CONOSCENZE RICHIESTE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CONOSCENZE RICHIESTE"

Transcript

1 CONOSCENZE RICHIESTE MATEMATICA: algebra e calcolo differenziale elemenare. FISICA: ariabili scalari e eoriali. Spazio, elocià ed accelerazione. Moo uniforme. Moo uniformemene accelerao.

2 r r r = ds d r a = d d UNIFORME UNIFORMEMENTE ACCELERATO s = +s 0 s = ½ a + 0 +s 0 = cosane = a + 0 a = 0 a = cosane s a s a uniforme uniformemene accelerao

3 ESEMPI (1) Un corpo si muoe lungo una linea rea: quale fra le cinque coppie di grafici soo disegnai, può rappresenare il moo? A B C D E a a a a a

4 A B ESEMPI () Una sudenessa esce di casa ed inizia a camminare a elocià cosane. Dopo un cero empo si ferma per un po successiamene riprende a camminare con una elocià superiore a quella di parenza. Improisamene orna indiero e si incammina molo elocemene erso casa. Nei grafici s=0 corrisponde a quando la sudenessa si roa a casa, il massimo corrisponde all isane nel quale essa inere la marcia e la elocià è la pendenza della cura puno per puno: maggiore pendenza, maggiore elocià. In C la sudenessa non orna a casa; in E ci orna due ole. Solo B ripora correamene le quaro elocià successiamene enue dalla sudenessa. s s s C s D s E

5 DINAMICA: sudia il moimeno in funzione delle cause che lo hanno generao Accelerazione di graià Il moo dei proieili Conceo di forza I principi della dinamica La forza peso La graiazione uniersale Laoro di una forza ed energia Teorema delle forze ie

6 Accelerazione di graià (1) E un dao sperimenale che gli oggei, non sosenui, cadono erso la erra. Si noa che spesso la elocià di impao con il suolo cresce al crescere della alezza dalla quale ali oggei cadono. Arisoele (384-3 a.c.) sosenea che i corpi pesani cadono più elocemene di quelli leggeri. Galileo ( ) per mezzo di osserazioni fae a Pisa fra il 1589 ed il 159, rascurando l effeo dell aria, affermò: 1. l accelerazione di graià è la sessa, per ui gli oggei che cadono, qualunque sia la loro grandezza o naura. l accelerazione di graià è cosane

7 Accelerazione di graià () 1. l accelerazione di graià è la sessa, per ui gli oggei che cadono, qualunque sia la loro grandezza o naura. l accelerazione di graià è cosane Quese due affermazioni non sono banali. Infai l esperienza di ui i giorni dice che le monee cadono più elocemene dei pezzi di cara (disaccordo con 1) oggei fai cadere da grandi alezze raggiungono una elocià massima o elocià limie (disaccordo con )

8 Accelerazione di graià (3) Tuo dipende dall aria. Uilizzando un cilindro nel quale sia possibile fare il uoo (Tubo di Newon) si possono dimosrare le due affermazioni: 1. l accelerazione di graià g è la sessa, per ui gli oggei che cadono, qualunque sia la loro grandezza o naura. l accelerazione di graià è cosane g = 9.8 ms al liello del mare T D N U I E B W O T O N

9 Accelerazione di graià (4) Supponiamo di aere un corpo che enga fao cadere, da fermo, da un alezza h=84 m. Calcolare il empo di arrio e la elocià di impao. Poiché agisce l accelerazione di graià g, il moo sarà uniformemene accelerao e quindi, nel nosro caso, possiamo scriere h = = 1 g h g = h g = 84m 9.8ms = 17.1s = 4.1s = g = 40.6 ms 1 = Km/ h

10 Moo dei proieili (1) Trascurando l ario dell aria, si ossera, sperimenalmene, che il moo di un proieile è bidimensionale, cioè aiene in un piano. L unica accelerazione presene è g ed essa è direa lungo l asse y. y r θ0 x Lungo l asse delle x non i sono accelerazioni e quindi, lungo l asse delle x, il moo è reilineo uniforme, menre lungo l asse delle y, grazie alla cosanza di g, sarà uniformemene accelerao.

