ideale di massa trascurabile e costante elastica k, che può lanciare una massa m (v. figura). La molla è inizialmente mantenuta compressa di un tratto L. Ad un certo istante t0=0, la molla viene rilasciata e il corpo m viene lanciato in direzione tangenziale alla piattaforma. Sapendo che durante la fase di rilascio (che può essere assunta istantanea) non avviene dissipazione di energia nel sistema, si determinino: a) l'energia meccanica E immagazzinata nel sistema prima del rilascio della molla; b) il modulo v della velocità del corpo m dopo il rilascio della molla. Supponendo che dopo il suo rilascio il corpo m si muova su una guida curvilinea poggiata sul piano orizzontale e che all'istante t1 = 3 s si stacchi dalla guida da una quota h rispetto al pavimento, con velocità in modulo pari v1 e inclinata di un angolo θ con l'orizzontale, si determini: c) l'istante t in cui il corpo m tocca il suolo; d) si tracci il grafico qualitativo y(t) per il corpo m fra gli istanti t1 e t DATI NUMERICI COMPITO A: M = kg R = 30 cm k=5000 N/m m = 100 g L = 1 cm h = 1. m v1 = 1.4 m/s θ = 5 COMPITO B: M = 10 kg R = 50 cm k=5000 N/m m = 00 g L = cm h = 1 m v1 =.5 m/s θ = 40 SOLUZIONI a) Prima del rilascio della molla, l'energia meccanica immagazzinata nel sistema è rappresentata dall'energia potenziale elastica immagazzinata nella molla compressa: a) E= 1 k L

5 b) Prima del rilascio della molla, l'intero sistema è in quiete. Durante il rilascio della molla, il testo dice che non c'è dissipazione di energia. Si può quindi impostare la conservazione di energia meccanica del sistema fra prima e dopo il rilascio della molla. Dopo il rilascio della molla, l'energia meccanica del sistema è interamente presente sottoforma di energia cinetica dei due corpi (Km= 1 mv per il corpo m e KM= 1 I O ω per M, che compirà un moto di pura rotazione attorno all'asse verticale passante per il centro O, essendo ad esso vincolato). Si noti che, essendo il corpo M vincolato dall'asse passante per il proprio centro, non si può impostare la conservazione della quantità di moto per il sistema (l'asse fisso può esercitare sul sistema una forza vincolare esterna impulsiva). Possiamo però impostare la conservazione del momento angolare scegliendo come polo il vincolo O. Infatti, rispetto a tale polo, il momento delle forze vincolari è nullo e quindi L r =costante. Si noti inoltre che, poiché il sistema è inizialmente in quiete, L r =0 prima del rilascio della molla. Dopo il rilascio, i due contributi ad L r saranno: r r r r r L = mv = Rmv, con l'asse z rivolto verso l'alto e L = ω (poiché M compie moto di pura m û z M I O 1 rotazione attorno all'asse passante per O), dove IO= MR e ω r =ω û z (ω è la componente della velocità angolare della piattaforma lungo l'asse z). La conservazione dell'energia meccanica e la conservazione del momento angolare (proiettato sull'asse z, unica componente presente dopo il rilascio della molla) possono essere quindi scritte come: I: conservazione dell'energia meccanica del sistema: II: conservazione del momento angolare del sistema: 1 1 = k L mv 0 = Rmv + IOω + 1 I O ω Rmv Ricavando ω da II (ω = ) I O e inserendo in I si ottiene quindi: k L = mv + R m v I O, da cui: b) v = k L mr m 1 + IO = k L m m 1 + M c-d) Si tratta dello studio di un moto parabolico (rettilineo uniforme lungo x con componente della velocità vx=v1cosθ e uniformemente accelerato lungo y, con partenza da quota h all'istante t1 con componente della velocità all'istante iniziale t1: vy(t1)=v1senθ). Lungo y vale quindi: y(t)= h + v1senθ (t t1) 1 g (t t1). Poiché all'istante t il corpo deve

