Sistemi di unità di misura

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sistemi di unità di misura"

Transcript

1 Sistemi di unità di misura L Assemblea Nazionale Francese avvia nel 1790 l adozione di un sistema di unità di misura decimale, che possa essere comune per tutto il genere umano. Prima di questa data ( e anche dopo ) ogni nazione, anzi ogni singola località aveva un proprio sistema di unità di misura. Ma questo può portare ad inconvenienti gravi. Ad esempio il 23 settembre 1999 la sonda Mars Climate Orbiter si è schiantata sulla superficie del pianeta Marte a causa di un errore di conversione dalle tavole della Lockheed Martin, costruttrice del veicolo,in feet ( piedi ) a quelli della NASA in metri.

2 Oppure si possono avere altri tipi di inconvenienti, come illustra la figura.

3 Da allora si sono succeduti diversi sistemi decimali : il sistema cgs ( basato sul centimetro, grammo e secondo), quello MKS o Giorgi ( basato sul metro, chilogrammo, secondo), il sistema tecnico o degli ingegneri ( basato sul metro, il chilogrammo-peso e il secondo). Tuttora usato è anche il Sistema inglese ( non decimale ), basato su yard, pound e secondo. In particolare un inch ( pollice) vale 1/12 di foot ( piede), che a sua volta vale 1/3 di yard. Un inch vale circa 2,54 cm e 1 yard vale circa 0,914 metri.

4 Il sistema ( quasi) universalmente accettato oggi è il Sistema Internazionale, SI, introdotto nel 1960 alla XI Conferenza Generale dei Pesi e delle Misure, CGPM, che si svolge a Sèvres in Francia ogni quattro anni. Esso si basa su sette grandezze fondamentali ( lunghezza, tempo, massa, corrente elettrica, temperatura termodinamica, quantità di sostanza, intensità luminosa) e due supplementari ( angolo piano e angolo solido ) di cui stabilisce le unità di misura. Stabilisce inoltre le grandezze derivate e le relative unità di misura.

5

6

7 Ogni grandezza fisica ha la propria unità SI; tuttavia una stessa unità SI può corrispondere a più d una Un esempio: grandezza fisica. Il momento di una forza e il lavoro di una forza, pur non essendo grandezze omogenee, hanno le stesse dimensioni e quindi sono espressi con le stesse unità SI. Tuttavia, per evitare equivoci, è meglio misurare il momento di una forza in N m e il lavoro in J. Notare il punto fra N e m : la notazione mn significa millinewton!

8 Su c è il vademecum sul SI. Di ogni unità si possono usare multipli e sottomultipli.

9 La Notazione Scientifica La Notazione Scientifica è usata in Fisica per rappresentare valori di grandezze o troppo grandi o troppo piccoli. Si tratta di un caso particolare di rappresentazione di un numero a in virgola mobile, a=m b E, in cui M è la mantissa, b è la base ed E l esponente. Nella notazione scientifica b vale 10, mentre E è un numero intero, positivo o negativo. Esempi : 10 1 = = = = 1/10= 0, = 1/1000= 0, = 1/ = 0,

10 Un altro esempio : 0, , , , sono rappresentazioni diverse dello stesso valore di una grandezza. Di queste la rappresentazione normalizzata corrisponde a 0, , quando la mantissa è compresa fra 0 e 1. Da notare che i calcolatori presentano i numeri con la notazione scientifica con la convenzione che la base viene omessa e la lettera E viene usata per indicare l esponente. Il numero 0, viene presentato come 0,7824 E4.

11 Ordine di grandezza Se arrotondiamo un numero alla più vicina potenza di 10, l esponente è chiamato ordine di grandezza del numero. Il numero 0, è più vicino a 10 5 che non a 10 4 : diremo allora che esso ha 5 ordini di grandezza. Il raggio medio dell atomo di idrogeno vale 5, m mentre il raggio medio del suo nucleo vale 1, m. Le potenze di 10 più vicine sono e rispettivamente e il loro rapporto vale Se ne conclude che l atomo d idrogeno ha un raggio più grande di quello del suo nucleo di 5 ordini di grandezza.

12 Cambiamento di sistemi di unità di misura. Supponiamo di voler esprimere il valore di una grandezza in due sistemi di unità di misura differenti. Per fare questo abbiamo bisogno di conoscere il fattore di ragguaglio r, ossia il rapporto tra le due unità di misura. Supponiamo di voler esprimere una massa di 3,4 kg in unità cgs. Il fattore di ragguaglio r vale 1 kg/ 1 g =10 3 e quindi 3,4 kg = 3,4 r g = 3, g

13 Supponiamo di voler esprimere la forza di 1 N nel sistema cgs, ossia in dyne. Il fattore di ragguaglio per le masse r m vale, come prima, 10 3 ; il fattore di ragguaglio per i tempi vale 1; il fattore di ragguaglio per le lunghezze r l vale 1m/1cm=10 2, per cui il fattore di ragguaglio totale vale Se ne conclude che 1 N = 10 5 dyne.

