Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
|
|
- Rosa Manzi
- 2 anni fa
- Visualizzazioni
Transcript
1 Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1
2 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo. Si vuole verificare se dopo una campagna pubblicitaria il fatturato medio (in migliaia di euro) sia aumentato rispetto a quello dell anno precedente pari a. Supponiamo che la varianza del fatturato sia nota, e pari a σ 2 = Si estrae un campione casuale di 81 clienti Il fatturato medio calcolato sui dati campionari è x 81 = 2510 COSA POSSIAMO CONCLUDERE? 2
3 Abbiamo solo i dati del campione: usiamo la v.c. Normale come modello per la distribuzione del fatturato (nella popolazione). Quindi X N(µ;σ 2 = 1296) Siamo interessati al valore vero del fatturato medio di quest anno; in particolare ci chiediamo se è aumentato rispetto allo scorso anno. Se il fatturato medio è rimasto invariato (ovvero se la campagna pubblicitaria non è servita a farlo aumentare), allora il campione che abbiamo osservato proviene da una N(µ = 2500;σ 2 = 1296), e la stima osservata per la media è una realizzazione della v.c. X n N(2500;1296 / 81). Quanto è plausibile osservare x = 2510 se l ipotesi che abbiamo fatto è vera? 3
4 N(2500;1296/81) Si tratta di un valore incluso in un intervallo di valori poco probabili, e quindi potremmo concludere che il valore osservato è poco plausibile sotto l ipotesi che il fatturato medio non è aumentato. Formalizziamo un po meglio. 4
5 Abbiamo formulato una Ipotesi statistica: congettura riguardante un parametro θ della popolazione. Ci muoveremo nell ambito dei: Test parametrici - L ipotesi riguarda uno o più parametri della distribuzione di probabilità della popolazione. Seguiremo l impostazione data da J.Neyman e E.S.Pearson, nota come test d ipotesi, che prevede la formulazione di due ipotesi un ipotesi detta nulla, indicata con H 0 un ipotesi alternativa, che indicheremo con OBIETTIVO Attraverso un campione di osservazioni stabilire, con un prefissato grado di attendibilità, se poter rifiutare o meno l ipotesi nulla a favore dell ipotesi alternativa. 5
6 TEST STATISTICO Possiamo definirlo come una procedura che permette di discriminare i campioni che portano all accettazione dell ipotesi nulla da quelli che portano al suo rifiuto. Un test si basa sul valore assunto da una statistica test, ovvero una statistica campionaria la cui distribuzione deve essere completamente nota sotto l ipotesi nulla H 0. X N(µ;σ 2 = 1296) X n N(2500;1296 / 81) 6
7 α = 0.05 zona di accettazione zona di rifiuto Ci sono valori inferiori a 2500 che possono essere osservati con bassa probabilità, e quindi poco plausibili se è vera, però sono altrettanto poco plausibili se è vera. I campioni che portano al rifiuto di in favore di saranno scelti fra quelli che danno luogo a medie campionarie maggiori di Scegliamo un valore critico. Ad esempio, se scegliamo , α =0.05 è la probabilità di osservare valori superiori a quando è vera, e definisce il grado di attendibilità del rifiuto di in favore di. 7