6 trovarsi a quota y=0 deve valere: 0 = h + v1senθ (t t1) 1 g (t t1), da cui: t t1= v senθ ± 0 (v senθ) 0 g + gh v0 senθm (v0senθ) + gh = g. Poichè t > t1 la soluzione corretta sarà: c) t = t1 + v0 senθ + (v0senθ) + gh g. d) SOLUZIONI NUMERICHE. a) E = 0.5 J b) v =.19 m/s c) t = 3.56 s a) E = 1.00 J b) v = 3.13 m/s c) t = 3.64 s

7 ESERCIZIO 3 Un satellite di massa m si trova inizialmente fermo (rispetto a un sistema di riferimento fisso) sulla superficie di un pianeta di massa M e raggio R. Se, utilizzando un razzo, il satellite viene lanciato su un orbita circolare a distanza R 1 = R dalla superficie del pianeta, si determini: a) il modulo v 1 della velocità del satellite sull orbita; b) l energia potenziale U 1 del satellite sull orbita (assumendo l energia potenziale gravitazionale pari a zero tra due corpi a distanza infinita); c) il lavoro W 1 compiuto dal razzo per portare il satellite dalla superficie del pianeta alle condizioni in orbita. DATI NUMERICI COMPITO A: m = kg M = kg R = km COMPITO B: m = kg M = kg R = km SOLUZIONI a) L unica forza agente su m è l attrazione gravitazionale esercitata da M. Poiché l orbita è assunta circolare, la direzione normale alla traiettoria coincide con la direzione radiale. Quindi nel s.d.r. monodimensionale radiale e diretto verso il centro del pianeta, vale: F n = ma a

8 ovvero: GmM (3R) = mv 1 3R quindi: GM a) v = 3R b) L energia potenziale del satellite di massa m, nel campo gravitazionale del pianeta di massa M è per definizione data da: U 1 = G mm d dove d è la distanza tra il satellite e il centro del pianeta, per cui: b) U 1 = G mm 3R c) Il lavoro W 1 necessario per portare il satellite dalla superficie del pianeta alle condizioni in orbita è pari alla variazionone di energia tra la condizione finale, in orbita a distanza d con velocità v 1, e la posizione iniziale, fermo sulla superficie del pianeta: ovvero: W 1 = E = U + K = U fin U in + (K fin K in ) W 1 = GmM 3R + GmM R + 1 mgm 3R = GmM R 1 GmM 3R quindi: c) W 1 = 5 GmM 6 R SOLUZIONI NUMERICHE COMPITO A: a) v 1 = m/s b) U 1 = J c) W 1 = J COMPITO B: a) v 1 = m/s b) U 1 = J c) W 1 = J

ESERCIZIO 1 SOLUZIONI

ESERCIZIO 1 SOLUZIONI - ESERCIZIO - Un corpo di massa m = 00 g si trova su un tavolo liscio. Il corpo m è mantenuto inizialmente fermo, appoggiato ad una molla di costante elastica k = 00 N/m, inizialmente compressa. Ad un

Dettagli

SOLUZIONI a) Tracciamo il diagramma delle forze in un generico punto sulla traiettoria:

SOLUZIONI a) Tracciamo il diagramma delle forze in un generico punto sulla traiettoria: - ESERCIZIO - Un corpo di massa m è attaccato ad un filo inestensibile di massa trascurabile e lunghezza L. Il corpo percorre una circonferenza sul piano verticale in senso orario, in modo che il filo

Dettagli

b) DIAGRAMMA DELLE FORZE

b) DIAGRAMMA DELLE FORZE DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro

Dettagli

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R Esercizio 1 Un corpo puntiforme di massa m scivola lungo una pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. a) Determinare il valore

Dettagli

Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto

Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problema n. 1: Un carro armato, posto in quiete su un piano orizzontale, spara una granata

Dettagli

Esercizio 1. Compito B (Dati): M =0.9 kg, D =0.5 m, µ S =0.8, = 35, v = 1 m/s, k = 80 N/m, L =0.07 m. L =0.12 m

Esercizio 1. Compito B (Dati): M =0.9 kg, D =0.5 m, µ S =0.8, = 35, v = 1 m/s, k = 80 N/m, L =0.07 m. L =0.12 m Esercizio 1 Un corpo di massa, assimilabile ad un punto materiale, viene lanciato con velocità ~v 0 incognita, non parallela agli assi cartesiani. Quando il suo spostamento in direzione x rispetto alla

