Logica predicativa del prim ordine

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Logica predicativa del prim ordine"

Transcript

1 Logica predicativa del prim ordine Eugenio G. Omodeo Anno accademico 2007/ 08 Contents 1 Linguaggi per la logica predicativa del prim ordine Sintassi di un linguaggio predicativo Convenzioni sul lessico per la logica predicativa Arricchimenti dei linguaggi predicativi Estensioni sintattiche come regole di riscrittura Prime riflessioni sul metalinguaggio per i linguaggi predicativi Appendice: Sottolinguaggi clausolari Semantica dei linguaggi predicativi Interpretazioni di un linguaggio predicativo Valutazione di un enunciato Modelli e conseguenze logiche. Enunciati assurdi e validi Universi e basi di Herbrand, e modelli di enunciati universali Ingegneria della conoscenza Teorie Digressione sul concetto di formalismo Che cos è un formalismo? Correttezza e completezza Sistemi deduttivi, calcolo logico e consistenza Esempi d uso dei linguaggi predicativi: formalizzazione di teorie Teorie sugli ordinamenti Leggi dell uguaglianza Teoria dei preordinamenti Teoria degli ordinamenti parziali Teoria degli ordinamenti totali Teorie sugli ordinamenti densi Teorie su domini numerici Teoria dei numeri naturali con successore Aritmetica di Presburger Aritmetica elementare con somma, prodotto ed esponenziazione Università degli Studi di Trieste, Dipartimento di Matematica e Informatica, via Alfonso Valerio 12/b, Trieste. 1

2 3.2.4 Aritmetica elementare di Peano Teoria dei numeri reali e teoria dei numeri complessi Teorie deboli degli insiemi Estensionalità, assiomi sull aggiunta e la rimozione di elementi Variante degli assiomi in un linguaggio piú ricco di simboli Buona fondatezza dell appartenenza Geometria elementare Questioni metamatematiche Non-contraddittorietà di una teoria Consistenza di un sistema deduttivo Completezza di una teoria Decidibilità o indecidibilità di una teoria Teorie indecidibili e indecidibilità essenziale Semidecidibilità di una teoria Oltre la mera decidibilità Frammenti decidibili di una teoria Assiomatizzabilità di una teoria Assiomatizzabilità finita di una teoria Indipendenza fra assiomi, ed assiomatizzazioni equipollenti Apparati deduttivi per la logica del prim ordine Sistemi deduttivi alla Hilbert Assiomi logici, derivabilità, inferenze Teorema di correttezza (*) Consistenza del calcolo predicativo Teoremi di completezza, compattezza ed enumerabilità Varianti del formalismo hilbertiano qui proposto Sistemi di deduzione fondati sul principio di risoluzione Riduzione di enunciati a forma prenessa Skolemizzazione Teorema di Herbrand Organizzazione di un dimostratore automatico Principio di risoluzione Completezza del principio di risoluzione Algoritmo di unificazione Sistemi equazionali Un formalismo corretto e completo per il trattamento di sole identità Il problema dell unificazione Svolgimento di esercizi selezionati 48 Introduzione Quando una proposizione italiana viene tradotta in un enunciato del linguaggio proposizionale, essa si riduce ad uno scheletro in cui sopravvive ben poco della struttura e del significato originari. La traduzione può tuttavia mettere in risalto, in alcuni casi fortunati, che la proposizione 2

3 italiana è senza dubbio vera, poiché essa viene a tradursi in un enunciato tautologico. Un esempio: La proposizione Se Socrate è un uomo, allora Socrate è mortale oppure Socrate è un uomo potrebbe essere tradotta come p q p; quest enunciato è tautologico, e quindi è valida l affermazione italiana scritta fra virgolette. La traduzione, in certi casi, è invece fuorviante. Se traducessimo Mary amò John ed ebbe un bambino come r s, apparirebbe altrettanto legittimo tradurre Mary ebbe un bambino ed amò John come s r. Per la commutatività dell operazione di congiunzione, r s è logicamente equivalente ad s r. Sono allora equivalenti di significato le due affermazioni italiane che questi enunciati dovrebbero rappresentare (sia pure schematicamente)? Meglio andarci cauti. Vi sono poi dei casi in cui la traduzione dall italiano al linguaggio proposizionale viene ad oscurare dei legami logici che sono essenziali per la correttezza di un argomentazione. Le seguenti quattro affermazioni sono valide in italiano, ma la loro validità non trasparirebbe da una traduzione nel calcolo proposizionale: 1. Se ogni amico di Martino è amico di Gianna e se inoltre Pietro non è amico di Gianna, allora Pietro non è amico di Martino ; 2. Se le donne sono tutte immortali, e se inoltre Cleopatra è una donna, allora Cleopatra è immortale ; 3. Se gli uomini sono bipedi, allora la chioma di qualsiasi uomo è chioma di un bipede ; 4. Se tutti gli uomini sono filosofi, se inoltre Socrate è un uomo e Socrate è uguale al marito di Santippe, allora il marito di Santippe è un filosofo. Il linguaggio predicativo di cui stiamo intraprendendo lo studio consente di esprimere queste quattro affermazioni in modo formale e senza occultare la struttura logica che le rende valide. In teoria degli insiemi un particolare sistema deduttivo fondato sulla logica predicativa, potremmo in effetti esprimere cosí: 1. amici( martino ) amici( gianna ) pietro / amici( gianna ) pietro / amici( martino ); 2. donne immortali cleopatra donne cleopatra immortali; 3. uomini bipedi x ( y uomini ( x = chioma( y ) ) z bipedi ( x = chioma( z ) ) ); 4. uomini filosofi socrate uomini socrate = marito( santippe ) marito( santippe ) filosofi. (Qui amici, chioma, marito denotano funzioni, mentre tutti gli altri identificatori denotano insiemi 1 ). I simboli ed che stiamo qui vedendo per la prima volta corrispondono grosso modo ai costrutti for ed exists di molti linguaggi di programmazione. Con una differenza sostanziale, però. Che mentre for prescrive che l esecuzione di un certo brano di programma 1 Per semplicità ci stiamo riferendo con la parola insiemi sia agli insiemi in senso stretto che ai costituenti ultimi di cui gli insiemi sono composti, che talvolta vengono chiamati individui. 3