8 I valori critici definiscono la zona di accettazione e dipendono da α, detto livello di significatività del test. Maggiore è il suo valore, più ampia sarà la regione di rifiuto. La regione di rifiuto dipende dalla formulazione dell ipotesi alternativa. Alcuni esempi: H 0 : θ = θ 0 H 0 : θ = θ 0 : θ = θ 0 : θ > θ 0 : θ < θ 0 : θ θ 0 α α α / 2 α / 2 non rifiuto non rifiuto non rifiuto rifiuto rifiuto rifiuto rifiuto 8
9 Operativamente si procede secondo i seguenti passi: - Si formulano l ipotesi nulla e l ipotesi alternativa sul parametro di interesse. - Si fissa il livello di significatività α (un valore inferiore a 0.05) - Si sceglie la statistica test da utilizzare e, tenendo conto del valore fissato per α, si determina la zona di rifiuto e la zona di non rifiuto di. - Si seleziona un campione casuale e si calcola il valore della statistica test in corrispondenza del campione: se il valore osservato cade nella zona di rifiuto si rifiuta in favore di, sulla base della logica seguente: Sotto non è impossibile osservare quello che abbiamo osservato, ma è poco probabile (ha probabilità α ). Quindi rifiutiamo in quanto poco plausibile sulla base dell osservato, attribuendo lo scostamento fra il valore osservato e il valore vero del parametro sotto a fattori sistematici e non al solo errore di campionamento. 9
10 TEST SULLA MEDIA DI POPOLAZIONE (popolazione Normale, varianza nota) X N(µ;σ 2 ) X n N(µ;σ 2 / n) Conviene lavorare con la media standardizzata Z n = X µ n N(0;1) σ / n H 0 : µ > µ 0 Se è vera allora Z n = X µ n 0 σ / n utilizzeremo. N(0;1), e Z n N(0,1) è la statistica test che Fissiamo α : il valore critico sarà z α, e la zona di rifiuto R = x : x µ 0 z α, ovvero σ / n R = { z :z oss z } α 10
11 Selezioniamo un campione: se il valore osservato della statistica test z oss = x n µ 0 σ / n z α rifiutiamo in favore di, altrimenti non rifiutiamo, e attribuiamo lo scostamento fra valore osservato e µ 0 all errore di campionamento. α z α 11
12 : µ < µ R = z :z z oss α α z α 12
13 : µ µ R = z : z z oss α/2 α / 2 α / 2 z α /2 z α /2 13
14 TEST SULLA MEDIA DI POPOLAZIONE (popolazione Normale, varianza non nota) X N(µ;σ 2 ) X n N(µ;σ 2 / n) H 0 : µ > µ 0 sappiamo che T n = X µ n t n 1 S / n Se è vera allora T n = X µ n 0 t n 1. S / n La logica di fondo è analoga al caso precedente, cambia solo la distribuzione di riferimento: ora la zona di rifiuto è R = x : x µ 0 t α ;(n 1), ovvero s / n R = { t :t oss t } α ;(n 1) 14
15 : µ < µ R = t :t t oss α ;(n 1) : µ µ R = t : t t oss α/2;(n 1) 15
16 TEST SULLA MEDIA DI POPOLAZIONE (popolazione non Normale, campione grande) Per grandi campioni possiamo utilizzare risultati asintotici e usare come statistica test Z n = X n µ 0 S / n N(0,1) : µ > µ R = z :z z oss α : µ < µ R = z :z z oss α : µ µ R = z : z z oss α/2 16
17 TEST SU UNA PROPORZIONE (campione grande) X Ber(π) H 0 : π = π 0 : π > π 0 f Si usa la statistica test Z n = n π 0 che, sotto π 0 (1 π 0 ) n : π = π 0 : π > π R = z :z z oss α, ha distribuzione N(0,1). : π = π 0 : π < π R = z :z z oss α : π = π 0 : π π R = z : z z oss α/2 17
Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una
1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.
Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi
3. Confronto tra medie di due campioni indipendenti o appaiati
BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO
Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :
Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in
Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)
Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso
Esercitazioni di Statistica
Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti
L Analisi della Varianza ANOVA (ANalysis Of VAriance)
L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni
1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:
Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi
Statistica. Lezione 6
Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,
VERIFICA DELLE IPOTESI
VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi
Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010
Esercizi test ipotesi Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Verifica delle ipotesi - Esempio quelli di Striscia la Notizia" effettuano controlli casuali per vedere se le pompe
Metodi statistici per le ricerche di mercato
Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per
La logica statistica della verifica (test) delle ipotesi
La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi
Inferenza statistica I Alcuni esercizi. Stefano Tonellato
Inferenza statistica I Alcuni esercizi Stefano Tonellato Anno Accademico 2006-2007 Avvertenza Una parte del materiale è stato tratto da Grigoletto M. e Ventura L. (1998). Statistica per le scienze economiche,
Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che
Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema
STATISTICA INFERENZIALE
STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p
Metodi statistici per le ricerche di mercato
Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per
Statistiche campionarie
Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle
Esercitazione n.2 Inferenza su medie
Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione
Capitolo 11 Test chi-quadro
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova
Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice
Esercitazione 15 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 18 L importanza del gruppo di controllo In tutti i casi in cui si voglia studiare l effetto di un certo
VERIFICA DELLE IPOTESI
VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180
Corso di Psicometria Progredito
Corso di Psicometria Progredito 3.1 Introduzione all inferenza statistica Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014
Corso di Psicometria Progredito
Corso di Psicometria Progredito 4.2 I principali test statistici per la verifica di ipotesi: Il test F Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico
Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1
Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo
iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi
iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso
Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011
Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca
decidiamo, sulla base di un campione, se l ipotesi formulata è plausibile oppure no.
LA VERIFICA D IPOTESI Alla base dell inferenza statistica vi è l assunzione che i fenomeni collettivi possano essere descritti efficacemente mediante delle distribuzioni di probabilità. Abbiamo già considerato
Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica
Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi
Istituzioni di Statistica e Statistica Economica
Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte
Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Metodi statistici per l economia (Prof. Capitanio) Slide n. 4 Materiale di supporto per le lezioni. Non sostituisce il libro di testo Dipendenza di un carattere QUANTITATIVO da un carattere QUALITATIVO
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi per la media (varianza nota), p-value del test Il manager di un fast-food
Inferenza statistica. Statistica medica 1
Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella
Appunti: Teoria Dei Test
Appunti: Teoria Dei Test Fulvio De Santis, Luca Tardella e Isabella Verdinelli Corsi di Laurea A + E + D + G + R 1. Introduzione. Il test d ipotesi è un area dell inferenza statistica in cui si valuta
CAPITOLO III CONFRONTI TRA DISTRIBUZIONI
CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di
Concetto di potenza statistica
Calcolo della numerosità campionaria Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Concetto di potenza statistica 1 Accetto H 0 Rifiuto H 0 Ipotesi Nulla (H
L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt
L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELL ROLE Six Sigma Master lack elt Dicembre, 009 Introduzione Nell esecuzione dei progetti Six Sigma è di fondamentale importanza sapere se
Problema pratico: Test statistico = regola di decisione
La verifica delle ipotesi statistiche Problema pratico: Quale, tra diverse situazioni possibili, riferite alla popolazione, è quella meglio sostenuta dalle evidenze empiriche? Coerenza del risultato campionario
Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni
Controllo Statistico della Qualità Qualità come primo obiettivo dell azienda produttrice di beni Qualità come costante aderenza del prodotto alle specifiche tecniche Qualità come controllo e riduzione
STATISTICA IX lezione
Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 28/05/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Nel gico del
Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test
STATISTICA (2) ESERCITAZIONE 6 05.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test Il preside della scuola elementare XYZ sospetta che
Istituzioni di Statistica e Statistica Economica
Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 3 A. Sia una variabile casuale che si distribuisce secondo
Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011
Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione
è decidere sulla verità o falsità
I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall
Temi di Esame a.a. 2012-2013. Statistica - CLEF
Temi di Esame a.a. 2012-2013 Statistica - CLEF I Prova Parziale di Statistica (CLEF) 11 aprile 2013 Esercizio 1 Un computer è collegato a due stampanti, A e B. La stampante A è difettosa ed il 25% dei
INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)
INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;
Analisi di dati di frequenza
Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato
ANALISI DELLE FREQUENZE: IL TEST CHI 2
ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato
Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)
Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca
CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI
VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita
Capitolo 7 TEST DELLE IPOTESI
B. Chiandotto F. Cipollini Versione 3 Cap. 7 Capitolo 7 TEST DELLE IPOTESI In questo capitolo si affronta il problema della verifica d ipotesi statistiche limitando la trattazione alla cosiddetta teoria
Inferenza statistica
Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione in base ad informazioni ricavate da un campione. Inferenza statistica: indurre
FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011
FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/3/2 ESERCIZIO (2+2+2+2) La seguente tabella riporta la distribuzione della variabile "Stato Civile"
Test statistici di verifica di ipotesi
Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall
Analisi statistica di dati biomedici Analysis of biologicalsignals
Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.
Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione
Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori
Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni
Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1 Analisi dei residui Il test statistico ed il suo p-valore riassumono la
LEZIONE n. 5 (a cura di Antonio Di Marco)
LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,
Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo
Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO Pasquale Iandolo Laboratorio analisi ASL 4 Chiavarese, Lavagna (GE) 42 Congresso Nazionale SIBioC Roma
Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica
Università del Piemonte Orientale Corsi di Laurea Triennale di area tecnica Corso di Statistica Medica Campionamento e distribuzione campionaria della media Corsi di laurea triennale di area tecnica -
Esercitazioni-aula-parte-III
Esercitazioni-aula-parte-III Esempio par.7.2) Ross Sia (X 1,..., X n ) un campione aleatorio estratto da una popolazione esponenziale di parametro θ incognito. Determinare l espressione dello stimatore
Esercizi riassuntivi di probabilità
Esercizi riassuntivi di probabilità Esercizio 1 Una ditta produttrice di fotocopiatrici sa che la durata di una macchina (in migliaia di copie) si distribuisce come una normale con µ = 1600 e 2 = 3600.
Regressione Logistica: un Modello per Variabili Risposta Categoriali
: un Modello per Variabili Risposta Categoriali Nicola Tedesco (Statistica Sociale) Regressione Logistica: un Modello per Variabili Risposta Categoriali 1 / 54 Introduzione Premessa I modelli di regressione
Esercitazione n.4 Inferenza su varianza
Esercizio 1 Un industria che produce lamiere metalliche ha ricevuto un ordine di acquisto di un grosso quantitativo di lamiere di un dato spessore. Per assicurare la qualità della propria fornitura, l
R - Esercitazione 5. Lorenzo Di Biagio dibiagio@mat.uniroma3.it. Lunedì 2 Dicembre 2013. Università Roma Tre
R - Esercitazione 5 Lorenzo Di Biagio dibiagio@mat.uniroma3.it Università Roma Tre Lunedì 2 Dicembre 2013 Intervalli di confidenza (1) Sia X 1,..., X n un campione casuale estratto da un densità f (x,
Politecnico di Milano - Anno Accademico 2010-2011 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo
Politecnico di Milano - Anno Accademico 200-20 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Esercitazione 9 2 Giugno 20 Esercizio. In un laboratorio per il test dei materiali,
Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi
In molte situazioni una raccolta di dati (=esiti di esperimenti aleatori) viene fatta per prendere delle decisioni sulla base di quei dati. Ad esempio sperimentazioni su un nuovo farmaco per decidere se
Esercizi: i rendimenti finanziari
Esercizi: i rendimenti finanziari Operazioni algebriche elementari Distribuzione e dipendenza Teoria di probabilità Selezione portafoglio p. 1/25 Esercizio I Nella tabella sottostante relativa all indice
Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni)
STATISTICA (2) ESERCITAZIONE 4 18.02.2013 Dott.ssa Antonella Costanzo Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) Sia X una popolazione distribuita secondo la legge Bernoulliana
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca
METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica
METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica EPIDEMIOLOGIA Ha come oggetto lo studio della distribuzione delle malattie in un popolazione e dei fattori che la influenzano
Il campionamento statistico
Lezione 13 Gli strumenti per il miglioramento della Qualità Il campionamento statistico Aggiornamento: 19 novembre 2003 Il materiale didattico potrebbe contenere errori: la segnalazione e di questi errori
Prova di autovalutazione Prof. Roberta Siciliano
Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.
Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza
Università del Piemonte Orientale Corsi di Specialità Corso di Statistica Medica Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corso di laurea in biotecnologie
Esercitazioni del corso di Statistica Prof. Mortera a.a. 2010/2011. Esercizi di stima puntuale, intervalli di confidenza e test T 2 = 1 2 X
Esercitazioni del corso di Statistica Prof. Mortera a.a. 2010/2011 Esercizi di stima puntuale, intervalli di confidenza e test 1. Si consideri il campione (X 1, X 2, X 3, X 4 ) composto da variabili i.i.d.
Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI
Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI 1. L azienda Wood produce legno compensato per costruzioni
Università del Piemonte Orientale. Corso di dottorato in medicina molecolare. a.a. 2002 2003. Corso di Statistica Medica. Inferenza sulle medie
Università del Piemonte Orientale Corso di dottorato in medicina molecolare aa 2002 2003 Corso di Statistica Medica Inferenza sulle medie Statistica U Test z Test t campioni indipendenti con uguale varianza
TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST
TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Statistica 1 Parte A 1.1 La formula µ = x ± s n
4. Confronto tra medie di tre o più campioni indipendenti
BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO
FONDAMENTI DI PSICOMETRIA - 8 CFU
Ψ FONDAMENTI DI PSICOMETRIA - 8 CFU STIMA DELL ATTENDIBILITA STIMA DELL ATTENDIBILITA DEFINIZIONE DI ATTENDIBILITA (affidabilità, fedeltà) Grado di accordo tra diversi tentativi di misurare uno stesso
TECNICHE DI SIMULAZIONE
TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione
E naturale chiedersi alcune cose sulla media campionaria x n
Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile
Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C
Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Cognome Nome: Part time: Numero di matricola: Diurno: ISTRUZIONI: Il punteggio relativo alla prima parte dell esame viene calcolato
SMID a.a. 2005/2006 Corso di Statistica per la Ricerca Sperimentale I sondaggi 23/1/2006
SMID a.a. 2005/2006 Corso di Statistica per la Ricerca Sperimentale I sondaggi 23/1/2006 Scopo della ricerca Riuscire a determinare le caratteristiche di un fenomeno attraverso un campionamento di alcuni
6. Modelli statistici: analisi della regressione lineare
BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO
La significatività PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA
PROVE DI SIGNIFICATIVITA Tutti i test statistici di significatività assumono inizialmente la cosiddetta ipotesi zero (o ipotesi nulla) Quando si effettua il confronto fra due o più gruppi di dati, l'ipotesi
Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti
Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti colori, tra cui 382 rosse. Qualche tempo dopo il donatore
I punteggi zeta e la distribuzione normale
QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario
STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007
Esercitazione I 7/4/007 In una scatola contenente 0 pezzi di un articolo elettronico risultano essere difettosi. Si estraggono a caso due pezzi, uno alla volta senza reimmissione. Quale è la probabilità
Richiami di inferenza statistica
C Richiami di inferenza statistica SOMMARIO C.1. Un campione di osservazioni C.2. Un modello econometrico C.3. Stima della media di una popolazione C.4. Stima della varianza e di altri momenti della popolazione
Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.
Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame del 18/7/2013 NOME COGNOME N. Matr. Rispondere ai punti degli esercizi nel modo più completo possibile, cercando
IL CAMPIONAMENTO NELLA REVISIONE CONTABILE
Università RomaTre. Facoltà di Economia Federico Caffè Prof. Ugo Marinelli Anno Accademico 07-08 1 PREMESSA RACCOLTA SUFFICIENTI ED APPROPRIATI ELEMENTI PROBATIVI LA È SVOLTA IN BASE A VERIFICHE DI CAMPIONI
CAPITOLO 7 LE DISTRIBUZIONI CAMPIONARIE E GLI INTERVALLI DI CONFIDENZA
SOLUZIONI 7.1 7.2 7.3 7.4 7.5 a) X=6,3 minuti b) 3,7 minuti CAPITOLO 7 LE DISTRIBUZIONI CAMPIONARIE E GLI INTERVALLI DI CONFIDENZA a) Quantitativo,discreto b) P=502/1004=0,5 o 50% c) Età,tipo di lavoro,