Dettagli

Seminario didattico Ingegneria Elettronica. Lezione 3: Dinamica del Corpo Rigido

Seminario didattico Ingegneria Elettronica. Lezione 3: Dinamica del Corpo Rigido Seminario didattico Ingegneria Elettronica Lezione 3: Dinamica del Corpo Rigido Esercizio n 1 Un cilindro di raggio R e massa M = 2 Kg è posto su un piano orizzontale. Attorno al cilindro è avvolto un

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Esercizio 1 Un corpo rigido è formato da un asta di lunghezza L = 2 m e massa trascurabile, ai cui estremi sono fissati due corpi puntiformi,

Dettagli

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio:

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio: Meccanica 24 Aprile 2018 Problema 1 (1 punto) Un blocco di mass M=90 kg è attaccato tramite una molla di costante elastiìca K= 2 10 3 N/m, massa trascurabile e lunghezza a riposo nulla, a una fune inestensibile

Dettagli

Meccanica 15Aprile 2016

Meccanica 15Aprile 2016 Meccanica 15Aprile 2016 Problema 1 (1 punto) Una pallottola di massa m= 20 g arriva con velocità V= 300 m/s, inclinata verso il basso di un anglo = 15 rispetto al piano orizzontale, su un blocco di massa

Dettagli

Soluzione degli esercizi della prova in itinere di Meccanica del 19/11/2018

Soluzione degli esercizi della prova in itinere di Meccanica del 19/11/2018 Soluzione degli esercizi della prova in itinere di Meccanica del 19/11/2018 Esercizio 1 Tre blocchi di masse m 1, m 2 e m 3 sono disposti come indicato in figura. Il piano inclinato sul quale poggia la

Dettagli

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali A) Applicazione del teorema dell impulso + conservazione quantità di moto Problema n. 1: Un blocco A di massa m = 4 kg è

Dettagli

69.8/3 = 23.2 = 23 automobili

69.8/3 = 23.2 = 23 automobili Meccanica 19 Aprile 2017 Problema 1 (1 punto) Una moto salta una fila di automobili di altezza h= 1.5 m e lunghezza l=3m ciascuna. La moto percorre una rampa che forma con l orizzontale un angolo = 30

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

Esercitazione N.3 Dinamica del corpo rigido

Esercitazione N.3 Dinamica del corpo rigido Esercitazione N.3 Dinamica del corpo rigido Questi esercizi sono sulle lezioni dalla 12 alla 18 Relativo alla lezione: Rotazioni rigide attorno ad un asse fisso Rotazioni rigide attorno ad un asse fisso

Dettagli

Esercizi di dinamica

Esercizi di dinamica Esercizi di dinamica Esercitazioni di Fisica LA per ingegneri - A.A. 2003-2004 M F1, m v0 α F2, M α F3 Esercizio 1 Un blocco di massa M = 1.20 kg (figura F1) si trova in equilibrio appoggiato su una molla

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

SOLUZIONI Diagramma delle forze

SOLUZIONI Diagramma delle forze - ESERCIZIO 1 - Un'autovettura di massa m percorre una curva di raggio R e angolo θ a velocità costante in modulo. Se il coefficiente di attrito statico tra pneumatici e asfalto è pari a µs, si determini:

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico Soluzioni Esonero di Fisica I - Meccanica Anno Accademico 006-007 Esercizio n.: Un punto materiale di massa m e vincolato a muoversi lungo un binario orizzontale scabro. Siano µ s e µ d i coefficienti

Dettagli

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando Problema : Un pallina di gomma, di massa m = 0g, è lanciata verticalmente con un cannoncino a molla, la cui costante elastica vale k = 4 N/cm, ed è compressa inizialmente di δ. Dopo il lancio, la pallina

Dettagli

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017 Esercizio n. 1 Un punto materiale di massa m è vincolato a muoversi sotto l azione della gravità su un vincolo bilaterale (vedi figura) formato da un arco di circonferenza, AB, sotteso ad un angolo di

Dettagli

ESERCIZIO 1. Diagramma delle forze. , da cui si ricava: v 2 1 L. a) T = m

ESERCIZIO 1. Diagramma delle forze. , da cui si ricava: v 2 1 L. a) T = m ESERCIZIO 1 Un corpo di massa m = 100 g è collegato a uno degli estremi di un filo ideale (inestensibile e di massa trascurabile) di lunghezza L = 30 cm. L altro capo del filo è vincolato ad un perno liscio.