4 venga effettuata un numero finito di volte, rappresenta l iterazione sulla classe immensa che è costituita da tutti gli insiemi. Analogamente, mentre exists indica che una certa ricerca, svolta su di un insieme finito di oggetti, dovrà interrompersi con successo qualora venga trovato un oggetto soddisfacente a certe condizioni; nell interpretare, invece, la ricerca si immagina effettuata sulla totalità degli insiemi. In accordo con questo cenno di semantica, leggeremo x ϕ come per ogni x si ha che ϕ ed x ϕ come vi è almeno un x tale che ϕ. Le formule esistenziali in esempio, che sono y uomini ( x = chioma( y ) ) ed z bipedi ( x = chioma( z ) ), devono essere considerate abbreviazioni di y ( y uomini x = chioma( y ) ) e di z ( z bipedi x = chioma( z ) ), e dunque significano: esiste un uomo che ha come sua chioma x, esiste un bipede che ha come sua chioma x. Come vedremo, esiste una varietà di linguaggi predicativi: essi sono accomunati dai tratti salienti, e differiscono marginalmente per alcuni costrutti. Fra i linguaggi predicativi ve ne sono nei quali formulare teorie degli insiemi, altri nei quali formulare teorie sugli spazi geometrici, ecc.. Non sempre in un linguaggio predicativo sono disponibili, col loro significato insiemistico, i simboli e. Vi saranno però comunque, in aggiunta ai simboli che denotano funzioni, dei simboli predicativi. Invece di scrivere che cleopatra donne potremo scrivere, quindi, che donna( cleopatra ), ove donna è un simbolo predicativo ad un argomento. Invece di scrivere che amici( martino ) amici( gianna ) scriveremo che x ( amico( x, martino ) amico( x, gianna ) ), dove amico è un simbolo predicativo a due argomenti. Perfino il simbolo = di uguaglianza può talvolta mancare, ma anche in tal caso, con diversi accorgimenti, si arriva ad esprimere ciò che si vuole. L universo su cui, nel calcolo predicativo, si immaginano effettuate le iterazioni denotate da,, non è necessariamente, come in teoria degli insiemi, la classe costituita da tutti gli insiemi. È una generica classe, che si suppone non vuota solamente per ragioni tecniche. In un linguaggio non specificatamente rivolto alla teoria degli insiemi, potremmo esprimere cosí: 1. x ( amico( x, martino ) amico( x, gianna ) ) amico( pietro, gianna ) amico( pietro, martino ); 2. x ( donna( x ) immortale( x ) ) donna( cleopatra ) immortale( cleopatra ); 3. x ( uomo( x ) bipede( x ) ) x ( y ( uomo( y ) x = chioma( y ) ) z ( bipede( z ) x = chioma( z ) ) ); 4. x ( uomo( x ) filosofo( x ) ) uomo( socrate ) socrate = marito( santippe ) filosofo( marito( santippe ) ). Presenteremo ora la sintassi dei linguaggi predicativi, e, piú oltre, la sua semantica (della quale non si sono dati fino ad ora che alcuni cenni). Dopodiché entreremo nello specifico delle problematiche logiche: analisi dei concetti di formalismo, teoria, sistema deduttivo; questioni metamatematiche connesse con la formalizzazione di teorie; risultati limitativi della logica e risultati di decidibilità di teorie; ecc.. I linguaggi della logica predicativa, nella loro varietà, ci renderanno facile affiancare alla discussione di queste problematiche numerosi esempi che riguarderanno prevalentemente ambiti matematici di natura piuttosto astratta. Una volta constatata la gran versatilità e ubiquitarietà della logica, non ci vorrà molto a convincersi della molteplicità dei suoi impieghi pratici anche in settori lontani dall astrazione matematica. Esercizio 1 Provate a esprimere nel simbolismo predicativo le seguenti proposizioni: 4