11 Dimosriamo che la raeoria è una parabola Moo dei proieili () Ricaiamo dalla prima e lo sosiuiamo nella seconda θ θ sin cos g y x y x y x = = = = doe x x y x x g x y x = = PARABOLA 0 r θ x y

12 Moo dei proieili (3) h r 0 y pare con elocià orizzonale e ericale nulle pare con elocià ericale nulla ed orizzonale r 0 x Cadono nello sesso empo x= 0 y= h 1 g x= 0 1 y = h g Il empo di cadua è quello che sere ad azzerare la quoa y= 0= h 1 g = = h h g 1 g sia per che per

13 Moo dei proieili (4) IL PROBLEMA DELLA SCIMMIA y Pare il proieile e nello sesso h isane la scimmia inizia a cadere da alezza h. Calcolare la quoa h di impao fra il proieile e la h scimmia. r 0 y= x= d 0y 0x x 1 x g 0x h ' = dg 1 g d cos θ θ 0 h ' dg = 0 1 θ d θ = g 0min = g 0mincos θ hcos x elociàminima per l'impao d 1 d θ ' h 0 h = dgθ = d = d h 0 > 0min si inconrano per h >0 e con h <h 0 = 0min si inconrano per h =0 0 < 0min nonsi inconrano

14 Il moimeno: dal come al perché Per meere in moo un corpo fermo Per fermare un corpo in moo Per ariare un moo bisogna inerenire dall eserno Variazione di moo Causa eserna Solo l inereno di una causa eserna può far iniziare un moo far cessare un moo far ariare un moo (ariando la elocià) Una causa eserna non può essere alro che una inerazione con un alro corpo es. ineraz. a conao sforzo muscolare, ario, ecc. ineraz. a disanza graià, araz.magneica, ecc.

15 Le Forze E di Newon ( ) l idea che le cause dei moi siano le forze. Sperimenalmene si noa che la forza è un eore. Quando si spinge o si ira un oggeo si esercia su di esso una r forza F

16 I principi della dinamica (1) Galileo ha scopero il I o Principio della Dinamica (deo principio di inerzia), la cui formulazione auale è doua a Newon Un corpo non soggeo a forze o è fermo o si muoe di moo reilineo uniforme

17 Principio d inerzia Un corpo nauralmene è fermo o si sa muoendo di moo reilineo uniforme ( = cosane) Queso non è inuiio! Esperienza: un corpo in moo dopo un po si ferma. Ma sulla Terra nessun corpo è isolao: c è sempre ario. Riducendo l ario si prolunga il moo. Se non ci fosse ario il moo coninuerebbe all infinio. Es. No forza No ariazione sao di moo No ariazione di elocià No accelerazione Quiee o moo reilineo uniforme

18 I principi della dinamica () Le spiegazioni scienifiche, nella opinione di Newon, non sono più legae ai semplici concei di moo, ma sono pensae piuoso come relazioni fra più elemeni che possono essere misurai (le osserabili). Newon, per produrre il proprio laoro, non ha una maemaica sufficiene e quindi inena il calcolo differenziale conneendo, in maniera anche formalmene correa, le re osserabili cinemaiche: spazio, elocià ed accelerazione

19 I principi della dinamica (3) Quando ad un oggeo è applicaa una forza l oggeo acquisa una accelerazione nella sessa direzione della forza (II o Principio r della Dinamica). Le inensià di F e di a sono proporzionali, se si raddoppia F, rraddoppia a. F = ma r [ ] [ ] F = kgms = N MKS F = gcms = dyne cgs r

20 Newon e dyne forza = massa accelerazione F= ma N SI: Newon 1 N = 1 kg 1 m/s cgs: dyne 1 dyne = 1 g 1 cm/s 1 N = forza che, applicaa a un corpo di massa 1 kg, produce un accelerazione di 1 m/s 1 dyne = forza che, applicaa a un corpo di massa 1 g, produce un accelerazione di 1 cm/s 1 N = 1 kg 1 m/s = 10 3 g 10 cm/s = 10 5 dyne 1 dyne = 1 g 1 cm/s = 10-3 kg 10 - m/s = 10-5 N Es.

21 F = ma Forza e accelerazione sono grandezze eoriali direamene proporzionali. Il loro rapporo è la massa, cosane dipendene dal corpo in esame. F = m a equazione fondamenale della Dinamica F/a = cosane MASSA dipendene dal ipo (naura, forma, dimensioni) di corpo PROPRIETA INTRINSECA DEL CORPO GRANDEZZA SCALARE FONDAMENTALE Kg (MKS), g (cgs)

22 I principi della dinamica (4) Se la forza è cosane, dal II o Principio della Dinamica, l accelerazione è cosane e quindi il moo dee essere uniformemene accelerao, infai (in una dimensione per semplicià a= d d d= dx d dx= F m = a= F m = = F m = cos d F m F m d d= dx= F m F m d d = F m x= 1 F m x= 1 a Equazione oraria del moo uniformemene accelerao

23 I principi della dinamica (5) III o Principio della Dinamica (principio di azione e reazione) SeuncorpoAeserciaunaforza r F sudiuncorpob, ques ulimo AB r eserciasuaunaforzaf chehalo sessomoduloelasessadirezione r dif, maersoopposo AB BA

24 Principio di azione e reazione F AB = - F BA F r F r Esempi quoidiani: Es. - sosegno paimeno/sedia - spina all indiero -rinculo - camminare, correre - mezzi di rasporo

