Indice Elementi di analisi delle matrici I fondamenti della matematica numerica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Indice Elementi di analisi delle matrici I fondamenti della matematica numerica"

Transcript

1 Indice 1. Elementi di analisi delle matrici Spazivettoriali Matrici Operazionisumatrici Inversadiunamatrice Matricietrasformazionilineari Tracciaedeterminante Rangoenucleodiunamatrice Matricidiformaparticolare Matrici diagonali a blocchi Matricitrapezoidalietriangolari Matriciabanda Autovalorieautovettori Trasformazioni per similitudine Ladecomposizioneinvalorisingolari(SVD) Prodottoscalareenormeinspazivettoriali Normematriciali Relazione tra norme e raggio spettrale di una matrice Successionieseriedimatrici Matrici definite positive, matrici a dominanza diagonale e M-matrici Esercizi I fondamenti della matematica numerica Buona posizione e numero di condizionamento di un problema Stabilità dimetodinumerici Le relazioni tra stabilità econvergenza Analisiapriorieaposteriori Sorgentidierroreneimodellicomputazionali Rappresentazionedeinumerisulcalcolatore... 46

2 XII Indice Ilsistemaposizionale Ilsistemadeinumerifloating-point Distribuzionedeinumerifloating-point AritmeticaIEC/IEEE Arrotondamento di un numero reale nella sua rappresentazionedimacchina Operazioni di macchina effettuate in virgola mobile Esercizi Risoluzione di sistemi lineari con metodi diretti Analisi di stabilità per sistemi lineari Ilnumerodicondizionamentodiunamatrice Analisiaprioriinavanti Analisi a priori all indietro Analisiaposteriori Risoluzionedisistemitriangolari Aspetti implementativi dei metodi delle sostituzioni Analisideglierroridiarrotondamento Calcolo dell inversa di una matrice triangolare Il metodo di eliminazione gaussiana (MEG) e la fattorizzazionelu Il MEG interpretato come metodo di fattorizzazione L effettodeglierroridiarrotondamento Aspetti implementativi della fattorizzazione LU Formecompattedifattorizzazione Altritipidifattorizzazione Fattorizzazione LDM T Matrici simmetriche e definite positive: fattorizzazionedicholesky Matricirettangolari:fattorizzazioneQR Pivoting Il calcolo dell inversa Sistemiabanda Matrici tridiagonali Aspetticomputazionali Sistemiablocchi FattorizzazioneLUablocchi Inversadiunamatriceablocchi Sistemi tridiagonali a blocchi Accuratezza della soluzione generata dal MEG Calcolo approssimato di K(A) Aumento dell accuratezza Loscaling Raffinamentoiterativo...107

3 Indice XIII 3.12 Sistemiindeterminati Esercizi Risoluzione di sistemi lineari con metodi iterativi Convergenzadimetodiiterativi Metodiiterativilineari I metodi di Jacobi, di Gauss-Seidel e del rilassamento Risultati di convergenza per i metodi di Jacobi e di Gauss-Seidel Risultati di convergenza per il metodo di rilassamento Ilcasodellematriciablocchi Forma simmetrica dei metodi di Gauss-Seidel e SOR Aspettiimplementativi MetodidiRichardsonstazionarienonstazionari Analisi di convergenza per il metodo di Richardson Matricidiprecondizionamento Ilmetododelgradiente Ilmetododelgradienteconiugato Il metodo del gradiente coniugato precondizionato MetodibasatisuiterazioniinsottospazidiKrylov IlmetododiArnoldipersistemilineari IlmetodoGMRES Criteridiarrestopermetodiiterativi Un criterio basato sul controllo dell incremento Uncriteriobasatosulcontrollodelresiduo Esercizi Approssimazione di autovalori e autovettori Localizzazionegeometricadegliautovalori Analisi di stabilità econdizionamento Stimeapriori Stimeaposteriori Ilmetododellepotenze Calcolo dell autovalore di modulo massimo Calcolo dell autovalore di modulo minimo Aspetticomputazionaliediimplementazione MetodibasatisulleiterazioniQR L iterazioneqrnellasuaformadibase IlmetodoQRpermatriciinformadiHessenberg Matrici di trasformazione di Householder e di Givens Riduzione di una matrice in forma di Hessenberg Fattorizzazione QR di una matrice in forma di Hessenberg...193