5 Tutti i corvi sono neri e col becco giallo. Esistono galline dalle uova d oro. Chi semina vento raccoglie tempesta. 1 Linguaggi per la logica predicativa del prim ordine 1.1 Sintassi di un linguaggio predicativo Servendoci della notazione di Backus-Naur estesa, possiamo specificare la sintassi di un linguaggio predicativo del prim ordine come segue: 2 formula ::= formula atomica connettivo nullario connettivo unario formula ( formula connettivo binario formula ) quantificatore formula ( formula ) formula atomica ::= Simbolo di predicato argomenti argomenti ::= ( termine altri termini ) altri termini ::= ɛ, termine altri termini termine ::= VAR Costante Simbolo di funzione argomenti quantificatore ::= VAR VAR connettivo nullario ::= f v connettivo unario ::= connettivo binario ::= + > (ove con ɛ viene denotata la parola vuota). Il simbolo iniziale di questa grammatica è formula, ma anche la categoria sintattica descritta da termine rivestirà un ruolo essenziale. Le novità piú rilevanti, rispetto al linguaggio della logica proposizionale, sono: 2 La dicitura del prim ordine verrà generalmente omessa, senza fraintendimenti possibili, dato che in questo corso non andremo al di là del primo ordine. 5

6 I quantificatori, classificabili in: universali, quelli della forma x; esistenziali, quelli della forma x. Senza ancora affrontare la semantica di termini e formule, conviene comunque indicare come vada letta una formula della forma xϕ o della forma xϕ. Rispettivamente: per ogni x si ha che ϕ, e c è almeno un x tale che ϕ. Le variabili, che formano la categoria su indicata con VAR. Non abbiamo specificato questa categoria, poiché la vediamo come una categoria lessicale piuttosto che sintattica. È importante, comunque la si determini, far in modo che questa categoria circoscriva una scorta infinita di identificatori. Assumeremo che questi identificatori siano disposti in un ordine simile a quello dei numeri naturali tanto che si possa, per esempio, parlare della prima variabile che non figura in una formula. Quanto a Costante, Simbolo di funzione, Simbolo di predicato, è proprio precisando queste tre categorie che si stabilisce con esattezza il linguaggio: non stiamo infatti considerando un singolo linguaggio, ma uno schema di linguaggio che andrà adattato caso per caso alle esigenze di formalizzazione di una specifica teoria. Il linguaggio che ha C, F, P (insiemi fra loro disgiunti) come insieme delle costanti, dei simboli di funzione e dei simboli di predicato, verrà indicato nel seguito come L(C, F, P). Nel determinare queste tre categorie di simboli, per ciascun simbolo di funzione e di predicato si dovrà indicare un intero positivo detto il suo grado (o la sua arità ). Tramite il grado viene stabilito, per ciascun simbolo, il numero dei termini in qualsiasi lista di argomenti preceduta da quel simbolo. La mancata concordanza fra lunghezza di una lista di argomenti e grado del simbolo che la regge è un errore di semantica statica piuttosto che di sintassi: questa è una ragione per cui la faccenda del grado non traspare dalle regole di produzione della nostra grammatica. Non è raro che i simboli di costante e di funzione siano del tutto assenti, ma qualunque linguaggio predicativo deve comprendere almeno un simbolo di predicato. Talvolta c è un solo simbolo di predicato (comune il caso che si tratti del simbolo = di uguaglianza). Talvolta la scorta dei simboli di predicato e funzione è infinita, e cosí pure quella delle costanti. La sintassi della logica predicativa non è uno standard, e la versione che ne abbiamo fornita potrà differire in qualche particolare ci auguriamo inessenziale da quella che potete trovare in comuni manuali di logica. Per fare un caso, la parentesizzazione da noi prevista, è sovrabbondante. Ciò che conta è, comunque, che essa sia adeguata a rendere unica la lettura delle formule: ed in effetti, la nostra grammatica non ha il difetto di essere ambigua. Esercizio 2 Individuate tutti i terminali nella grammatica delle formule esposta nella sez Convenzioni sul lessico per la logica predicativa Se la sintassi della logica predicativa non è uno standard, la situazione del lessico è ancora piú confusa, dato che le convenzioni adottate da un autore sono spesso antitetiche a quelle di un altro. Vi sono, per esempio, due linguaggi di programmazione fortemente improntati alla logica del prim ordine (non di tutta, ma di una parte significativamente estesa): Prolog e Gödel. In Prolog si pattuisce che gli identificatori di variabile inizino con lettera maiuscola e quelli delle costanti con lettera minuscola; in Gödel queste convenzioni sono invertite. 6