Dettagli

SOLUZIONE a.-d. Iniziamo a tracciare il diagramma delle forze che agiscono su ogni corpo, come richiesto al punto d.

SOLUZIONE a.-d. Iniziamo a tracciare il diagramma delle forze che agiscono su ogni corpo, come richiesto al punto d. Esercizio 1 Due blocchi di ugual massa m 1 = m sono collegati ad un filo ideale lungo l. Inizialmente, i due corpi sono mantenuti fermi e in contatto tra loro su un piano inclinato di θ con il quale i

Dettagli

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura:

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura: Esercizio 1 Un blocco di massa M inizialmente fermo è lasciato libero di muoversi al tempo t = 0 su un piano inclinato scabro (µ S e µ D ). a) Determinare il valore limite di θ (θ 0 ) per cui il blocco

Dettagli

Meccanica 17 Aprile 2019 Problema 1 (1 punto) Soluzione , F r Problema 2 (2 punti) Soluzione

Meccanica 17 Aprile 2019 Problema 1 (1 punto) Soluzione , F r Problema 2 (2 punti) Soluzione Meccanica 17 Aprile 019 Problema 1 (1 punto) Una massa puntiforme di valore m= 1.5 kg, posta nell origine, viene sottoposta all azione di una forza F= 3i + j N, dove i e j sono i versori degli assi del

Dettagli

p i = 0 = m v + m A v A = p f da cui v A = m m A

p i = 0 = m v + m A v A = p f da cui v A = m m A Esercizio 1 Un carrello di massa m A di dimensioni trascurabili è inizialmente fermo nell origine O di un sistema di coordinate cartesiane xyz disposto come in figura. Il carrello può muoversi con attrito

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009 Fisica Generale I (primo e secondo modulo) A.A. 2008-09, 15 luglio 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale 1 e

Dettagli

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα.

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα. Esercizio 1 a) Fissiamo un asse di riferimento x parallelo al piano inclinato, diretto verso l alto e con origine nella posizione iniziale del corpo alla base del piano. Sia m la massa del corpo, P la

Dettagli

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi.

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi. Esercizi 2.04.8 3 aprile 208 Sommario Conservazione dell energia e urti a due corpi. Conservazione dell energia. Esercizio Il motore di un ascensore solleva con velocità costante la cabina contenente quattro

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

IV ESERCITAZIONE. Esercizio 1. Soluzione

IV ESERCITAZIONE. Esercizio 1. Soluzione Esercizio 1 IV ESERCITAZIONE Un blocco di massa m = 2 kg è posto su un piano orizzontale scabro. Una forza avente direzione orizzontale e modulo costante F = 20 N agisce sul blocco, inizialmente fermo,

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1 Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

DINAMICA - FORZE E ATTRITO

DINAMICA - FORZE E ATTRITO DINAMICA - FORZE E ATTRITO 1 Un treno viaggia con accelerazione costante in modulo pari ad a. a. In uno dei vagoni, una massa m pende dal soffitto attaccata ad una corda. Trovare l angolo tra la corda

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola Fisica 15 Dicembre 2011 Test a risposta singola ˆ Una forza si dice conservativa quando: Il lavoro compiuto dalla forza su un qualsiasi cammino chiuso è nullo Il lavoro compiuto dalla forza su un qualsiasi

Dettagli

Risoluzione problema 1

Risoluzione problema 1 UNIVERSITÀ DEGLI STUDI DI PDOV FCOLTÀ DI INGEGNERI Ing. MeccanicaMat. Pari. 015/016 1 prile 016 Una massa m 1 =.5 kg si muove nel tratto liscio di un piano orizzontale con velocita v 0 = 4m/s. Essa urta

Dettagli

1 Fisica 1 ( )

1 Fisica 1 ( ) 1 Fisica 1 (08 01-2002) Lo studente risponda alle seguenti domande (2 punti per ogni domanda) 1) Scrivere il legame tra la velocità lineare e quella angolare nel moto circolare uniforme 2) Un punto materiale