25 I principi della dinamica (6) Le forze di azione e di reazione sono applicae su corpi diersi e quindi, in generale, i loro effei non si annullano. Lo sao di moo di un oggeo è deerminao solo dalle forze che agiscono su di esso ed in generale le forze eserciae da un oggeo influenzano il moo di alri oggei. III o Principio F r in = 0

26 I principi della dinamica (7) Newon, usando il principio di semplicià, definisce il sisema fisico come il minimo numero di corpi ed inerazioni capaci di descriere il dao sperimenale

27 Forza peso Ogni corpo di massa m soggeo alla accelerazione di graià g risene della forza peso direa ericalmene erso il basso. F = mg = p modulo direzione erso p = m g ericale basso forza peso linee di forza MOTO DI CADUTA sempre uniformemene accelerao h 90 p con accelerazione g = 9.8 m/s = g h = ½ g Tempo di arrio al suolo: = h/g Velocià di arrio al suolo: = gh suolo

28 La graiazione uniersale (1) Poiché le forze sono responsabili del moo, se sappiamo scriere la forza e conosciamo le condizioni al conorno (spazio e elocià iniziali), si può risolere il moo. Quindi la COSMOLOGIA (problema fondamenale della fisica da Arisoele in poi), cioè il moo dei pianei è risolo se si scrie la forza con cui ineragiscono due corpi fra loro.

29 La graiazione uniersale () I grai in cadua libera con moo accelerao, ma pure i pianei cosrei a muoersi inorno al Sole e la Luna inorno alla Terra, proano l'esisenza di cause (le forze) che deiano i corpi maeriali dalla condizione di moo reilineo uniforme. Newon dedusse il dao sperimenale che quesa forza fosse unica e la chiamò di Graiazione Uniersale ipoizzando che la sessa forza che prooca la cadua dei grai fosse anche quella che cosringe la Luna a percorrere un'orbia chiusa inorno alla Terra ed i pianei a descriere le orbie elliiche inorno al Sole.

30 La graiazione uniersale (3) Il liello di generalizzazione è eccezionale la luna cade sulla erra come la mela L unierso è fao della sessa maeria della erra e ui i corpi maeriali, erresri e celesi, subiscono l azione della sessa forza: la graiazione uniersale

31 La graiazione uniersale (4) Due corpi, doai di massa, sono arai da una forza direa lungo la congiungene dei loro cenri ed il cui modulo ale F= G MM 1 r G = NmKg G è la cosane di graiazione uniersale

32 La graiazione uniersale (5) Tra due corpi di massa m 1 e m, m posi a disanza r, 1 si esercia sempre non solo sulla Terra! una forza di arazione -direa lungo la congiungene ra i due corpi -proporzionale alle due masse -inersamene proporzionale al quadrao della loro disanza r m LEGGE DI GRAVITAZIONE UNIVERSALE F = - G m 1 m r arazione r r G = N m /kg... roppo piccola per essere osseraa ra corpi normali...

33 La graiazione uniersale (6) La Luna è in perpeua cadua sulla Terra. Velocià di fuga = 11. km/s ~ km/h

34 ~190 E. Hubble, con il elescopio di m di Wilson Moun, riuscì a risolere in singole selle la nebulosa Andromeda e comprese l esisenza delle galassie.

35 Terra-Sole ~ 150 milioni di km Diamero ~ 1 miliardi di km ~ anni luce 1 anno luce = 9000 miliardi di km

36 Il Sole è una sella di dimensioni medio-piccole cosiuia essenzialmene da idrogeno (circa il 9% del suo olume) ed elio. È classificaa come una nana gialla di ipo sperale G V: G indica che la sella ha una emperaura superficiale di ~6000 C, caraerisica che le conferisce un colore bianco, che però spesso può apparire giallognolo, a causa della diffusione della luce da pare dell'amosfera erresre. Il sole irraggia ogni secondo ~ J. Il sole ha un periodo di roazione equaoriale di ~8 giorni M sole =x10 30 kg rappresena ~99,8% della massa oale del sisema solare Dalla corona solare si irradiano 7 miliardi di onnellae di maeria all ora

37 Diamero ~ anni luce 1 anno luce = 9000 miliardi di km

38 7000 a.l. Posizione relaia del sisema solare all inerno della Via Laea 1 a.l. = 9000 miliardi di km

39 Queso disegno in scala rappresena in scala i dinorni della nosra Galassia.5 milioni di anni luce 1 anno luce = 9000 miliardi di km Il sisema solare è ~10 8 ole = ( ) più piccolo della Via Laea.