7 Scegliamo qui come riferimento Prolog, semplicemente per prendere una posizione (dalla quale, prima o poi, derogare). Tradizionalmente in Prolog i simboli di predicato e di funzione hanno la stessa struttura, e vengono detti funtori; le costanti vengono identificate sia al modo dei funtori, che tramite numerali (cioè tramite sequenze di cifre decimali): VAR ::= maiusc seqalfnum FUNTORE ::= minusc seqalfnum COSTANTE ::= minusc seqalfnum NUMERALE NUMERALE ::= cifrapos seqcif seqalfnum ::= ɛ cifra seqalfnum minusc seqalfnum maiusc seqalfnum seqcif ::= ɛ cifra seqcif cifra ::= 0 cifrapos cifrapos ::= minusc ::= a b c z maiusc ::= A B C Z Simboli desunti dal matematico (per esempio, π come costanti, +,, come simboli di funzione,, come simboli di predicato, ecc.) verranno aggiunti a questo lessico quando se ne presenterà l occasione, e non ci soffermeremo a sottolineare ogni circostanza dl genere. Per le variabili impiegheremo spesso le lettere x, y, z, u, v, w, l, e di quando in quando anche altre lettere minuscole (non grassettate), eventualmente con pedici. Questa non è una vera difformità dalle norme or ora stabilite, ma una prassi che si giustifica con il fatto che le variabili dei quantificatori possono essere ridenominate a piacere giacché sono variabili mute, alla stessa stregua degli indici di sommatorie, delle variabili di integrazione, ecc.. Ciò risulterà evidente dalla semantica dei linguaggi predicativi (vedi sez. 2), e ci induce sin d ora a impiegare al posto delle variabili delle meta-variabili, liberamente sostituibili con variabili autentiche. Qualcuno impiega parentesi quadre e graffe in sostituzione delle tonde quando ciò può facilitare la lettura; noi non ci regoleremo cosí, ma talvolta ingrandiremo coppie di parentesi corrispondenti, con lo stesso obiettivo di chiarezza. 1.3 Arricchimenti dei linguaggi predicativi Per facilitare l impiego dei linguaggi predicativi del prim ordine, si usa arricchirli o renderne piú agile o flessibile la sintassi. Le modifiche sono numerose, e non comportano un aumento del potere espressivo: solo una maggior concisione o, quanto meno, un miglioramento della leggibilità delle formule. Come illustreremo con qualche esempio, si tratta di convenzioni abbreviative che potrebbero essere trattate per mezzo di un preprocessore. Per descrivere la sintassi di un linguaggio-oggetto (nel caso sotto esame, quello logica predicativa), è comune l impiego di un metalinguaggio formale, come quello delle grammatiche che abbiamo utilizzato sopra. Anche per l introduzione di notazioni abbreviative, esistono strumenti formali, ma qui ci contentiamo di sbrigative convenzioni: Le lettere x, y, z, u, v, w indicheranno variabili; le lettere c, b, a, k, costanti; le lettere f, g, h, simboli di funzione; le lettere P, Q, R, S, simboli di predicato; le lettere greche ϕ, ψ, χ, α, β, ϑ indicheranno formule; le lettere τ, t, d, s, termini. (Pedici ammessi in ciascuno dei sei casi). 7

8 Tramite i simboli definitorî = Def e Def, a due argomenti, verrà spiegato come andrebbe riscritto il definiendum (l argomento di sinistra un espressione che non fa parte del linguaggio originario) in base al definiens (l argomento di destra appartenente, o già riconducibile, al linguaggio originario). Una delle piú diffuse convenzioni di comodo riguarda i simboli (di predicato o di funzione) aventi grado 2, per i quali si ricorre sovente alla notazione infissa: vale a dire, invece di anteporre il simbolo alla lista dei suoi due argomenti, lo si inserisce fra i due, come si fa con i connettivi proposizionali binari. Importantissimo fra i simboli che usualmente vengono adoperati come infissi è quello, =, di uguaglianza, che a differenza degli altri simboli di predicato avrà un interpretazione prestabilita. Importanti anche il simbolo di appartenenza, utilizzato nella formalizzazione di teorie di insiemi e classi; estremamente comune l operatore di confronto, < (che può presentarsi in varie fogge:,, ; o talvolta capovolto: >,,, ; combinato con l uguaglianza:,, ; ecc.). Altre cose [...DA SISTEMARE...]: Possibilità di evitare parentesi attorno alle liste di argomenti o, procedendo in senso opposto, di evitare attribuzioni di grado. Impiego pre-/post-fisso di simboli di funzione e di predicato aventi grado 1 (simboli utilizzati a questo modo, o come infissi, verranno chiamati anche operatori, oppure relatori, a seconda che rappresentino funzioni o predicati). Possibilità di stabilire regole di priorità, estendenti quelle sui connettivi (i pre-/post-fissi hanno di solito precedenza sugli infissi, gli operatori sui relatori, i relatori sui connettivi). Assorbimento del nel relatore: s t, s / t, ecc. Quantificatori aggiuntivi (ristretti ecc.):! x ϕ, x < τ ϕ, x τ ϕ, x τ ϕ, ecc.. (Da leggersi, rispettivamente: esiste uno ed un solo x tale che ϕ, per ogni x che sia minore di τ si ha che ϕ, per ogni x appartenente a τ si ha che ϕ, c è almeno un x appartenente a τ tale che ϕ ). Descrittori di Peano/Russell e di Hilbert: ε x ϕ, ι x ϕ. (Da leggersi, rispettivamente: un x tale che ϕ, lo x tale che ϕ ). 3 A livello sintattico, si tratta semplicemente di creare un interdipendenza ricorsiva fra termini e formule, aggiungendo alle alternative nella produzione dei termini queste due: termine ::= ε VAR formula ι VAR formula Lettere proposizionali, che possono essere viste alla stregua di simboli predicativi di grado 0 (il linguaggio deve comunque comprendere almeno un simbolo predicativo di grado > 0). Aggiunte specifiche: [τ 1,..., τ n τ], {τ 1,..., τ n }, n, ecc., per designare rispettivamente liste, insiemi finiti, numeri naturali, ecc.. 3 Tradizionalmente lo ι del descrittore di Peano viene piú spesso scritto capovolto, cosí: ι. 8