4 XIV Indice Aspetti implementativi del metodo Hessenberg-QR Implementazione delle matrici di trasformazione IlmetodoQRconshift Metodi per il calcolo di autovalori di matrici simmetriche IlmetododiJacobi IlmetododellesuccessionidiSturm Esercizi Risoluzione di equazioni e sistemi non lineari Condizionamentodiun equazionenonlineare Unapprocciogeometricoperlaricercadelleradici Ilmetododibisezione I metodi delle corde, secanti, Regula Falsi e Newton Ilmetododelleiterazionidipuntofisso Risultati di convergenza per alcuni metodi di punto fisso Radicidipolinomialgebrici IlmetododiHornereladeflazione IlmetododiNewton-Horner IlmetododiMuller Criterid arresto Tecnichedipost-processingpermetodiiterativi La tecnica di accelerazione di Aitken Tecnicheperiltrattamentodiradicimultiple Risoluzionedisistemidiequazioninonlineari IlmetododiNewtonelesuevarianti MetodidiNewtonmodificati Metodi quasi-newton e metodi ibridi o poli-algoritmi Metodiquasi-Newtonditiposecanti Metodidipuntofisso Esercizi Interpolazione polinomiale InterpolazionepolinomialediLagrange L errorediinterpolazione Limiti dell interpolazione polinomiale su nodi equispaziatiecontroesempiodirunge Stabilità dell interpolazione polinomiale FormadiNewtondelpolinomiointerpolatore Alcune proprietà delle differenze divise di Newton L errore di interpolazione usando le differenze divise InterpolazionecompositadiLagrange InterpolazionediHermite...277

5 Indice XV 7.5 L estensionealcasobidimensionale Interpolazionepolinomialesemplice Interpolazionepolinomialecomposita Funzionispline Splinecubicheinterpolatorie B-spline Curvesplineditipoparametrico Esercizi Integrazione numerica Formulediquadraturainterpolatorie Laformuladelpuntomedioodelrettangolo Laformuladeltrapezio LaformuladiCavalieri-Simpson FormulediNewton-Cotes FormulediNewton-Cotescomposite L estrapolazionedirichardson IlmetododiintegrazionediRomberg Integrazioneautomatica Algoritmidiintegrazionenonadattivi Algoritmidiintegrazioneadattivi Estensioni Integrali di funzioni con discontinuità di tipo salto Integrali di funzioni illimitate su intervalli limitati Integrali su intervalli illimitati Integrazione numerica in più dimensioni Ilmetododellaformuladiriduzione Quadraturecompositebidimensionali Esercizi I polinomi ortogonali nella teoria dell approssimazione Approssimazione di funzioni con serie generalizzate di Fourier IpolinomidiChebyshev IpolinomidiLegendre IntegrazioneedinterpolazioneGaussiana IntegrazioneedinterpolazioneconnodidiChebyshev IntegrazioneedinterpolazioneconnodidiLegendre Integrazione Gaussiana su intervalli illimitati Programmi per l implementazione delle formule Gaussiane Approssimazione di una funzione nel senso dei minimi quadrati Iminimiquadratidiscreti Ilpolinomiodimiglioreapprossimazione...360

6 XVI Indice 9.9 IpolinomitrigonometricidiFourier LatrasformatarapidadiFourier Approssimazionedellederivatediunafunzione Metodialledifferenzefiniteclassiche Differenzefinitecompatte Laderivatapseudo-spettrale Esercizi Risoluzione numerica di equazioni differenziali ordinarie IlproblemadiCauchy Metodinumericiadunpasso Analisideimetodiadunpasso La zero-stabilità Analisidiconvergenza L assoluta stabilità Leequazionialledifferenze I metodi a più passi(omultistep) ImetodidiAdams ImetodiBDF Analisideimetodimultistep Consistenza Lecondizionidelleradici Analisi di stabilità e di convergenza per i metodi multistep L assoluta stabilità neimetodimultistep Metodipredictor-corrector MetodiRunge-Kutta Derivazione di un metodo Runge-Kutta esplicito Adattività del passo per i metodi Runge-Kutta Regioni di assoluta stabilità per i metodi Runge-Kutta Ilcasodeisistemidiequazionidifferenzialiordinarie Iproblemistiff Esercizi Approssimazione di problemi ai limiti Unproblemamodello Ilmetododelledifferenzefinite Analisi di stabilità con il metodo dell energia Analisidiconvergenza Le differenze finite per problemi ai limiti a coefficientivariabili IlmetododiGalerkin Formulazionedebolediproblemiailimiti...442