40 1 anno luce = 9000 miliardi di km

41 1 anno luce = 9000 miliardi di km

42 Pisces-Ceus Supercluser Complex 1 miliardo di a.l. La seconda più grande sruura scopera nell Unierso. A circa un miliardo di a.l. da essa c è la Grande Muraglia di Sloan (1.3 miliardi di a.l.) 1 anno luce = 9000 miliardi di km

43 ~ 1 milione di a.l. galassie ~ 10 milioni di a.l. gruppi locali ~ 100 milioni di a.l. superammassi ~ 1000 milioni di a.l. Pisces-Ceus Supercluser Complexe Grande Muraglia di Sloan 1 anno luce = 9000 miliardi di km

44 Ammasso di galassie lonano da noi circa 13 miliardi di anni luce. Limie auale dei elescopi

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - I Appello 16 Luglio 2007

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - I Appello 16 Luglio 2007 POLIECNICO DI ILNO IV FCOLÀ Ingegneria erospaziale Fisica Sperimenale + - I ppello 6 Luglio 007 Giusificare le rispose e scriere in modo chiaro e leggibile. Sosiuire i alori numerici solo alla fine, dopo

Dettagli

Moto dei proiettili (1)

Moto dei proiettili (1) Moto dei proiettili (1) Trascurando l attrito dell aria, si osserva, sperimentalmente, che il moto di un proiettile è bidimensionale, cioè avviene in un piano. L unica accelerazione presente è g ed essa

Dettagli

Concetto di forza. 1) Principio d inerzia

Concetto di forza. 1) Principio d inerzia LA FORZA Concetto di forza Pi Principi ii dll della Dinamica: i 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale i e forza peso Accelerazione di gravità Massa, peso,

Dettagli

LA FORZA. Il movimento: dal come al perché

LA FORZA. Il movimento: dal come al perché LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1

Dettagli

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini Fisica Generale A Dinamica del puno maeriale Scuola di Ingegneria e Archieura UNIBO Cesena Anno Accademico 2015 2016 Principi fondamenali Sir Isaac Newon Woolshorpe-by-Colserworh, 25 dicembre 1642 Londra,

Dettagli

Equazioni orarie. Riassumendo. 1 2 at

Equazioni orarie. Riassumendo. 1 2 at Equazioni orarie Riassumendo s s 1 a a as Moo ericale dei grai o Tui i corpi cadono nel uoo con accelerazione cosane (esperienza di Galileo). g = 9.8 m/s h P s s suolo g gs 1 g Da una orre ala 8m cade

Dettagli

Cap 3.1- Prima legge della DINAMICA o di Newton

Cap 3.1- Prima legge della DINAMICA o di Newton Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria

Dettagli

Lezione 2. Meccanica di un sistema puntiforme Cinematica in due dimensioni

Lezione 2. Meccanica di un sistema puntiforme Cinematica in due dimensioni Lezione Meccanica di un sisema puniforme Cinemaica in due dimensioni Moo in un piano Il moo di un corpo su una rea può essere definio, in ogni isane da una sola funzione del empo ;spazio percorso. Se la

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una

Dettagli

19 Il campo elettrico - 3. Le linee del campo elettrico

19 Il campo elettrico - 3. Le linee del campo elettrico Moto di una carica in un campo elettrico uniforme Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice se il campo elettrico è uniforme,

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 8-9 Moo reilineo O ( ) ( ) Dalla posizione alla elocià d ) ( ) d d d Dalla elocià alla posizione d ) d d ) d ( ) + ) d α d α d α + Inerali α + α + α + + C ( α ) ( ) α + α + α + α d α + C d +

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

Il concetto di punto materiale

Il concetto di punto materiale Il conceo di puno maeriale Puno maeriale = corpo privo di dimensioni, o le cui dimensioni sono rascurabili rispeo a quelle della regione di spazio in cui può muoversi e degli alri oggei con cui può ineragire

Dettagli

6. Moto in due dimensioni

6. Moto in due dimensioni 6. Moto in due dimensioni 1 Vettori er descriere il moto in un piano, in analogia con quanto abbiamo fatto per il caso del moto in una dimensione, è utile usare una coppia di assi cartesiani, come illustrato

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Prof. Ailio Sanocchia Ufficio presso il Diparimeno di Fisica (Quino Piano) Tel. 75-585 78 E-mail: ailio.sanocchia@pg.infn.i Web: hp://www.fisica.unipg.i/~ailio.sanocchia

Dettagli

Il moto. Posizione e spostamento.

Il moto. Posizione e spostamento. C.d.L. Scienze e Tecnoloie Ararie, A.A. 6/7, Fisica Il moo. Posizione e sposameno. VETTORE POSIZIONE E necessario conoscere la posizione del corpo nello spazio e quindi occorre fissare un sisema di riferimeno.