9 1.3.1 Estensioni sintattiche come regole di riscrittura In molti casi gli arricchimenti sintattici che facilitano l impiego della logica del prim ordine possono essere descritti tramite semplici regole di riscrittura, quali: 4 s / t Def (s, t) s t Def s = t ϕ Def f ϕ! x ϕ Def y x ( ϕ x = y ) x τ ϕ Def x ( x τ ϕ ) x τ ϕ Def x ( x τ ϕ ) x τ ϕ Def x ( x < τ x = τ ϕ ) [τ 1,..., τ n τ] = Def ( τ 1, ( τ 2,..., ( τ n, τ ) ) ) {τ 1,..., τ n } = Def con( τ n, con( τ n-1,..., con( τ 1, ) ) ) n = Def 0 }{{} n volte ι x ϕ = Def ε y x ( ϕ x = y ) Altre volte, la tecnica di eliminazione di un costrutto secondario non si presta a essere descritta cosí semplicemente: un caso è quello del descrittore ε xϕ, sul quale preferiamo sorvolare. In un ottica rigorosamente occamista, non solo potremmo liquidare come forme di abbreviazione tutti i connettivi proposizionali salvo quelli che formano una base adeguata (vedi dispensa Logica proposizionale a due valori di verità ), ma anche i quantificatori esistenziali. Per ridursi a soli universali basterebbe, in effetti, porre: x ϕ Def x ϕ (all inverso, potremmo eliminare tutti i quantificatori universali e ridurci a soli esistenziali). Esercizio 3 Non volendo considerare le lettere proposizionali come simboli predicativi di grado 0, potremmo considerare anche il loro impiego come ricorso ad una notazione abbreviativa? 1.4 Prime riflessioni sul metalinguaggio per i linguaggi predicativi Abitualmente le considerazioni sul linguaggio-oggetto vengono svolte come già abbiamo iniziato a fare in italiano, con l ausilio di qualche notazione e convenzione simbolica: non intendiamo metterci sulla strada di una completa formalizzazione del metalinguaggio, tanto piú che il compito sarebbe arduo per l eterogeneità degli scopi a cui serve il metalinguaggio. Ci sono degli inconvenienti, nel nostro modo sbrigativo di affrontare le questioni metalinguistiche. Spesso sacrifichiamo il rigore per non eccedere in precisazioni pignole, e questo può lasciare perplesso il lettore piú attento. Per esempio, nel porre la definizione! x ϕ Def y x ( ϕ x = y ) (vedi sopra), rigore avrebbe voluto che precisassimo come va scelta la y: per esempio dicendo che si tratta della prima variabile che non compare in ϕ. Alcuni deplorano che nel metalinguaggio le entità linguistiche del linguaggio-oggetto vengano adoperate come nomi di sé stesse. Quando, in un discorso comune, ci si riferisce a entità del mondo fisico, ci si guarda bene dall inserire tali entità direttamente dentro le proposizioni che 4 Per chiarezza, stiamo introducendo le formule abbreviative mediante un simbolo, Def, diverso da quello, = Def, utilizzato per introdurre termini abbreviativi. 9

10 le riguardano: invece, si adoperano nomi delle cose (o locuzioni nominali) al posto delle cose stesse. Non si dovrebbe procedere in modo analogo quando, nel metalinguaggio, si tratta di entità linguistiche del linguaggio-oggetto? non dovremmo inserire opportuni nomi (o espressioni nominali) al posto di termini e formule nominate? ma quale nome si può attribuire a una formula? Per avere un nome di un entità linguistica, può bastare racchiuderla fra virgolette. Ad esempio: pera è il nome della parola pera, la quale denota il frutto pera, ecc.. L impiego sistematico di virgolette attorno a termini, formule, variabili, ecc. è, però, intollerabilmente pesante: quasi tutti lo evitano, se non da subito, almeno dopo un po. È importante, comunque, che a nessuno sfugga la distinzione fra il linguaggio-oggetto ed il metalinguaggio: quest ultimo offre, in un certo senso, a chi ragiona sul linguaggio-oggetto, un punto di osservazione sopraelevato rispetto ad esso. Qualcuno si sarà forse meravigliato del frequente uso che faccio delle virgolette. Esse mi servono per distinguere i casi in cui parlo del segno stesso da quelli in cui parlo di ciò che esso denota. Questo modo di procedere può sembrare estremamente pedante, ma io lo considero necessario. È straordinario come un modo inesatto di parlare e di scrivere, usato in origine forse soltanto per comodità, possa giungere a fuorviare il pensiero una volta che si cessi di tenerlo presente. Cosí, è avvenuto che i numerali fossero confusi con i numeri, i nomi, cioè, con ciò che essi denominano, ciò che è semplicemente ausiliario con l oggetto proprio dell aritmetica. (Frege) Alcune nozioni metalinguistiche importanti: Distinzione fra un simbolo (che è semplicemente preso dall alfabeto dei terminali di L(C, F, P)) e le sue occorrenze entro un espressione (ben formata, cioè un termine o una formula). [ DA COMPLETARE ] Insieme varr( ) delle variabili libere di un espressione. Può venir definito tramite una ricorsione strutturale, come segue: varr(x) = Def {x} varr(c) = Def varr(g( t 0,.. }., t n )) = Def varr(t 0 ) varr(t n ) varr(ε x ϕ) = varr(ι x ϕ) Def varr(ϕ) \ {x} } varr(v) = varr(f) Def varr(q( t 0,. }.., t n )) = Def varr(t 0 ) varr(t n ) varr( ϕ) = varr(( ϕ )) Def varr(ϕ) varr(( ϕ ψ } )) = Def varr(ϕ) varr(ψ) varr( x ϕ) = varr( x ϕ) Def varr(ϕ) \ {x} (Qui sta per un qualsiasi connettivo proposizionale binario). Definizioni: Un termine τ tale che varr(τ) = si chiama un termine di base ( ground term in inglese). Una formula α tale che varr(α) = si chiama un enunciato ( sentence in inglese). 10