14 Un classico problema alla Fermi : quanti accordatori di pianoforte si trovano a New York? Possiamo ragionare per gradi e per ordini di grandezza. Quanti sono gli abitanti di New York? Circa 10 7 ( meno di 10 8 e più di 10 6 ) Quante famiglie ci possono essere in New York? Circa 10 6 ( meno di 10 7 e più di 10 5 ) Quante famiglie hanno un pianoforte? Circa 10 5 ( meno di 10 6 e più di 10 4 )

15 Quanti accordatori sono necessari per 10 5 pianoforti? Qualche famiglia non farà accordare mai il suo pianoforte. Qualche altra una volta al mese. Forse in media si avrà un accordo all anno per famiglia, per un totale di 10 5 accordi. Quanti accordi può fare un accordatore di pianoforte? Se ammettiamo che un accordatore possa fare 4-5 accordi al giorno e che i giorni lavorativi in un anno siano , allora un accordatore farà in un anno circa 10 3 accordi.

16 Quanti accordatori di pianoforte sono necessari in New York? Circa 10 5 / 10 3 = Se facciamo differenti ipotesi per i vari fattori, è improbabile che si abbia una risposta maggiore o minore di un ordine di grandezza rispetto a quanto trovato, ossia è improbabile trovare più di 1000 o meno di 10 accordatori a New York.

17 Gli strumenti di misura Una misura si effettua mediante uno strumento, un dispositivo che fornisce una risposta quantitativa al confronto tra la grandezza in esame e la corrispondente unità di misura. Uno strumento può essere schematizzato da tre parti : Un elemento rivelatore, sensibile alla grandezza da misurare ( per esempio il mercurio contenuto nel bulbo di un termometro) Un trasduttore, che trasforma l informazione ottenuta dal rivelatore in una grandezza più facilmente utilizzabile dallo

18 sperimentatore ( per esempio il bulbo e il capillare trasformano una variazione di temperatura in una variazione di volume e quindi in una variazione della quota raggiunta dal pelo del mercurio ) Un dispositivo che fornisce visivamente o graficamente il risultato della misura ( per esempio la scala graduata incisa lungo il termometro, la posizione di un indice mobile su una scala graduata, come in una bilancia da salumiere, o un display numerico )

19 Nel seguito indicheremo con G la grandezza fisica in se stessa, con M(G) il risultato della misura di G, con V(G) il valore effettivo, sconosciuto, che aveva G al momento della misura e con R(G) la risposta dello strumento usato. Non dimentichiamo che la risposta di uno strumento analogico è il numero di divisioni che leggiamo su una scala graduata.

20 Per completare l operazione di misura occorre conoscere come varia la risposta R(G) al variare di V(G). Occorre effettuare la taratura dello strumento, mediante ad esempio un grafico che faccia corrispondere un valore della risposta al valore della grandezza fisica G, supposta nota per altra via. Bisogna notare che erroneamente spesso gli studenti chiamano taratura di uno strumento quello che è invece un semplice controllo dello zero dello strumento stesso.

21 Un metodo alternativo di taratura è quello di confrontare la risposta dello strumento, di cui ignoriamo la taratura, con la risposta di uno strumento di riferimento. Il relativo grafico dovrebbe essere una retta, bisettrice del primo quadrante e passante per l origine, se le scale degli assi x e y sono uguali. Vedremo più in là degli esempi di taratura di strumenti, in particolare quella di un dinamometro e quello di un termometro a liquido.

22 Caratteristiche generali di uno strumento: portata, soglia, sensibilità, precisione e prontezza. La portata e la soglia sono rispettivamente il valore massimo e quello minimo della grandezza da misurare registrati dallo strumento. La sensibilità S è legata alla variazione minima apprezzabile e significativa del valore di G ad un certo istante e, quindi, in uno strumento analogico al minimo spostamento misurabile di un indice su una scala graduata.

23 Essa viene definita come la derivata di R(G) rispetto a V(G), determinata nei vari punti della scala, ossia da dr(g) dv(g) Sperimentalmente S viene determinata approssimando la derivata con il rapporto incrementale [R(G 2 ) R(G 1 )]/ [V(G 2 ) V(G 1 )] con l avvertenza che il denominatore può tendere a zero fino a quando rimane significativo.