Dettagli

Seminario didattico Ingegneria Elettronica. Lezione 6: Dinamica del Corpo Rigido

Seminario didattico Ingegneria Elettronica. Lezione 6: Dinamica del Corpo Rigido Seminario didattico Ingegneria Elettronica Lezione 6: Dinamica del Corpo Rigido 1 Esercizio n 1 Su un disco di massa M e raggio R è praticata una sottile scanalatura di raggio r che non altera il suo momento

Dettagli

Esercitazione VI - Leggi della dinamica III

Esercitazione VI - Leggi della dinamica III Esercitazione VI - Leggi della dinamica III Esercizio 1 I corpi 1, 2 e 3 rispettivamente di massa m 1 = 2kg, m 2 = 3kg ed m 3 = 4kg sono collegati come in figura tramite un filo inestensibile. Trascurando

Dettagli

UNIVERSITA' DEGLI STUDI DI GENOVA - Polo di La Spezia FISICA GENERALE 1 - Prova parziale di meccanica del 10/02/2015

UNIVERSITA' DEGLI STUDI DI GENOVA - Polo di La Spezia FISICA GENERALE 1 - Prova parziale di meccanica del 10/02/2015 FISICA GENERALE 1 - Prova parziale di meccanica del 10/02/2015 Lo studente descriva brevemente il procedimento usato e inserisca i valori numerici solo dopo aver risolto il problema con calcoli simbolici,

Dettagli

I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z)

I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z) I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z) 05-11-2015 Una pallina da tennis viene lanciata con velocità V0 = 40 m/s ed angolo rispetto all orizzontale = /3. Il campo da tennis è lungo 30 m e

Dettagli

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1 7 Una molla ideale di costante elastica k 48 N/m, inizialmente compressa di una quantità d 5 cm rispetto alla sua posizione a riposo, spinge una massa m 75 g inizialmente ferma, su un piano orizzontale

Dettagli

x : p x,i = 2 MV 0 = MV 3 cosθ MV 4 cosθ 4 = p x,f y : p y,i = 0 = MV 3 sinθ 3 3 MV 4 sinθ 4 = p x,f

x : p x,i = 2 MV 0 = MV 3 cosθ MV 4 cosθ 4 = p x,f y : p y,i = 0 = MV 3 sinθ 3 3 MV 4 sinθ 4 = p x,f Esercizio 1 Il corpo 1 e il corpo 2, entrambi considerabili come puntiformi, si trovano su un piano orizzontale xy privo di attrito. Inizialmente, rispetto al sistema di riferimento inerziale x y, il corpo

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia A.A. 208/209 Responsabile del corso: Prof. Alessandro Lascialfari Tutor (6 ore): Matteo Avolio Lezione del 04/04/209 2 h (3:30-5:30, Aula G0, Golgi) - SOLUZIONI ESERCITAZIONI LAVORO

Dettagli

Dinamica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi

Dinamica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi Dinamica del punto ESERCIZI Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Esercizio 3.1 Si consideri un punto materiale di massa m = 50 g che si muove con velocità

Dettagli

Compito di Fisica Generale (Meccanica) 17/01/2013

Compito di Fisica Generale (Meccanica) 17/01/2013 Compito di Fisica Generale (Meccanica) 17/01/2013 1) Un proiettile massa m è connesso ad una molla di costante elastica k e di lunghezza a riposo nulla. Supponendo che il proiettile venga lanciato a t=0

Dettagli

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle 6.25 (6.29 VI ed) vedi dispense cap3-mazzoldi-dinamica-part2 Dueblocchisonocomeinfiguraconm=16kg, M=88kgeconcoeff. d attrito statico tra i due blocchi pari a = 0.38. La superficie su cui poggia M è priva

Dettagli

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Problema 1: Si consideri un corpo rigido formato da una sfera omogenea di raggio R e massa M 1 e da una sbarretta omogenea di lunghezza L, massa M

Dettagli

Esercizi leggi di conservazione 2

Esercizi leggi di conservazione 2 Esercizio 1 Esercizi leggi di conservazione 2 Esercitazioni di Fisica LA per ingegneri - A.A. 2002-2003 Esercizi Un uomo di massa m = 70 kg si trova al centro di un carrello rettangolare omogeneo di massa

Dettagli

Corso di Laure in Fisica e in Matematica FISICA I Prova in itinere Nr. 1 ANNO ACCADEMICO =15 m/s.