7 Indice XVII Unabreveintroduzionealledistribuzioni Proprietà delmetododigalerkin AnalisidelmetododiGalerkin Ilmetododeglielementifiniti Aspettiimplementativi Problemi di diffusione-trasporto a trasporto dominante Esercizi Problemi ai valori iniziali e ai limiti di tipo parabolico e iperbolico L equazionedelcalore Approssimazione a differenze finite dell equazione del calore Approssimazione ad elementi finiti dell equazione del calore Analisi di stabilità perilθ-metodo Metodi a elementi finiti spazio-temporali per l equazione delcalore Equazioni iperboliche: un problema di trasporto scalare Sistemidiequazioniiperbolichelineari L equazionedelleonde Il metodo delle differenze finite per equazioni iperboliche Discretizzazione dell equazione scalare Analisideimetodialledifferenzefinite Consistenza Stabilità LacondizioneCFL Analisi di stabilità allavonneumann Dissipazioneedispersione Approssimazione ad elementi finiti di equazioni iperboliche Discretizzazione spaziale con elementi finiti continui ediscontinui Discretizzazionetemporale Esercizi Riferimenti bibliografici 511 Indice dei programmi MATLAB 519 Indice analitico 523

8

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica. Esempio Risultati sperimentali Approssimazione con il criterio dei minimi quadrati Esempio Interpolazione con spline cubica. Esempio 1 Come procedere? La natura del fenomeno suggerisce che una buona approssimazione

Dettagli

A. Quarteroni R. Sacco R Saleri MATEMATICA NUMERICA. Springer

A. Quarteroni R. Sacco R Saleri MATEMATICA NUMERICA. Springer A. Quarteroni R. Sacco R Saleri MATEMATICA NUMERICA Springer Prefazione XIII 1. Elementi di analisi delle matrici 1 1.1 Spazi vettoriali 1 1.2 Matrici y 3 1.3 Operazioni su matrici ' 4 1.3.1 Inversa di

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Dario A. Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi ai metodi iterativi per risolvere sistemi di equazioni

Dettagli

Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico - Prova teorica

Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico - Prova teorica Nome ACCILI LORENZO Fermo, 16 luglio 2014 1. Metodo di Eulero esplicito (descrizione, ordine, regione di stabilità). 2. Formula dei trapezi semplice e composita. Stima dell errore. 1 Nome BASILI DAVIDE

Dettagli

Documentazione esterna al software matematico sviluppato con MatLab

Documentazione esterna al software matematico sviluppato con MatLab Documentazione esterna al software matematico sviluppato con MatLab Algoritmi Metodo di Gauss-Seidel con sovrarilassamento Metodo delle Secanti Metodo di Newton Studente Amelio Francesco 556/00699 Anno

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 8 - METODI ITERATIVI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Norme e distanze 2 3 4 Norme e distanze

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 3. Metodo della fattorizzazione LU per la risoluzione di un sistema lineare Errori di arrotondamento. Prima di affrontare la

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche.

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. Potenze e percentuali Sezione 0.3: Disuguaglianze Sezione

Dettagli

Dispense del corso di Laboratorio di Calcolo Numerico

Dispense del corso di Laboratorio di Calcolo Numerico Dispense del corso di Laboratorio di Calcolo Numerico Dott Marco Caliari aa 2008/09 Questi appunti non hanno alcuna pretesa di completezza Sono solo alcune note ed esercizi che affiancano il corso di Calcolo

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2015/16)

Diario del corso di Analisi Matematica 1 (a.a. 2015/16) Diario del corso di Analisi Matematica (a.a. 205/6) 4 settembre 205 ( ora) Presentazione del corso. 6 settembre 205 (2 ore) Numeri naturali, interi, razionali, reali. 2 non è razionale. Introduzione alle

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

UNITEXT La Matematica per il 3+2

UNITEXT La Matematica per il 3+2 UNITEXT La Matematica per il 3+2 Volume 77 http://www.springer.com/series/5418 Alfio Quarteroni Riccardo Sacco Fausto Saleri Paola Gervasio Matematica Numerica 4 a edizione Alfio Quarteroni CMCS-MATHICSE

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego CONVITTO NAZIONALE MARIA LUIGIA di Parma CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12 Disciplina : MATEMATICA Docente Prof.ssa Paola Perego COMPETENZE CONOSCENZE Funzione esponenziale e logaritmica

Dettagli

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3 livello A1 modulo A1.1 modulo A1.2 matematica livello A2 modulo A2.1 modulo A2.2 livello A insiemi e appartenenza interpretazione grafica nel piano traslazioni proprietà commutatività associatività elemento

Dettagli

Equazione di Keplero (eqz. nonlineari).