Dettagli

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA Dinamica: studio delle forze che causano il moto dei corpi 1 Forza Si definisce forza una qualunque causa esterna che produce una variazione dello stato

Dettagli

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio

Dettagli

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica ar. 64686 olla ad elica cicilindrica Eserciazione n 9 In figura è rappresenao un basameno sospeso anivibrane di una macchina nella quale viene originaa una forza perurbane alernaa sinusoidale di inensià

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Lavoro, forza costante: W = F r Problema 1 Quanto lavoro viene compiuto dalla forza di

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

Si analizza la lavorazione attuale per ricavare dati sulla durata utensile. A questo scopo si utilizza la legge di Taylor:

Si analizza la lavorazione attuale per ricavare dati sulla durata utensile. A questo scopo si utilizza la legge di Taylor: Esercizio D2.1 Torniura cilindrica eserna Un ornio parallelo è arezzao con uensili in carburo e viene uilizzao per la sgrossaura di barre in C40 da Φ 32 a Φ 28. Con un rapporo di velocià corrispondene

Dettagli

Verifica sperimentale del principio di conservazione dell'energia meccanica totale

Verifica sperimentale del principio di conservazione dell'energia meccanica totale Scopo: Verifica sperimentale del principio di conservazione dell'energia meccanica totale Materiale: treppiede con morsa asta millimetrata treppiede senza morsa con due masse da 5 kg pallina carta carbone

Dettagli

Trasformazioni di Galileo

Trasformazioni di Galileo Principio di Relaivià Risrea (peciale) e si sceglie un dr rispeo al uale le leggi della fisica sono scrie nella forma più semplice (dr ineriale) allora le sesse leggi valgono in ualunue alro dr in moo

Dettagli

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Sottounità. S6. Disciplina : fisica Docente : Renzo Ragazzon

Sottounità. S6. Disciplina : fisica Docente : Renzo Ragazzon Soounià. S6 Disciplina : fisica Docene : Renzo Ragazzon,OIRJOLRGLFDOFRORFRPH SDOHVWUDµGLSURJUDPPD]LRQH Le isruzioni che un calcolaore dee eseguire engono scrie uilizzando i cosiddei linguaggi di programmazione

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino Lunedì 20 dicembre 2010 Docente del corso: prof. V. Maiorino Se la Terra si spostasse all improvviso su un orbita dieci volte più lontana dal Sole rispetto all attuale, di quanto dovrebbe variare la massa

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 3-4 Cinemaica del puno maeriale 5 Coordinae polari (r, θ): Angolo θ() aggio r ( ) cos. Cinemaica del puno maeriale Moo circolare Caso paricolare di moo curilineo nel piano Traieoria: circonferenza

Dettagli

OP = OP(t) =x(t)^i+y(t)^j. : v =_s^t r ^n

OP = OP(t) =x(t)^i+y(t)^j. : v =_s^t r ^n MOTI PIANI Per moto piano si intende un moto la cui traiettoria e contenuta in un piano detto piano del moto. Se si sceglie un sistema di riferimento con due assi sul piano del moto, le equazioni del moto

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

CINEMATICA. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

CINEMATICA. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie CINEMATICA 8 febbraio 9 (PIACENTINO - PREITE) Fisica per Scienze Moorie 1 Cosa è la Cinemaica? La cinemaica è quel ramo della meccanica che si occupa di descriere il moo dei corpi a prescindere dalle cause

Dettagli

Il moto parabolico con lancio obliquo. senα. 0x 2. 2v 2 0x

Il moto parabolico con lancio obliquo. senα. 0x 2. 2v 2 0x 1 Il moto parabolico con lancio obliquo Fiura 1 Un proiettile è lanciato con elocità _ 0 a un anolo di lancio con l orizzontale. Un proiettile, schematizzato con un punto materiale, iene lanciato con elocità

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 8-9 5 Moo circolare Caso paricolare di moo curilineo nel piano raieoria: circonferenza Modulo della elocià (in enerale) non uniforme Coordinae polari: Anolo aio r( ) Coordinaa curilinea Posizione

Dettagli

Il condensatore. Carica del condensatore: tempo caratteristico

Il condensatore. Carica del condensatore: tempo caratteristico Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie

Dettagli

Fisica Cinematica del punto

Fisica Cinematica del punto Fisica - Cinemaica del puno 5 a d accelerazione angenziale a dφ u + u N a N a + a N accelerazione normale (cenripea) Cenro e raggio di curaura La raieoria localmene può essere approssimaa da una circonferenza

Dettagli

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME 6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice

Dettagli

Modulo di Meccanica e Termodinamica

Modulo di Meccanica e Termodinamica Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e

Dettagli

Cinematica: studio del moto indipendentemente dalle cause. Spostamento, Velocità, Accelerazione à vettori