Corso di Laure in Fisica e in Matematica FISICA I Prova in itinere Nr. 1 ANNO ACCADEMICO =15 m/s. Corso di Laure in Fisica e in Matematica MILANO BICOCCA FISICA I Prova in itinere Nr. 1 ANNO ACCADEMICO 016 017 Problema 1: Un carrello (approssimabile a un punto materiale) parte da fermo e procede con

Dettagli

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare

Dettagli

VII ESERCITAZIONE. Soluzione

VII ESERCITAZIONE. Soluzione VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo

Dettagli

POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016

POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016 POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a. 015-16 I appello, 1 luglio 016 Giustificare le risposte e scrivere in modo chiaro e leggibile. Scrivere in stampatello nome, cognome, matricola

Dettagli

) 2 + β 2. Il primo membro si semplifica tenendo conto che

) 2 + β 2. Il primo membro si semplifica tenendo conto che Calcolo vettoriale 1) Sono dati due vettori uguali in modulo a e b e formanti un certo angolo θ ab. Calcolare m = a = b sapendo che il modulo della loro somma vale 8 e che il modulo del loro prodotto vettoriale

Dettagli

Compito 19 Luglio 2016

Compito 19 Luglio 2016 Compito 19 Luglio 016 Roberto onciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 015-016 Compito di Fisica Generale I per matematici 19 Luglio 016

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Soluzioni della prima prova di accertamento Fisica Generale 1

Soluzioni della prima prova di accertamento Fisica Generale 1 Corso di Laurea in Ineneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 20 aprile 2013 Soluzioni della prima prova di accertamento Fisica Generale

Dettagli

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm.

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm. 1. Una slitta, che parte da ferma e si muove con accelerazione costante, percorre una discesa di 60,0 m in 4,97 s. Con che velocità arriva alla fine della discesa? 2. Un punto materiale si sta muovendo

Dettagli

Meccanica 13 Aprile 2015

Meccanica 13 Aprile 2015 Meccanica 3 Aprile 25 Problema (due punti) Due corpi di massa m = kg e m 2 =8 kg sono collegati da una molla di costante elastica K= N/m come in figura. Al corpo m è applicata una forza F=56 N. Trovare

Dettagli

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Compito di Fisica Generale (Meccanica) 10/01/2012

Compito di Fisica Generale (Meccanica) 10/01/2012 Compito di Fisica Generale (Meccanica) 10/01/2012 1) In un piano orizzontale sono assegnati due assi cartesiani x e y. Uno strato di liquido occupa lo spazio fra y = 0 ed y = d e si muove a velocità costante

Dettagli

Compito di Fisica Generale (Meccanica) 13/01/2014

Compito di Fisica Generale (Meccanica) 13/01/2014 Compito di Fisica Generale (Meccanica) 13/01/2014 1) Un punto materiale inizialmente in moto rettilineo uniforme è soggetto alla sola forza di Coriolis. Supponendo che il punto si trovi inizialmente nella

Dettagli

Problemi e domande d esame tratte dalle prove di accertamento in itinere degli anni precedenti

Problemi e domande d esame tratte dalle prove di accertamento in itinere degli anni precedenti Problemi e domande d esame tratte dalle prove di accertamento in itinere degli anni precedenti Problema 1 Un disco omogeneo di massa m=2 kg e raggio R= 0.3 m ruota in un piano orizzontale intorno all asse

Dettagli

Intendo svolgere (nessuna risposta: compito intero): Compito intero Recupero I parziale Recupero II parziale Recupero III parziale.