24 Nel grafico di taratura di R(G) in funzione di V(G), S costituisce la pendenza della curva e può essere costante, se la curva è una retta. In un normale metro della vita di ogni giorno, in cui le divisioni sono equispaziate di 1 mm, ci sono 1000 divisioni ( che costituiscono la variazione di risposta dello strumento) e quindi S vale 1000 divisioni/m= 1 divisione/mm. Bisogna non confondere il numero delle divisioni con quello delle incisioni ( o tacche ) sulla scala, che sono in questo caso 1001 contando anche la tacca dello zero.

25 In un doppio decimetro, con divisioni spaziate di 1 mm, avremo ancora una sensibilità di 1 divisione/mm. Se la spaziatura fosse di 0,5 mm avremmo una sensibilità di 2 divisioni/mm. Le modalità di lettura sulla scala graduata introducono un incertezza sul valore : si tratta dell errore di sensibilità. Quando si legge la posizione di un indice su una scala, si cerca di individuare la divisione più vicina all indice. Quindi tutte le posizioni di un indice che differiscano tra di loro per meno di una certa quantità, che sarà indicata con 2ΔR(G) *, daranno origine alla stessa lettura. Ne consegue un incertezza 2ΔV(G) su V(G) data da 2ΔR(G) * /S.

26 Il fattore 2 ci ricorda che l indeterminazione sulla lettura di R(G) comporta che il valore effettivo è compreso fra R(G)- ΔR(G) * e R(G)+ ΔR(G) * e quindi il valore della grandezza misurata cade nell intervallo compreso fra M(G)-ΔV(G) e M(G)+ ΔV(G) Per convenzione si esprime questa indeterminazione indicando come risultato della misura M(G) ± ΔV(G) La quantità ΔV(G) è detta errore di sensibilità, perché lo strumento non è sensibile in un intervallo pari a 2 ΔV(G) intorno al valore misurato.

27 Da notare che, se 2ΔR(G) * è uguale a 1 divisione della scala, allora ΔV(G)=0,5/S. Quanto detto finora si applica agli strumenti analogici. Per gli strumenti digitali non si può parlare di sensibilità ma solo di errore di sensibilità. A meno di istruzioni particolari date dal costruttore, si può assumere che in uno strumento digitale 2 ΔV(G) sia pari ad un unità sulla cifra meno significativa.

28 Attenzione : su alcuni libri si confonde la sensibilità S con la risoluzione, che è il più piccolo valore di G che lo strumento può misurare. La precisione è legata al fatto che le misure ripetute della stessa grandezza fisica, in condizioni ambientali costanti, non danno lo stesso risultato, ma mostrano una dispersione, che dipende dalle caratteristiche costruttive dello strumento, che sono a loro volta influenzate da attriti, giochi meccanici,

29 fenomeni di isteresi, fluttuazioni di livelli elettrici. Lo strumento sarà tanto più preciso quanto più stretta è la larghezza di questa dispersione: vedremo successivamente come quantificare il concetto di precisione. La prontezza è legata al tempo necessario affinché lo strumento risponda ad una data variazione della grandezza da misurare. Per esempio un termometro, immerso inizialmente nel ghiaccio fondente e poi immerso nell acqua bollente, non raggiungerà istantaneamente la temperatura finale ma impiegherà un

30 certo tempo, che dipende da termometro a termometro. Questo tempo a sua volta dipende da un tempo caratteristico τ, che può essere ottenuto sperimentalmente. I vecchi termometri clinici ( quelli alti circa 20 cm! ) richiedevano quasi 10 minuti di attesa prima di poter sapere se uno aveva la febbre oppure no. Cifre significative Il risultato di una misura è espresso in generale da un numero avente una parte intera e una parte decimale, separate dalla virgola. Nei casi, in cui si hanno numeri molto maggiori o molto minori di 1, si preferisce usare la cosiddetta notazione scientifica, che consiste nello scrivere il dato con una sola cifra prima

31 della virgola moltiplicato per una opportuna potenza di 10. Ad esempio il numero 0, può essere scritto in notazione scientifica come 1, e il numero 12345,6789 come 1, Chiameremo cifre significative di un numero tutte le cifre, compreso lo zero, a partire da destra fino all'ultima, diversa da zero, a sinistra. Se usiamo la notazione scientifica, questa definizione si applica solo al termine che precede la potenza di 10. Esempi: 0, = 1, ha 3 cifre significative ,6789 = 1, ha 9 cifre significative. 0, = 1, ha 4 cifre significative, in

32 quanto lo zero a destra è significativo. Questo è dovuto al fatto che quando scriviamo 1, vogliamo dire che esso è maggiore di 1, e minore di 1, , mentre, quando scriviamo 1, vogliamo dire che esso è maggiore di 1, e minore di 1, In definitiva l'ultima cifra a destra indica in qualche modo il livello di precisione con cui conosciamo la grandezza in esame. D'altra parte questo livello di precisione non può dipendere dalla scelta delle unità di misura e questo implica che gli zeri a sinistra del risultato non siano significativi. Ad esempio se riteniamo di avere un'incertezza Δl di 1 mm su una lunghezza, misurata con il doppio decimetro, la significatività di questa incertezza non può cambiare se usiamo i multipli o i sottomultipli dell'unità di lunghezza : Δl = 1 mm = 0,1 cm = m = km ha sempre una sola cifra significativa.