Equazione di Keplero (eqz. nonlineari). Equazione di Keplero (eqz. nonlineari). Risolvere col metodo di Newton, col metodo di bisezione e di punto fisso l equazione di Keplero: E = M + e sin(e) dove e è l eccentricità del pianeta, M l anomalia

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

Programmazione Matematica classe V A. Finalità

Programmazione Matematica classe V A. Finalità Finalità Acquisire una formazione culturale equilibrata in ambito scientifico; comprendere i nodi fondamentali dello sviluppo del pensiero scientifico, anche in una dimensione storica, e i nessi tra i

Dettagli

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23 ANALISI NUMERICA Elementi finiti bidimensionali a.a. 2014 2015 Maria Lucia Sampoli ANALISI NUMERICA p.1/23 Elementi Finiti 2D Consideriamo 3 aspetti per la descrizione di elementi finiti bidimensionali:

Dettagli

Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame

Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame Testo aggiornato al 23 maggio 2011. L esame consiste in una prova scritta della durata di 2 ore. Tale prova è composta da tre/-

Dettagli

CLASSI PRIME tecnico 4 ORE

CLASSI PRIME tecnico 4 ORE PIANO ANNUALE a.s. 2012/2013 CLASSI PRIME tecnico 4 ORE Settembre Ottobre Novembre dicembre dicembre gennaio- 15 aprile 15 aprile 15 maggio Somministrazione di test di ingresso. Insiemi numerici Operazioni

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Capitolo 4 Equazioni e sistemi non lineari 4.1 Introduzione Sia f(x):ir IR una funzione continua almeno su un certo intervallo I e si supponga che f(x) non sia della forma f(x) = a 1 x + a 0 con a 1 e

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

Condizionamento del problema

Condizionamento del problema Condizionamento del problema x 1 + 2x 2 = 3.499x 1 + 1.001x 2 = 1.5 La soluzione esatta è x = (1, 1) T. Perturbando la matrice dei coefficienti o il termine noto: x 1 + 2x 2 = 3.5x 1 + 1.002x 2 = 1.5 x

Dettagli

Spline Nurbs. IUAV Disegno Digitale. Camillo Trevisan

Spline Nurbs. IUAV Disegno Digitale. Camillo Trevisan Spline Nurbs IUAV Disegno Digitale Camillo Trevisan Spline e Nurbs Negli anni 70 e 80 del secolo scorso nelle aziende si è iniziata a sentire l esigenza di concentrare in un unica rappresentazione gestita

Dettagli

Esercizi su Autovalori e Autovettori

Esercizi su Autovalori e Autovettori Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio

Dettagli

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:

Dettagli

Problemi al contorno per equazioni e sistemi di equazioni ellittiche, paraboliche ed iperboliche in domini a frontiera non regolare.

Problemi al contorno per equazioni e sistemi di equazioni ellittiche, paraboliche ed iperboliche in domini a frontiera non regolare. Prof.ssa Diomeda Lorenza Maria Professore Ordinario Dipartimento di Scienze Economiche Area Matematica Facoltà di Economia, Via C.Rosalba 53- Bari Tel. 080-5049169 Fax 080-5049207 E-mail diomeda@matfin.uniba.it

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

Programmazione per competenze del corso Matematica, Secondo biennio

Programmazione per competenze del corso Matematica, Secondo biennio Programmazione per del corso Matematica, Secondo biennio Competenze di area Traguardi per lo sviluppo delle degli elementi del calcolo algebrico algebriche di primo e secondo grado di grado superiore al