Intendo svolgere (nessuna risposta: compito intero): Compito intero Recupero I parziale Recupero II parziale Recupero III parziale. IV sessione di esami di Fisica Generale L-A 1 luglio 2003 (Esercizi) Numero di matricola (allineato a destra): Intendo svolgere (nessuna risposta: compito intero): Compito intero Recupero I parziale Recupero

Dettagli

Esercizio n 1. = 200 g t = 0 sistema in quiete a)? a 1. = 100 g m 2. a 2 b)? acc. angolare c)? T 1. e T 2

Esercizio n 1. = 200 g t = 0 sistema in quiete a)? a 1. = 100 g m 2. a 2 b)? acc. angolare c)? T 1. e T 2 Esercizio n 1 Su un disco di massa M e raggio R è praticata una sottile scanalatura di raggio r che non altera il suo momento d'inerzia. Al disco, che può ruotare attorno ad un asse orizzontale passante

Dettagli

Lavoro nel moto rotazionale

Lavoro nel moto rotazionale Lavoro nel moto rotazionale Qual è il lavoro (W ) fatto da una forza su di un corpo che sta ruotando? dw = F d s = (F sin φ)(rdθ) = τ a dθ La componente radiale della forza, F cos φ, non fa lavoro perché

Dettagli

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE ESERCIZI DI DINAMICA DEL PUNTO MATERIALE Per un pendolo semplice di lunghezza l=5 m, determinare a quale altezza può essere sollevata la massa m= g sapendo che il carico di rottura è T max =5 N. SOL.-

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Anno Accademico 2015-2016 Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Esercizio n.1 Una carrucola, costituita da due dischi sovrapposti e solidali fra loro di massa M = 20 kg e m = 15

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

UNIVERSITÀ DI CATANIA - FACOLTÀ DI INGEGNERIA D.M.F.C.I. C.L. INGEGNERIA ELETTRONICA (A-Z) A.A. 2008/2009

UNIVERSITÀ DI CATANIA - FACOLTÀ DI INGEGNERIA D.M.F.C.I. C.L. INGEGNERIA ELETTRONICA (A-Z) A.A. 2008/2009 COMPITO DI FISICA SPERIMENTALE I DEL 05/12/2008 1. Un proiettile di massa M=10 kg, nel vertice della sua traiettoria parabolica esplode in due frammenti di massa m 1 e m 2 che vengono proiettati nella

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

PRIMA PARTE - Per gli studenti che non hanno superato la prova di esonero del

PRIMA PARTE - Per gli studenti che non hanno superato la prova di esonero del Università degli Studi di Roma "La Sapienza" Facoltà di Ingegneria CORSO DI LAUREA IN INGEGNERIA CHIMICA A.A. 2008/2009 1 APPELLO DI FISICA I 17 giugno 2009 ATTENZIONE Alcuni dati potrebbero non essere

Dettagli

Compito di Fisica Generale (Meccanica) 25/01/2011

Compito di Fisica Generale (Meccanica) 25/01/2011 Compito di Fisica Generale (Meccanica) 25/01/2011 1) Un punto materiale di massa m è vincolato a muoversi su di una guida orizzontale. Il punto è attaccato ad una molla di costante elastica k. La guida

Dettagli

Dinamica del Corpo Rigido

Dinamica del Corpo Rigido Dinamica del Corpo Rigido ESERCIZI Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Esercizio 7.1 Si determini il numero di atomi contenuti in un blocchetto di rame

Dettagli

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J Esercitazione 3 Esercizio 1 - Lavoro Una particella è sottoposta ad una forza F = axy û x ax 2 û y, dove û x e û y sono i versori degli assi x e y e a = 6 N/m 2. Si calcoli il lavoro compiuto dalla forza

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

Conservazione dell energia

Conservazione dell energia mercoledì 15 gennaio 2014 Conservazione dell energia Problema 1. Un corpo inizialmente fermo, scivola su un piano lungo 300 m ed inclinato di 30 rispetto all orizzontale, e, dopo aver raggiunto la base,

Dettagli

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA 1) Descrivi, per quanto possibile, il moto rappresentato in ciascuno dei seguenti grafici: s a v t t t S(m) 2) Il moto di un punto è rappresentato

Dettagli

Esercizi di Fisica: lavoro ed energia classe 3 BS

Esercizi di Fisica: lavoro ed energia classe 3 BS Esercizi di Fisica: lavoro ed energia classe 3 BS Esercizio 1 Un automobile di massa 1500 kg parte da ferma e accelera per 5 s percorrendo 75 m. Calcola: la forza esercitata dal motore dell auto; [9 10