Cinematica: studio del moto indipendentemente dalle cause. Spostamento, Velocità, Accelerazione à vettori Riassuno Cinemaica: sudio del moo indipendenemene dalle cause Sposameno, Velocià, Accelerazione à eori Moo reilineo Uniforme Cosane Moo reilineo Uniformemene accelerao a Cosane Moo in due dimensioni à

Dettagli

IL LATO OSCURO DELL UNIVERSO dov e` la materia che non vediamo? Elena Zucca. INAF - Osservatorio Astronomico di Bologna

IL LATO OSCURO DELL UNIVERSO dov e` la materia che non vediamo? Elena Zucca. INAF - Osservatorio Astronomico di Bologna IL LATO OSCURO DELL UNIVERSO dov e` la materia che non vediamo? Elena Zucca INAF - Osservatorio Astronomico di Bologna Ma l Universo è costituito solo da materia luminosa? La forza di gravità Galileo

Dettagli

Il moto in una o più dimensioni

Il moto in una o più dimensioni Il moo in una o più dimensioni Rappresenazione Grafica e esempi Piccolo riepilogo Moo: posizione in funzione del empo (grafico P-). Necessia della scela di un sisema di riferimeno ( ) Velocià media v m

Dettagli

Mo# con accelerazione costante. Mo# bidimensionali

Mo# con accelerazione costante. Mo# bidimensionali Mo# con accelerazione cosane Mo# bidimensionali Moo con accelerazione cosane () ü Se l accelerazione è cosane uol dire che la elocià aria in modo lineare nel empo, cioè per ineralli di empo uguali si hanno

Dettagli

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE Fisica Generale Modulo di Fisica II A.A. 4-5 Eserciazione 7 CICUII IN EGIME SINUSOIDALE Fa. Un generaore di correne alernaa con volaggio massimo di 4 e frequenza di 5 Hz è collegao a una resisenza 65 Ω.

Dettagli

I - Cinematica del punto materiale

I - Cinematica del punto materiale I - Cinemaica del puno maeriale La cinemaica deli oei puniformi descrie il moo dei puni maeriali. La descrizione del moo di oni puno maeriale dee sempre essere faa in relazione ad un paricolare sisema

Dettagli

Operazioni finanziarie. Operazioni finanziarie

Operazioni finanziarie. Operazioni finanziarie Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli

Dettagli

v t v t m s lim d dt dt Accelerazione ist

v t v t m s lim d dt dt Accelerazione ist 1 Accelerazione Se la elocià non si maniene cosane il moo non è più uniforme ma prende il nome di moo accelerao. ACCELERAZIONE: ariazione della elocià rispeo al empo Disinguiamo ra ACCELERAZIONE MEDIA

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

Tutoraggio. Lunedì ore Aula 17

Tutoraggio. Lunedì ore Aula 17 Tuoraggio Lunedì ore 11-13 Aula 17 1 Riassuno un corpo permane nel suo sao naurale di quiee o di moo reilineo uniforme ( = cos) se la risulane delle forze ageni su di esso è nulla ( = 0) l accelerazione

Dettagli

Università del Sannio

Università del Sannio Uniersià del Sannio Corso di Fisica 1 Lezione 3 Cinemaica I Prof.ssa Sefania Peracca Corso di Fisica 1 - Lez. 3 - Cinemaica I 1 Cinemaica La cinemaica è quella branca della fisica che sudia il moimeno

Dettagli

Il moto. Posizione e spostamento.

Il moto. Posizione e spostamento. Il moo. Posizione e sposameno. VETTORE POSIZIONE E necessario conoscere la posizione del corpo nello spazio e quindi occorre fissare un sisema di riferimeno. x Z z k i r j P (x,y,z) y Y i, j, k eore unià

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

Distribuzione Weibull

Distribuzione Weibull Disribuzione Weibull f() 6.6.4...8.6.4. 5 5 5 3 Disribuzione di Weibull Una variabile T ha disribuzione di Weibull di parameri α> β> se la sua densià di probabilià è scria nella forma: f ( ) exp da cui

Dettagli

Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili

Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili Angolo di risalita = 25 Altezza massima della salita = 25,87 m Altezza della salita nel tratto lineare (fino all ultimo pilone di metallo)

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte deerminisica variabile nel empo Quando la domanda viaria nel empo, il problema della gesione dell invenario divena preamene dinamico. e viene deo di lo-sizing. Consideriamo il caso in cui la domanda pur

Dettagli

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui

Dettagli

Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo.

Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. Introduzione Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. riassunto Cosa determina il moto? Forza - Spinta di un

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 8-9 3 Moo reilineo osizione: ( ) d( ) ( ) Accelerazione: a( ) Velocià: d( ) Equazione del moo: d ( ) Equazione della elocià: ( ) + ( ) ( ) + a( ) Moo reilineo uniforme: a cosane ( ) + ( ) Moo

Dettagli

USO DELL OSCILLOSCOPIO

USO DELL OSCILLOSCOPIO Con la collaborazione dell alunno Carlo Federico della classe IV sez. A Indirizzo Informaica Sperimenazione ABACUS Dell Isiuo Tecnico Indusriale Saele A. Monaco di Cosenza Anno scolasico 009-010 Prof.