33 Da quanto detto prima, non si può scrivere il risultato di una misura con un numero molto grande ( infinito al limite ) di cifre significative, perché questo implicherebbe un'incertezza molto piccola ( nulla al limite ) sulla misura stessa. D'altronde anche la stima dell'incertezza è frutto di una misura e quindi anche l'errore va scritto con un numero limitato di cifre significative. Nei laboratori di ricerca si possono organizzare esperimenti di alta statistica ( in cui si raccoglie un elevato numero di eventi ), tali da giustificare un errore scritto con due cifre significative. Nelle normali prove di laboratorio però l'errore va scritto con una sola cifra significativa, con un'eccezione, rappresentata dai casi in cui la prima cifra significativa dell'errore sia un 1 oppure un 2. Supponiamo che la stima dell'errore dia un numero del tipo 0, : scrivere questo errore con una sola cifra

34 significativa (ossia 0,1) comporterebbe un errore di arrotondamento troppo grande, per cui è meglio scrivere 0,14 con due cifre significative. In ogni caso è opportuno avere almeno una cifra significativa in più nei calcolo intermedi, per evitare spiacevoli arrotondamenti da parte del calcolatore da noi usato, e applicare le regole precedenti solo al momento di scrivere il risultato finale. Avendo scritto l'errore con il corretto numero di cifre significative, a questo punto il risultato della misura va scritto con lo stesso numero di cifre decimali dell'errore : si scriverà ad esempio 99 ± 1 mm e non 99,0 ± 1 mm. Le regole, enunciate precedentemente, valgono anche per le misure indirette, ossia per quelle misure, il cui risultato dipende dai valori di altre grandezze, misurate direttamente. Il volume di un parallelepipedo costituisce un esempio di

35 misura indiretta, una volta che sia stata misurata la lunghezza dei tre spigoli. Restano infine da fissare alcune norme, da seguire nell'eliminare le cifre eccedenti. Se la prima cifra eliminata, oltre l ultima cifra significativa, è <5, basta effettuare un semplice troncamento : ad esempio se il dato è 0, e deve essere scritto con una sola cifra significativa, la prima cifra eliminata è 4 e il risultato finale va scritto come 0,1. Se la prima cifra eliminata è > 5 oppure è 5 seguita da almeno un'altra cifra diversa da zero, si aumenta di 1 l'ultima cifra rimasta. Per esempio 0,16 si scrive 0,2 con una sola cifra significativa, mentre 0,551 si scrive 0,55 con due cifre significative e 0,6 con una sola cifra significativa ; 0,99 si scrive 1 con una sola cifra significativa.

36 Rimane il caso ambiguo in cui l'ultima cifra eliminata è solo un 5 oppure è un 5 seguito da zeri : i criteri esposti prima non sono applicabili. Bisogna stabilire un criterio ad hoc : per non rischiare di fare scelte sistematiche, un possibile modo di fare è quello di aumentare di 1 l'ultima cifra, se il numero, che si ottiene dal troncamento, è un numero dispari, e di lasciarla inalterata nel caso contrario. Supponiamo di dover scrivere con tre cifre significative 4,875 e 4,885. Il primo numero, troncato a tre cifre significative, è 4,87 ed è dispari, per cui si scrive correttamente 4,88. Il secondo numero troncato è pari, e quindi rimane 4,88. 4,88, ossia

37 Un utile avvertenza. Scrivere il valore di una grandezza fisica con un numero decimale consente di valutare il numero di cifre significative. Lo stesso non accade se il numero è intero. Se diciamo che la distanza fra due punti è 1000 m intendiamo che la distanza è compresa fra 999 m e 1001 m oppure che semplicemente è

38 maggiore di 500 m e minore di 1500 m? In alcuni libri si fa l ipotesi che i tre zeri presenti in 1000 non siano significativi perché uno potrebbe scrivere che la distanza è di 1 km. Resta tuttavia l ambiguità.