Dettagli

Precondizionamento per sistemi lineari simmetrici a grande dimensione

Precondizionamento per sistemi lineari simmetrici a grande dimensione Corso di Laurea magistrale in Statistica Per l Impresa Tesi di Laurea Precondizionamento per sistemi lineari simmetrici a grande dimensione Relatore Prof. Giovanni Fasano Laureando Mirko Scavetta Matricola

Dettagli

Roberto Ferretti ESERCIZI D ESAME DI ANALISI NUMERICA

Roberto Ferretti ESERCIZI D ESAME DI ANALISI NUMERICA Roberto Ferretti ESERCIZI D ESAME DI ANALISI NUMERICA Dispensa per il corso di Analisi Numerica Dipartimento di Matematica e Fisica, Università Roma Tre 1999 2013 1 ESONERO DI ANALISI NUMERICA (AN2) 16.04.99

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Equazioni non lineari

Equazioni non lineari CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA ELETTRICA Equazioni non lineari Metodi iterativi per l approssimazione di radici Corso di calcolo numerico 2 01/11/2010 Manuela Carta INDICE Introduzione Metodo

Dettagli

Procedure di calcolo implicite ed esplicite

Procedure di calcolo implicite ed esplicite Procedure di calcolo implicite ed esplicite Il problema della modellazione dell impatto tra corpi solidi a medie e alte velocità. La simulazione dell impatto tra corpi solidi in caso di urti a media velocità,

Dettagli

Descrizione e stima dell errore

Descrizione e stima dell errore Descrizione e stima dell errore Raccomandazioni per l analisi di accuratezza di una simulazione CFD: 1 Descrizione e stima dell errore Raccomandazioni per l analisi di accuratezza di una simulazione CFD:

Dettagli

Prove d'esame a.a. 20082009

Prove d'esame a.a. 20082009 Prove d'esame aa 008009 Andrea Corli settembre 0 Sono qui raccolti i testi delle prove d'esame assegnati nell'aa 00809, relativi al Corso di Analisi Matematica I (trimestrale, 6 crediti), Laurea in Ingegneria

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

per i seguenti Licei: - SCIENTIFICO - TECNOLOGICO OSA di Matematica

per i seguenti Licei: - SCIENTIFICO - TECNOLOGICO OSA di Matematica per i seguenti Licei: - SCIENTIFICO - TECNOLOGICO OSA di Matematica PRIMO BIENNIO Nucleo tematico di contenuto: Numeri e algoritmi. Gli insiemi dei numeri naturali, interi, razionali: rappresentazione,

Dettagli

2. Differenze Finite. ( ) si

2. Differenze Finite. ( ) si . Differenze Finite In questa Nota tratteremo della soluzione numerica di equazioni a derivate parziali scalari attraverso il metodo delle differenze finite. In particolare, affronteremo il problema della

Dettagli

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 5-31 ottobre 2005 Outline 1 Il problema di Cauchy Il problema

Dettagli

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x FUNZIONI Esercizio 1 Studiare la funzione f(x) = ln ( ) x e disegnarne il grafico. x 1 Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: { e x per x 1 f(x) = α x + e 1 per 1

Dettagli

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI)

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) 1 Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) Approssimazioni di Taylor BPS, Capitolo 5, pagine 256 268 Approssimazione lineare, il simbolo

Dettagli

Appunti dalle lezioni di Calcolo Numerico

Appunti dalle lezioni di Calcolo Numerico Appunti dalle lezioni di Calcolo Numerico A.A. 2012/2013 ii Indice 1 La soluzione di equazioni nonlineari 1 1.1 Prime prove................................ 2 1.2 Lo schema delle iterazioni successive (o

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

1 Regole generali per l esame. 2 Libro di Testo

1 Regole generali per l esame. 2 Libro di Testo FACOLTÀ DI INGEGNERIA Corso di GEOMETRIA E ALGEBRA (mn). (Ing. per l Ambiente e il Territorio, Ing. Informatica - Sede di Mantova) A.A. 2008/2009. Docente: F. BISI. 1 Regole generali per l esame L esame

Dettagli

PREREQUISITI. Cenni di logica elementare:

PREREQUISITI. Cenni di logica elementare: PREREQUISITI La Conferenza dei Presidi delle Facoltà di Ingegneria Italiane (documento di giugno 2006) ritiene che per intraprendere con profitto gli studi in Ingegneria gli studenti debbano possedere:

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi ESERCIZIO (6 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 2 GENNAIO 25 Una volta identificato, nel piano complesso α, il dominio di convergenza della

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

1 Le equazioni di Maxwell e le relazioni costitutive 1 1.1 Introduzione... 1 1.2 Richiami sugli operatori differenziali...... 4 1.2.1 Il gradiente di uno scalare... 4 1.2.2 La divergenza di un vettore...