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013 Fisica Generale I (primo modulo) A.A. 203-204, 9 Novembre 203 Esercizio I. m m 2 α α Due corpi, di massa m = kg ed m 2 =.5 kg, sono poggiati su un cuneo di massa M m 2 e sono connessi mediante una carrucola

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

Moto in una dimensione

Moto in una dimensione Cosa fa rabbriidire il piloa olre al frasuono? Moo in una dimensione La meccanica, la più anica delle scienze fisiche, ha come scopo lo sudio del moo degli oggei correlao con le sue cause, le forze La

Dettagli

Moto in una dimensione

Moto in una dimensione INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moo in una dimensione Sposameno e velocià Sposameno Il moo di un puno maeriale è deerminao se si conosce, isane

Dettagli

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo.

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo. Lavoro ed energia 1. Forze conservative 2. Energia potenziale 3. Conservazione dell energia meccanica 4. Conservazione dell energia nel moto del pendolo 5. Esempio: energia potenziale gravitazionale 6.

Dettagli

Moto circolare uniforme

Moto circolare uniforme Moto circolare uniforme 01 - Moto circolare uniforme. Il moto di un corpo che avviene su una traiettoria circolare (una circonferenza) con velocità (in modulo, intensità) costante si dice moto circolare

Dettagli

Cinematica del punto materiale 1. La definizione di cinematica.

Cinematica del punto materiale 1. La definizione di cinematica. Cinemaica del puno maeriale 1. La definizione di cinemaica. 2. Posizione e Sposameno 3. Equazione oraria del moo 4. Traieoria 5. Moo in una dimensione. 6. Velocià media e velocià isananea. 7. Moo reilineo

Dettagli

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia.

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia. Risparmio Energeico Risparmio Energeico per Scale e Tappei Mobili La riduzione dei consumi di energia proveniene dalle foni fossili non rinnovabili (perolio, carbone) è una delle priorià assolue, insieme

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

Fig. 1. ove v è la velocità raggiunta dal punto alla quota h e g è l accelerazione di gravità:

Fig. 1. ove v è la velocità raggiunta dal punto alla quota h e g è l accelerazione di gravità: PECHE, DI DUE CICLISTI CHE PECOONO LA MEDESIMA DISCESA SENZA PEDALAE E CON BICICLETTE UGUALI, E PIU VELOCE QUELLO CHE PESA DI PIU, IN APPAENTE CONTADDIZIONE COL FATTO CHE L ACCELEAZIONE DI GAVITA E UGUALE

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

TEST D'INGRESSO DI FISICA

TEST D'INGRESSO DI FISICA Liceo Scien co Paritario R. Bruni Padova, 20/09/2012 TEST D'INGRESSO DI FISICA Cognome e nome Segna con una croce%a la risposta che ri eni corre%a. 1) Che cos'è l'ordine di grandezza di un numero? (a)

Dettagli

Esercitazione VIII - Lavoro ed energia II

Esercitazione VIII - Lavoro ed energia II Esercitazione VIII - Lavoro ed energia II Forze conservative Esercizio Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m come in figura. Ammesso che ogni attrito

Dettagli

MACCHINE ELETTRICHE. Campo rotante. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. Campo rotante. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCINE ELETTRICE Campo roane Sefano Pasore Diparimeno di Ingegneria e Archieura Corso di Eleroecnica (IN 043) a.a. 01-13 Inroduzione campo magneico con inensià ane che ruoa aorno ad un asse con velocià

Dettagli

1) Due grandezze fisiche si dicono omogenee se:

1) Due grandezze fisiche si dicono omogenee se: 1) Due grandezze fisiche si dicono omogenee se: A. Si possono moltiplicare tra loro B. Si possono dividere tra loro C. Ci possono sommare tra loro D. Sono divisibili per uno stesso numero 2) Un blocchetto

Dettagli

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 00 Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Esercizio. Un corpo parte da fermo con accelerazione

Dettagli

Esercizi sul moto rettilineo uniformemente accelerato

Esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 010 Esercizi sul moto rettilineo uniformemente accelerato Esercizio 1. Un corpo parte da fermo con accelerazione pari a

Dettagli

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Pressione EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Cos è la pressione? La pressione è una grandezza che lega tra di loro l intensità della forza e l aerea della superficie su cui viene esercitata

Dettagli

Quantità di moto. Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v.