39 Incertezze relative L incertezza di una misura talora non dice tutto. Come dice il Taylor, un incertezza di un centimetro in una distanza di un chilometro indica una misura molto precisa, mentre la stessa incertezza in una distanza di pochi centimetri indica una stima grossolana. La bontà di una misura dipende quindi non solo dall incertezza ma anche dal valore della misura. Si introduce pertanto il concetto di errore relativo, definito dal rapporto fra il valore dell incertezza e il valore della misura. Viene in genere usato il simbolo ε r

40 Non è corretto dare il risultato di una misura ( ad esempio di lunghezza ) come 50,0 cm ± 2%, perché non vengono esplicitate le cifre significative dell errore e il valore della misura potrebbe non avere il giusto numero di cifre decimali.

1. LE GRANDEZZE FISICHE

1. LE GRANDEZZE FISICHE 1. LE GRANDEZZE FISICHE La fisica (dal greco physis, natura ) è una scienza che ha come scopo guardare, descrivere e tentare di comprendere il mondo che ci circonda. La fisica si propone di descrivere

Dettagli

Grandezze fisiche e loro misura

Grandezze fisiche e loro misura Grandezze fisiche e loro misura Cos è la fisica? e di che cosa si occupa? - Scienza sperimentale che studia i fenomeni naturali suscettibili di sperimentazione e caratterizzati da entità o grandezze misurabili.

Dettagli

DEFINIZIONE Una grandezza fisica è una classe di equivalenza di proprietà fisiche che possono essere misurate mediante un rapporto.

DEFINIZIONE Una grandezza fisica è una classe di equivalenza di proprietà fisiche che possono essere misurate mediante un rapporto. «Possiamo conoscere qualcosa dell'oggetto di cui stiamo parlando solo se possiamo eseguirvi misurazioni, per descriverlo mediante numeri; altrimenti la nostra conoscenza è scarsa e insoddisfacente.» (Lord

Dettagli

Errori di una misura e sua rappresentazione

Errori di una misura e sua rappresentazione Errori di una misura e sua rappresentazione Il risultato di una qualsiasi misura sperimentale è costituito da un valore numerico (con la rispettiva unità di misura) ed un incertezza (chiamata anche errore)

Dettagli

Sistemi di Numerazione Binaria NB.1

Sistemi di Numerazione Binaria NB.1 Sistemi di Numerazione Binaria NB.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi

Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi In molte situazioni una raccolta di dati (=esiti di esperimenti aleatori) viene fatta per prendere delle decisioni sulla base di quei dati. Ad esempio sperimentazioni su un nuovo farmaco per decidere se

Dettagli

Modulo didattico sulla misura di grandezze fisiche: la lunghezza

Modulo didattico sulla misura di grandezze fisiche: la lunghezza Modulo didattico sulla misura di grandezze fisiche: la lunghezza Lezione 1: Cosa significa confrontare due lunghezze? Attività n 1 DOMANDA N 1 : Nel vostro gruppo qual è la matita più lunga? DOMANDA N

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Cifre significative. Supponiamo di misurare il volume di un liquido con una buretta che consente di misurare tale volume con un incertezza di 0.

Cifre significative. Supponiamo di misurare il volume di un liquido con una buretta che consente di misurare tale volume con un incertezza di 0. Cifre significative I numeri utilizzati in chimica provengono sempre da misure sperimentali. Questi numeri sono dunque affetti da errore. Le cifre significative esprimono il risultato della misura tenendo

Dettagli

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A.

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A. 01 In questa lezione parliamo delle forze. Parliamo di forza quando: spostiamo una cosa; solleviamo un oggetto; fermiamo una palla mentre giochiamo a calcio; stringiamo una molla. Quando usiamo (applichiamo)

Dettagli

SPC e distribuzione normale con Access

SPC e distribuzione normale con Access SPC e distribuzione normale con Access In questo articolo esamineremo una applicazione Access per il calcolo e la rappresentazione grafica della distribuzione normale, collegata con tabelle di Clienti,

Dettagli

La MISURA di una grandezza è espressa da un NUMERO, che definisce quante volte un compreso nella grandezza da misurare. CAMPIONE prestabilito

La MISURA di una grandezza è espressa da un NUMERO, che definisce quante volte un compreso nella grandezza da misurare. CAMPIONE prestabilito CLASSI PRIME MISURA E UNITA DI MISURA La MISURA di una grandezza è espressa da un NUMERO, 1-2-5-10-0,001-1.000.000001-1 000 000 che definisce quante volte un CAMPIONE prestabilito è compreso nella grandezza

Dettagli

Alessandro Pellegrini

Alessandro Pellegrini Esercitazione sulle Rappresentazioni Numeriche Esistono 1 tipi di persone al mondo: quelli che conoscono il codice binario e quelli che non lo conoscono Alessandro Pellegrini Cosa studiare prima Conversione

Dettagli

DETERMINAZIONI SPERIMENTALI ED ERRORI. confrontare quella grandezza con un'altra di riferimento, ad essa omogenea, detta unità di misura.