11 Si chiama campo d azione di un occorrenza di quantificatore ( x od x) in una formula ϕ: l intera sottoformula (rispettivamente della forma x ψ od x ψ) che inizia con tale occorrenza ed è formata di simboli consecutivi di ϕ. Un occorrenza di variabile x all interno di una formula ϕ si dirà legata, rispettivam. libera: se essa figura, rispettivam. non figura, nel campo d azione di un quantificatore, cioè entro qualche sottoformula di ϕ della forma x ψ o x ψ. Definizioni. Chiusura esistenziale ϕ, chiusura universale ϕ di una formula ϕ: si tratta dell enunciato x 1 x n ( ϕ ), rispettivam. x 1 x n ( ϕ ), che si ottiene anteponendo alla formula quantificatori relativi alle variabili x 1,..., x n tali che varr(ϕ) = {x 1,..., x n }, disposte secondo il loro ordine naturale. (oppure ϕ x 1 x n t 1 t n ) per indi- Sostituzioni uniformi: Utilizzeremo la notazione ϕ x 1,...,x n t 1,...,t n care la formula che risulta da ϕ per rimpiazzo simultaneo 5 di tutte le occorrenze libere della variabile x 1 con il termine t 1, di tutte le occorrenze libere della variabile x 2 con il termine t 2, di tutte le occorrenze libere della variabile x n con il termine t n. Confusione di variabili: La sostituzione ϕ x 1,...,x n t 1,...,t n è da evitare quando in ϕ vi siano occorrenze libere di una x i che ricadano nel campo d azione di un quantificatore, y oppure y, con y appartenente a varr(t i ). Effettuando il rimpiazzo, in un caso simile, si va incontro alla cosiddetta confusione. Intuitivamente parlando, la confusione ha origine dal fatto che una variabile che s intendeva dovesse essere libera viene invece catturata da un quantificatore. Ad esempio, le sostituzioni ( y x y) x y, ( y x y) x g( y ) ed (u w u w u )u w w portano ad y y y, ad y g( y ) y ed a w w w ( w w w w ( w w ) ), tre casi di confusione. Ridenominazione di variabili: Consideriamo un insieme finito, ϕ, ψ 1,..., ψ p, τ 1,..., τ q, di formule e termini. Supponiamo che varr(ϕ) = {x 1,..., x m }. Poiché vi sono, nel linguaggio infinite variabili, sono certo reperibili delle distinte variabili y 1,..., y m che non compaiano (libere né legate) in alcuna delle espressioni ϕ, ψ 1,..., ψ p, τ 1,..., τ q. La formula che risulta da ϕ per rimpiazzo simultaneo di tutte le occorrenze legate (!) di ciascuna variabile x i con la corrispondente y i, si dice ottenuta per ridenominazione di ϕ via da ψ 1,..., ψ p, τ 1,..., τ q. Per evitare confusione di variabili, prima di effettuare una sostituzione ϕ x 1 x n t 1 t n possiamo sempre ridenominare ϕ via da t 1,..., t n. I tre casi di confusione visti poco fa, per esempio, si evitano ridenominando preliminarmente: y x y come z x z, ed u w u w u come u y u y u. Esercizio 4 Per ciascuna delle seguenti formule a. d., indicate (1) se la formula sia un enunciato, o, in caso contrario, (2) quali variabili vi compaiano libere. 5 Qui, ovviamente, si deve assumere che le variabili x i siano distinte una dall altra. I t j non sono tenuti a essere distinti né fra loro né dalle x i. Non importa richiedere che le x i compaiano effettivamente in ϕ. 11