Quantità di moto. Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v. Quantità di moto Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v. La seconda legge di Newton può essere scritta con la quantità di moto: d Q F =

Dettagli

v = 4 m/s v m = 5,3 m/s barca

v = 4 m/s v m = 5,3 m/s barca SOLUZIONI ESERCIZI CAPITOLO 2 Esercizio n.1 v = 4 m/s Esercizio n.2 v m = 5,3 m/s = 7 minuti e 4 secondi Esercizio n.3 Usiamo la seguente costruzione grafica: fiume 1 km/h barca 7 km/h La velocità della

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 7-8 3 Moo reilineo osizione: ( ) d( ) ( ) Accelerazione: a( ) Velocià: d( ) Equazione del moo: d ( ) Equazione della elocià: ( ) + ( ) ( ) + a( ) Moo reilineo uniforme: a cosane ( ) + ( ) Moo

Dettagli

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Gas e gas perfetti 1 Densita Densita - massa per unita di volume Si misura in g/cm 3 ρ = M V Bassa densita Alta densita Definizione di Pressione Pressione = Forza / Area P = F/A unita SI : 1 Nt/m 2 = 1

Dettagli

Esercitazione 5 Dinamica del punto materiale

Esercitazione 5 Dinamica del punto materiale Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal

Dettagli

Programmazione della produzione a lungo termine e gestione delle scorte

Programmazione della produzione a lungo termine e gestione delle scorte Programmazione della produzione a lungo ermine e gesione delle score Coneso. Il problema della gesione delle score consise nel pianificare e conrollare i processi di approvvigionameno dei magazzini di

Dettagli

a t Esercizio (tratto dal problema 5.10 del Mazzoldi)

a t Esercizio (tratto dal problema 5.10 del Mazzoldi) 1 Esercizio (tratto dal problema 5.10 del Mazzoldi) Una guida semicircolare liscia verticale di raggio = 40 cm è vincolata ad una piattaforma orizzontale che si muove con accelerazione costante a t = 2

Dettagli

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo.

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo. Febbraio 1. Un aereo in volo orizzontale, alla velocità costante di 360 km/h, lascia cadere delle provviste per un accampamento da un altezza di 200 metri. Determina a quale distanza dall accampamento

Dettagli

del segnale elettrico trifase

del segnale elettrico trifase Rappresenazione del segnale elerico rifase Gli analizzaori di poenza e di energia Qualisar+ consenono di visualizzare isananeamene le caraerisiche di una ree elerica rifase. Rappresenazione emporale I

Dettagli

CONSERVAZIONE DELL ENERGIA MECCANICA

CONSERVAZIONE DELL ENERGIA MECCANICA CONSERVAZIONE DELL ENERGIA MECCANICA L introduzione dell energia potenziale e dell energia cinetica ci permette di formulare un principio potente e universale applicabile alla soluzione dei problemi che

Dettagli

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza Nome..Cognome. classe D Gennaio 0 erifica: Parabola e circonferenza. Dai la definizione di parabola. Considera la parabola di fuoco F(,) e direrice r:, deermina: a) l equazione dell asse b) le coordinae

Dettagli

MOTO RETTILINEO UNIFORME

MOTO RETTILINEO UNIFORME MOTO RETTILINEO UNIFORME = cosane a = 0 = cos ( x-x o )/ = cos x = x o + 1 MOTO RETTILINEO UNIFORME = cosane a a = 0 = cos ( x-x o )/ = cos x = x o + 2 MOTO RETTILINEO UNIFORME a = 0 = cos = cosane ( x-x

Dettagli

CINEMATICA. Concetto di moto

CINEMATICA. Concetto di moto Uniersià degli Sudi di Torino D.E.I.A.F.A. CINEMATICA La cinemaica è una branca della meccanica classica che si occupa dello sudio del moo dei corpi senza preoccuparsi delle cause che lo deerminano. Tecnicamene

Dettagli

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0 1 ) Un veicolo che viaggia inizialmente alla velocità di 1 Km / h frena con decelerazione costante sino a fermarsi nello spazio di m. La sua decelerazione è di circa: A. 5 m / s. B. 3 m / s. C. 9 m / s.

Dettagli

Verifica delle Deformazioni Verifica della Velocità al Contatto

Verifica delle Deformazioni Verifica della Velocità al Contatto Verifica elle Deformazioni Verifica ella Velocià al Conao Ing. Piero Bongio Lezione 4 Borghi Azio S.p.A. Via Papa Giovanni XXIII, 15 400 San Polo Enza RE Tel 05.873193 Fax 05.87367 E-Mail info@borghiazio.com

Dettagli

Fisica Cinematica del punto

Fisica Cinematica del punto Fisica - Cinemaica del pno 6 Moo nei pressi della sperficie erresre M Consideriamo il moo di n pno maeriale lanciao da erra con na cera elocià iniiale O M a ( ) sin cos cos ( ) (an ) G cos ( ) ( cos )

Dettagli