DETERMINAZIONI SPERIMENTALI ED ERRORI. confrontare quella grandezza con un'altra di riferimento, ad essa omogenea, detta unità di misura. DETERMINAZIONI SPERIMENTALI ED ERRORI MISURARE UNA GRANDEZZA = confrontare quella grandezza con un'altra di riferimento, ad essa omogenea, detta unità di misura. LUNGHEZZA metro (m) distanza percorsa dalla

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Usando il pendolo reversibile di Kater

Usando il pendolo reversibile di Kater Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

Gli strumenti di misura

Gli strumenti di misura Gli strumenti di misura Una misura si effettua mediante uno strumento, un dispositivo che fornisce una risposta quantitativa al confronto tra la grandezza in esame e la corrispondente unità di misura.

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

NORME E DEFINIZIONI PER GLI STRUMENTI DI MISURE DELLE GRANDEZZE ETTROMAGNETICHE

NORME E DEFINIZIONI PER GLI STRUMENTI DI MISURE DELLE GRANDEZZE ETTROMAGNETICHE NORME E DEFINIZIONI PER GLI STRUMENTI DI MISURE DELLE GRANDEZZE ETTROMAGNETICHE Strumenti indicatori Strumento che indica in modo continuo il valore efficace, medio o di cresta della grandezza misurata

Dettagli

SISTEMA INTERNAZIONALE DI UNITÀ

SISTEMA INTERNAZIONALE DI UNITÀ LE MISURE DEFINIZIONI: Grandezza fisica: è una proprietà che può essere misurata (l altezza di una persona, la temperatura in una stanza, la massa di un oggetto ) Misurare: effettuare un confronto tra

Dettagli

Termodinamica: legge zero e temperatura

Termodinamica: legge zero e temperatura Termodinamica: legge zero e temperatura Affrontiamo ora lo studio della termodinamica che prende in esame l analisi dell energia termica dei sistemi e di come tale energia possa essere scambiata, assorbita

Dettagli

Codifica binaria dei numeri

Codifica binaria dei numeri Codifica binaria dei numeri Caso più semplice: in modo posizionale (spesso detto codifica binaria tout court) Esempio con numero naturale: con 8 bit 39 = Codifica in virgola fissa dei numeri float: si

Dettagli

Parte Seconda La Misura

Parte Seconda La Misura Il procedimento di misura è uno dei procedimenti fondamentali della conoscenza scientifica in quanto consente di descrivere quantitativamente una proprietà di un oggetto o una caratteristica di un fenomeno.

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE

SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE La base del sistema decimale è 10 I simboli del sistema decimale sono: 0 1 2 3 4 5 6 7 8 9 Il sistema di numerazione decimale è un sistema posizionale. L aggettivo

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Limiti e continuità delle funzioni reali a variabile reale

Limiti e continuità delle funzioni reali a variabile reale Limiti e continuità delle funzioni reali a variabile reale Roberto Boggiani Versione 4.0 9 dicembre 2003 1 Esempi che inducono al concetto di ite Per introdurre il concetto di ite consideriamo i seguenti

Dettagli

Sistemi di unità di misura

Sistemi di unità di misura Sistemi di unità di misura L Assemblea Nazionale Francese avvia nel 1790 l adozione di un sistema di unità di misura, che possa essere comune per tutto il genere umano. Prima di questa data ( e anche dopo

Dettagli

PRIMO ESEMPIO DI STUDIO DI UN FENOMENO FISICO: VOGLIAMO STUDIARE IL MOTO DI UNA BICICLETTA (SU CUI C E UNA PERSONA CHE PEDALA).

PRIMO ESEMPIO DI STUDIO DI UN FENOMENO FISICO: VOGLIAMO STUDIARE IL MOTO DI UNA BICICLETTA (SU CUI C E UNA PERSONA CHE PEDALA). Grandezze Fisiche PRIMO ESEMPIO DI STUDIO DI UN FENOMENO FISICO: VOGLIAMO STUDIARE IL MOTO DI UNA BICICLETTA (SU CUI C E UNA PERSONA CHE PEDALA). Il MOVIMENTO è collegato allo SPAZIO. Le misure nello SPAZIO

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo

Dettagli

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

CONCETTO DI LIMITE DI UNA FUNZIONE REALE CONCETTO DI LIMITE DI UNA FUNZIONE REALE Il limite di una funzione è uno dei concetti fondamentali dell'analisi matematica. Tramite questo concetto viene formalizzata la nozione di funzione continua e

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

Corso di Fisica generale

Corso di Fisica generale Corso di Fisica generale Liceo Scientifico Righi, Cesena Anno Scolastico 2014/15 1C Introduzione alla Incertezza della Misura Sperimentale I Riccardo Fabbri 1 (Dispense ed esercizi su www.riccardofabbri.eu)