12 Ecco le formule: a. P ( x ) x Q( x, y ) b. x ( P ( x ) Q( x, y ) ) c. x y ( P ( x ) Q( x, y ) ) d. x y z ( Q( x, x ) Q( x, y ) ) 1.5 Appendice: Sottolinguaggi clausolari C è un frammento della logica predicativa che ha acquisito tanto rilievo nel campo della logica computazionale perché valga la pena di descriverne il linguaggio con una grammatica a sé stante. Il costrutto principale del linguaggio sotto-descritto è la clausola di Horn: clausola di Horn ::= asserzione regola domanda asserzione ::= formula atomica regola ::= formula atomica corpo di clausola domanda ::= goal goal ::= testa di goal corpo di goal testa di goal ::= ɛ f corpo di goal ::= corpo di clausola v corpo di clausola ::= formula atomica formula atomica corpo di clausola formula atomica ::= Simbolo di predicato argomenti Lettera proposizionale argomenti ::= ( termine altri termini ) altri termini ::= ɛ, termine altri termini termine ::= VAR Costante Simbolo di funzione argomenti Stiamo adottando da subito, in questa porzione di linguaggio predicativo del prim ordine, notazioni come ϕ e come le lettere proposizionali che, sino ad ora, avevamo considerato forme di abbreviazione. Qualcuno si spinge oltre, ed ammette pure che un asserzione (o multiasserzione, vedi sotto) ϕ venga scritta nella forma ϕ, sottintendendo un v alla destra di. La sintassi che abbiamo fornito ora, con la semantica mutuata da quella della logica predicativa (vedi sotto, sez. 2), costituisce il nucleo essenziale di un linguaggio di programmazione: Prolog, linguaggio spesso sbandierato come emblema della concezione logico-dichiarativa della programmazione. In Prolog il relatore di uguaglianza non può figurare in un asserzione né 12

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare Linguaggi del I ordine - semantica Per dare significato ad una formula del I ordine bisogna specificare Un dominio Un interpretazione Un assegnamento 1 Linguaggi del I ordine - semantica (ctnd.1) Un modello

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 14 marzo 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano risultare

Dettagli

Logica del primo ordine

Logica del primo ordine Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_4 V1.3 Logica del primo ordine Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Dall italiano al linguaggio della logica proposizionale

Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Enunciati atomici e congiunzione In questa lezione e nelle successive, vedremo come fare

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Logica del primo ordine

Logica del primo ordine Logica del primo ordine Sistema formale sviluppato in ambito matematico formalizzazione delle leggi del pensiero strette relazioni con studi filosofici In ambito Intelligenza Artificiale logica come linguaggio

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04 I numeri reali Note per il corso di Analisi Matematica 1 G. Mauceri a.a. 2003-04 2 I numeri reali Contents 1 Introduzione 3 2 Gli assiomi di campo 3 3 Gli assiomi dell ordine 4 4 Valore assoluto 5 5 I

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Il mondo in cui viviamo

Il mondo in cui viviamo Il mondo in cui viviamo Il modo in cui lo vediamo/ conosciamo Dalle esperienze alle idee Dalle idee alla comunicazione delle idee Quando sono curioso di una cosa, matematica o no, io le faccio delle domande.

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Algebra Relazionale. algebra relazionale

Algebra Relazionale. algebra relazionale Algebra Relazionale algebra relazionale Linguaggi di Interrogazione linguaggi formali Algebra relazionale Calcolo relazionale Programmazione logica linguaggi programmativi SQL: Structured Query Language

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

5 Radici primitive dell unità e congruenze del tipo

5 Radici primitive dell unità e congruenze del tipo 5 Radici primitive dell unità e congruenze del tipo X m a (mod n ) Oggetto di questo paragrafo è lo studio della risolubilità di congruenze del tipo: X m a (mod n) con m, n, a Z ed m, n > 0. Per l effettiva

Dettagli

Elementi di semantica denotazionale ed operazionale

Elementi di semantica denotazionale ed operazionale Elementi di semantica denotazionale ed operazionale 1 Contenuti! sintassi astratta e domini sintattici " un frammento di linguaggio imperativo! semantica denotazionale " domini semantici: valori e stato

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Corso di teoria dei modelli

Corso di teoria dei modelli Corso di teoria dei modelli Alessandro Berarducci 22 Aprile 2010. Revised 5 Oct. 2010 Indice 1 Introduzione 2 2 Linguaggi del primo ordine 3 2.1 Linguaggi e strutture......................... 3 2.2 Morfismi................................

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Analisi Matematica I

Analisi Matematica I Analisi Matematica I Fabio Fagnani, Gabriele Grillo Dipartimento di Matematica Politecnico di Torino Queste dispense contengono il materiale delle lezioni del corso di Analisi Matematica I rivolto agli

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Ascrizioni di credenza

Ascrizioni di credenza Ascrizioni di credenza Ascrizioni di credenza Introduzione Sandro Zucchi 2014-15 Le ascrizioni di credenza sono asserzioni del tipo in (1): Da un punto di vista filosofico, i problemi che pongono asserzioni

Dettagli

E possibile costruire una mentalità matematica?

E possibile costruire una mentalità matematica? E possibile costruire una mentalità matematica? Prof. F. A. Costabile 1. Introduzione La matematica è più di una tecnica. Apprendere la matematica significa conquistare l attitudine ad un comportamento

Dettagli

Che cosa abbiamo fatto fin ora. Perché? Agente basato su conoscenza. Introduzione alla rappresentazione della conoscenza

Che cosa abbiamo fatto fin ora. Perché? Agente basato su conoscenza. Introduzione alla rappresentazione della conoscenza Che cosa abbiamo fatto fin ora Introduzione alla rappresentazione della conoscenza ovvero Come costruire agenti basati su conoscenza e dotati di capacità di ragionamento Maria Simi, 2014/2015 Abbiamo trattato:

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Limiti e forme indeterminate

Limiti e forme indeterminate Limiti e forme indeterminate Edizioni H ALPHA LORENZO ROI c Edizioni H ALPHA. Ottobre 04. H L immagine frattale di copertina rappresenta un particolare dell insieme di Mandelbrot centrato nel punto.5378303507,

Dettagli

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile.