Dettagli

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data CLPS12006 Corsi di Laurea per le Professioni Sanitarie Cognome Nome Corso di Laurea Data 1) Essendo la densità di un materiale 10.22 g cm -3, 40 mm 3 di quel materiale pesano a) 4*10-3 N b) 4 N c) 0.25

Dettagli

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio Un ragazzo di massa 50 kg si lascia scendere da una pertica alta 12 m e arriva a terra con una velocità di 6 m/s. Supponendo che la velocità iniziale sia nulla: 1. si calcoli di quanto variano l energia

Dettagli

Dinamica dei sistemi di punti materiali

Dinamica dei sistemi di punti materiali Dinamica dei sistemi di punti materiali ESERCIZI Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Esercizio 6.1 Un corpo di massa m 1 scivola su un piano orizzontale

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi

Anno Accademico Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi Anno Accademico 2016-2017 Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi Esercizio n.1 Una carrucola, costituita da due dischi sovrapposti e solidali fra loro di massa M = 20 kg e m = 15

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 1 Febbraio 2010

Fisica Generale I (primo e secondo modulo) A.A , 1 Febbraio 2010 Fisica Generale I (primo e secondo modulo) A.A. 2009-0, Febbraio 200 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale e 2 per

Dettagli

Prova parziale di recupero di Fisica Data: 7 Febbraio Fisica. 7 Febbraio Test a risposta singola

Prova parziale di recupero di Fisica Data: 7 Febbraio Fisica. 7 Febbraio Test a risposta singola Fisica 7 Febbraio 2012 Test a risposta singola ˆ Una grandezza fisica vale.2 ara tonn giorno 1. Sapendo che un ara è un quadrato di 10 m di lato, la stessa grandezza in unità del SI vale: 276.5 10 6 m

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica.

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. Questo capitolo vuole fornire una serie di esempi pratici dei concetti illustrati nei capitoli precedenti con qualche approfondimento. Vediamo subito

Dettagli

Alcuni problemi di meccanica

Alcuni problemi di meccanica Alcuni problemi di meccanica Giuseppe Dalba Sommario Questi appunti contengono cinque problemi risolti di statica e dinamica del punto materiale e dei corpi rigidi. Gli ultimi quattro problemi sono stati

Dettagli

Lavoro ed Energia. Margherita Lembo. 19 Aprile PROBLEMA

Lavoro ed Energia. Margherita Lembo. 19 Aprile PROBLEMA LAUREA TRIENNALE IN INFORMATICA - TUTORATO FISICA I Lavoro ed Energia Margherita Lembo 19 Aprile 2018 1. PROBLEMA Un uomo preso dalle pulizie del suo appartamento tira un aspirapolvere con una forza di

Dettagli

Prova Scritta di Fisica Corso di Studi in Ingegneria Civile, Università della Calabria, 1 Luglio 2014

Prova Scritta di Fisica Corso di Studi in Ingegneria Civile, Università della Calabria, 1 Luglio 2014 Prova Scritta di Fisica Corso di Studi in Ingegneria Civile, Università della Calabria, 1 Luglio 014 Esercizio 1: Una molla ideale è utilizzata per frenare un blocco di massa 50 kg che striscia su un piano

Dettagli

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a [1] Un asta rigida omogenea di lunghezza l = 1.20 m e massa m = 2.5 kg reca ai due estremi due corpi puntiformi di massa pari a 0.2 kg ciascuno. Tale sistema è in rotazione in un piano orizzontale attorno

Dettagli

Liceo Scientifico A. Einstein - Milano

Liceo Scientifico A. Einstein - Milano Liceo Scientifico A. Einstein - Milano COMPITI ESTIVI DI FISICA Anno scolastico 014-015 Classi 3 D 3 E 3 F Docente: F. Passeri Rifare i problemi dei compiti in classe assegnati durante l'anno. Per ogni

Dettagli

Esempi Esercizi dʼesame

Esempi Esercizi dʼesame Esempi Esercizi dʼesame Calcolo vettoriale 1) Dati i due versori â ed ˆb formanti un angolo θ ab = 45 si calcoli il prodotto scalare dei vettori v 1 = â 3 ˆb e v 2 = 2â + ˆb. (R: 1 5 2 2 ) 2) Dati i due

Dettagli