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Complementi di Termologia. I parte

Complementi di Termologia. I parte Prof. Michele Giugliano (Dicembre 2) Complementi di Termologia. I parte N.. - Calorimetria. Il calore è una forma di energia, quindi la sua unità di misura, nel sistema SI, è il joule (J), tuttavia si

Dettagli

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 I CODICI 1 IL CODICE BCD 1 Somma in BCD 2 Sottrazione BCD 5 IL CODICE ECCESSO 3 20 La trasmissione delle informazioni Quarta Parte I codici Il codice BCD

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

In laboratorio si useranno fogli di carta millimetrata con scale lineari oppure logaritmiche.

In laboratorio si useranno fogli di carta millimetrata con scale lineari oppure logaritmiche. GRAFICI Servono per dare immediatamente e completamente le informazioni, che riguardano l andamento di una variabile in funzione dell altra. La Geometria Analitica c insegna che c è una corrispondenza

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano Il piano cartesiano Per la rappresentazione di grafici su di un piano si utilizza un sistema di riferimento cartesiano. Su questo piano si rappresentano due rette orientate (con delle frecce all estremità

Dettagli

STRUMENTI DI MISURA: GENERALITÁ

STRUMENTI DI MISURA: GENERALITÁ STRUMENTI DI MISURA: GENERALITÁ Sono dispositivi che ci forniscono il valore delle grandezze Sono di 2 tipi ANALOGICO: se il valore delle misure si legge su una scala graduata (c è continuità nell indicazione)

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k Capitolo 4 Serie numeriche 4. Serie convergenti, divergenti, indeterminate Data una successione di numeri reali si chiama serie ad essa relativa il simbolo u +... + u +... u, u 2,..., u,..., (4.) oppure

Dettagli

Richiami sul sistema metrico decimale e sui sistemi di misure non decimali

Richiami sul sistema metrico decimale e sui sistemi di misure non decimali Richiami sul sistema metrico decimale e sui sistemi di misure non decimali Misurare una grandezza significa, dopo aver prefissato una unità di misura, calcolare quante volte tale unità è contenuta nella

Dettagli

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p. 3/43 M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p.

Dettagli

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

SCHEDA DI RECUPERO SUI NUMERI RELATIVI

SCHEDA DI RECUPERO SUI NUMERI RELATIVI SCHEDA DI RECUPERO SUI NUMERI RELATIVI I numeri relativi sono l insieme dei numeri negativi (preceduti dal segno -) numeri positivi (il segno + è spesso omesso) lo zero. Valore assoluto di un numero relativo

Dettagli

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Introduzione. Rappresentazione di numeri in macchina, condizion

Introduzione. Rappresentazione di numeri in macchina, condizion Introduzione. Rappresentazione di numeri in macchina, condizionamento e stabilità Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di

Dettagli

Informatica. Rappresentazione dei numeri Numerazione binaria

Informatica. Rappresentazione dei numeri Numerazione binaria Informatica Rappresentazione dei numeri Numerazione binaria Sistemi di numerazione Non posizionali: numerazione romana Posizionali: viene associato un peso a ciascuna posizione all interno della rappresentazione

Dettagli

1. Scopo dell esperienza.

1. Scopo dell esperienza. 1. Scopo dell esperienza. Lo scopo di questa esperienza è ricavare la misura di tre resistenze il 4 cui ordine di grandezza varia tra i 10 e 10 Ohm utilizzando il metodo olt- Amperometrico. Tale misura

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Indice. 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo... 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità...

Indice. 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo... 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità... Indice 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo............................. 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità.............. 5 i Capitolo 1 Introduzione

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 9 Contenuti della lezione Operazioni finanziarie, criterio

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Introduzione all analisi dei segnali digitali.

Introduzione all analisi dei segnali digitali. Introduzione all analisi dei segnali digitali. Lezioni per il corso di Laboratorio di Fisica IV Isidoro Ferrante A.A. 2001/2002 1 Segnali analogici Si dice segnale la variazione di una qualsiasi grandezza

Dettagli

REGOLE PER L ESAME (agg.te settembre 2015)

REGOLE PER L ESAME (agg.te settembre 2015) Informatica e Programmazione (9 CFU) Ingegneria Meccanica e dei Materiali REGOLE PER L ESAME (agg.te settembre 2015) Modalità d esame (note generali) Per superare l esame, lo studente deve sostenere due

Dettagli

Minicorso Regole di Disegno Meccanico

Minicorso Regole di Disegno Meccanico Parte 3 Minicorso Regole di Disegno Meccanico di Andrea Saviano Tolleranze dimensionali di lavorazione Accoppiamenti mobili, stabili e incerti Giochi e interferenze Posizione della zona di tolleranza e

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

Microeconomia, Esercitazione 3 Effetto reddito, sostituzione, variazione compensativa, domanda di mercato, surplus del consumatore.