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile. Deduzione automatica La maggior parte dei metodi di deduzione automatica sono metodi di refutazione: anziché dimostrare direttamente che S A, si dimostra che S { A} è un insieme insoddisfacibile (cioè

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Scuola primaria: obiettivi al termine della classe 5

Scuola primaria: obiettivi al termine della classe 5 Competenza: partecipare e interagire con gli altri in diverse situazioni comunicative Scuola Infanzia : 3 anni Obiettivi di *Esprime e comunica agli altri emozioni, sentimenti, pensieri attraverso il linguaggio

Dettagli

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del GLI ASSI CULTURALI Nota rimessa all autonomia didattica del docente e alla programmazione collegiale del La normativa italiana dal 2007 13 L Asse dei linguaggi un adeguato utilizzo delle tecnologie dell

Dettagli

Griglia di correzione Fascicolo di Italiano Prova Nazionale anno scolastico 2008-2009

Griglia di correzione Fascicolo di Italiano Prova Nazionale anno scolastico 2008-2009 Griglia di correzione Fascicolo di Italiano Prova Nazionale anno scolastico 2008-2009 Il buon nome - Chiavi di risposta e classificazione degli item Item Risposta corretta Ambito di valutazione Processi

Dettagli

PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO

PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO 9 PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO Il capitolo che sta per iniziare presenta alcuni argomenti dall aspetto un po arido. Tuttavia, nelle facoltà

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

Informatica Applicata

Informatica Applicata Ing. Irina Trubitsyna Concetti Introduttivi Programma del corso Obiettivi: Il corso di illustra i principi fondamentali della programmazione con riferimento al linguaggio C. In particolare privilegia gli

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Permutazione degli elementi di una lista

Permutazione degli elementi di una lista Permutazione degli elementi di una lista Luca Padovani padovani@sti.uniurb.it Sommario Prendiamo spunto da un esercizio non banale per fare alcune riflessioni su un approccio strutturato alla risoluzione

Dettagli

Fondamenti di Teoria delle Basi di Dati

Fondamenti di Teoria delle Basi di Dati Fondamenti di Teoria delle Basi di Dati Riccardo Torlone Parte 6: Potenza espressiva del calcolo Calcolo su domini, discussione Pregi: dichiaratività Difetti: "verbosità": tante variabili! espressioni

Dettagli

Indicizzazione terza parte e modello booleano

Indicizzazione terza parte e modello booleano Reperimento dell informazione (IR) - aa 2014-2015 Indicizzazione terza parte e modello booleano Gruppo di ricerca su Sistemi di Gestione delle Informazioni (IMS) Dipartimento di Ingegneria dell Informazione

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi Elementi di teoria degli insiemi 1 Insiemi e loro elementi 11 Sottoinsiemi Insieme vuoto Abbiamo già osservato che ogni numero naturale è anche razionale assoluto o, in altre parole, che l insieme dei

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

Dov è la saggezza che abbiamo perso in conoscenza? Dov è la conoscenza che abbiamo perso in informazione?

Dov è la saggezza che abbiamo perso in conoscenza? Dov è la conoscenza che abbiamo perso in informazione? Scrive Thomas Eliot: Dov è la saggezza che abbiamo perso in conoscenza? Dov è la conoscenza che abbiamo perso in informazione? Interrogativi integrati da: Dov è l informazione che abbiamo perso nei dati?

Dettagli

L infinito nell aritmetica. Edward Nelson Dipartimento di matematica Università di Princeton

L infinito nell aritmetica. Edward Nelson Dipartimento di matematica Università di Princeton L infinito nell aritmetica Edward Nelson Dipartimento di matematica Università di Princeton Poi lo condusse fuori e gli disse: . E soggiunse:

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

NUMERI RAZIONALI E REALI

NUMERI RAZIONALI E REALI NUMERI RAZIONALI E REALI CARLANGELO LIVERANI. Numeri Razionali Tutti sanno che i numeri razionali sono numeri del tio q con N e q N. Purtuttavia molte frazioni ossono corrisondere allo stesso numero, er

Dettagli

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ icroeconomia Douglas Bernheim, ichael Whinston Copyright 009 The cgraw-hill Companies srl COE ASSIIZZARE UNA FUNZIONE DI UTILITÀ Supponiamo che il reddito mensile di Elena sia pari a Y e sia interamente

Dettagli

ITALIANO - ASCOLTARE E PARLARE

ITALIANO - ASCOLTARE E PARLARE O B I E T T I V I M I N I M I P E R L A S C U O L A P R I M A R I A E S E C O N D A R I A D I P R I M O G R A D O ITALIANO - ASCOLTARE E PARLARE Ascoltare e comprendere semplici consegne operative Comprendere

Dettagli

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni

Dettagli

John Dewey. Le fonti di una scienza dell educazione. educazione

John Dewey. Le fonti di una scienza dell educazione. educazione John Dewey Le fonti di una scienza dell educazione educazione 1929 L educazione come scienza indipendente Esiste una scienza dell educazione? Può esistere una scienza dell educazione? Ṫali questioni ineriscono

Dettagli