Microeconomia, Esercitazione 3 Effetto reddito, sostituzione, variazione compensativa, domanda di mercato, surplus del consumatore. Microeconomia, Esercitazione 3 Effetto reddito, sostituzione, variazione compensativa, domanda di mercato, surplus del consumatore. Dott. Giuseppe Francesco Gori Domande a risposta multipla ) Se nel mercato

Dettagli

Lezioni del Corso di Fondamenti di Metrologia Meccanica

Lezioni del Corso di Fondamenti di Metrologia Meccanica Facoltà di Ingegneria Lezioni del Corso di Fondamenti di Metrologia Meccanica A.A. 2005-2006 Prof. Paolo Vigo Indice 1. Errori ed Incertezze 2. Errori Sistematici ed Accidentali 3. Proprietà degli Strumenti

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo Logica Numerica Approfondimento E. Barbuto Minimo Comune Multiplo e Massimo Comun Divisore Il concetto di multiplo e di divisore Considerato un numero intero n, se esso viene moltiplicato per un numero

Dettagli

REGIONE PIEMONTE. Asse MATEMATICO (prova 1) Codice corso: Allievo: Cod. fiscale: ASSE CULTURALE MATEMATICO. Questionario

REGIONE PIEMONTE. Asse MATEMATICO (prova 1) Codice corso: Allievo: Cod. fiscale: ASSE CULTURALE MATEMATICO. Questionario Pagina 1 di 15 REGIONE PIEMONTE ASSE CULTURALE MATEMATICO Questionario Asse MATEMATICO (prova 1) Codice corso: Allievo: Cod. fiscale: Pagina 2 di 15 Modalità di erogazione Se la somministrazione della

Dettagli

4. Operazioni aritmetiche con i numeri binari

4. Operazioni aritmetiche con i numeri binari I Numeri Binari 4. Operazioni aritmetiche con i numeri binari Contare con i numeri binari Prima di vedere quali operazioni possiamo effettuare con i numeri binari, iniziamo ad imparare a contare in binario:

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Misure finanziarie del rendimento: il Van

Misure finanziarie del rendimento: il Van Misure finanziarie del rendimento: il Van 6.XI.2013 Il valore attuale netto Il valore attuale netto di un progetto si calcola per mezzo di un modello finanziario basato su stime circa i ricavi i costi

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Misure finanziarie del rendimento: il Van

Misure finanziarie del rendimento: il Van Misure finanziarie del rendimento: il Van 12.XI.2014 Il valore attuale netto Il valore attuale netto di un progetto si calcola l per mezzo di un modello finanziario basato su stime circa i ricavi i costi

Dettagli

La misura degli angoli

La misura degli angoli La misura degli angoli In questa dispensa introduciamo la misura degli angoli, sia in gradi che in radianti, e le formule di conversione. Per quanto riguarda l introduzione del radiante, per facilitarne

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

La propagazione della luce in una fibra ottica

La propagazione della luce in una fibra ottica La propagazione della luce in una fibra ottica La rifrazione della luce Consideriamo due mezzi trasparenti alla luce, separati da una superficie piana. Il primo mezzo ha indice di rifrazione n, il secondo

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA SCUOLA PRIMARIA DI CORTE FRANCA MATEMATICA CLASSE QUINTA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA L ALUNNO SVILUPPA UN ATTEGGIAMENTO POSITIVO RISPETTO ALLA MATEMATICA,

Dettagli

REAZIONI ORGANICHE Variazioni di energia e velocità di reazione

REAZIONI ORGANICHE Variazioni di energia e velocità di reazione REAZIONI ORGANICHE Variazioni di energia e velocità di reazione Abbiamo visto che i composti organici e le loro reazioni possono essere suddivisi in categorie omogenee. Per ottenere la massima razionalizzazione

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : ' = y y' = Consideriamo il punto P(,5) se eseguiamo tra trasformazione

Dettagli

SENSORI E TRASDUTTORI

SENSORI E TRASDUTTORI SENSORI E TRASDUTTORI Il controllo di processo moderno utilizza tecnologie sempre più sofisticate, per minimizzare i costi e contenere le dimensioni dei dispositivi utilizzati. Qualsiasi controllo di processo

Dettagli

Perché il logaritmo è così importante?

Perché il logaritmo è così importante? Esempio 1. Perché il logaritmo è così importante? (concentrazione di ioni di idrogeno in una soluzione, il ph) Un sistema solido o liquido, costituito da due o più componenti, (sale disciolto nell'acqua),

Dettagli