Dettagli

APPUNTI DEL CORSO DI LABORATORIO DI CALCOLO AVANZATO Metodi Numerici per le Equazioni Differenziali Ordinarie

APPUNTI DEL CORSO DI LABORATORIO DI CALCOLO AVANZATO Metodi Numerici per le Equazioni Differenziali Ordinarie APPUNTI DEL CORSO DI LABORATORIO DI CALCOLO AVANZATO Metodi Numerici per le Equazioni Differenziali Ordinarie MARCO LIMONGI Istituto Nazionale di Astrofisica Osservatorio Astronomico di Roma 1. EQUAZIONI

Dettagli

Corso di Laurea in Ingegneria Civile Analisi Matematica I

Corso di Laurea in Ingegneria Civile Analisi Matematica I Corso di Laurea in Ingegneria Civile Analisi Matematica I Lezioni A.A. 2003/2004, prof. G. Stefani primo semiperiodo 22/9/03-8/11/03 Testo consigliato: Robert A. Adams - Calcolo differenziale 1 - Casa

Dettagli

MATEMATICA LINEE GENERALI E COMPETENZE

MATEMATICA LINEE GENERALI E COMPETENZE MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso del liceo scientifico lo studente conoscerä i concetti e i metodi elementari della matematica, sia interni alla disciplina in så considerata,

Dettagli

Liceo scientifico Albert Einstein. Anno scolastico 2009-2010. Classe V H. Lavoro svolto dalla prof.ssa Irene Galbiati. Materia: MATEMATICA

Liceo scientifico Albert Einstein. Anno scolastico 2009-2010. Classe V H. Lavoro svolto dalla prof.ssa Irene Galbiati. Materia: MATEMATICA Liceo scientifico Albert Einstein Anno scolastico 2009-2010 Classe V H Lavoro svolto dalla prof.ssa Irene Galbiati Materia: MATEMATICA PROGRAMMA DI MATEMATICA CLASSE V H Contenuti Ripasso dei prerequisiti

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Primo semestre: martedì 14.15 16.00, giovedì 14.15 16.00 Secondo semestre: martedì 09.00 10.30, giovedì 13.30 16.00

Primo semestre: martedì 14.15 16.00, giovedì 14.15 16.00 Secondo semestre: martedì 09.00 10.30, giovedì 13.30 16.00 A86001 a.a. 2010/11 MATEMATICA per ECONOMIA, FINANZA e MANAGEMENT Classe standard Docenti: Dr. G.P. Crespi, Edificio 1, Piano Terra, 0331-572-418, e-mail: pcrespi@liuc.it Orario di lezione: Dr. G. Bonzini,

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Data una funzione f : [a, b] R si cerca α [a, b] tale che f (α) = 0. I metodi numerici per la risoluzione di questo problema sono metodi iterativi. Teorema Data una funzione continua

Dettagli

Analisi Matematica I Palagachev

Analisi Matematica I Palagachev Analisi Matematica I Palagachev Numeri complessi Risolvere nel campo complesso C la seguente equazione: ) 3 z i = i z + 2 Risolvere nel campo complesso C la seguente equazione: z 2 + 2iz = 2 3 Risolvere

Dettagli

MACROARGOMENTI--MATEMATICA Relativi alle classi prime e seconde degli indirizzi di :ordinamento, bilinguismo, indirizzo biologico e PNI.

MACROARGOMENTI--MATEMATICA Relativi alle classi prime e seconde degli indirizzi di :ordinamento, bilinguismo, indirizzo biologico e PNI. MACROARGOMENTI--MATEMATICA Relativi alle classi prime e seconde degli indirizzi di :ordinamento, bilinguismo, indirizzo biologico e PNI. Classi prime Gli insiemi con relative operazioni Operazioni ed espressioni

Dettagli

TEMA A : COMPLEMENTI DI ALGEBRA Unità didattica Contenuti Obiettivi Conoscenze/ Abilità. LE FUNZIONI REALI Le funzioni e le loro caratteristiche

TEMA A : COMPLEMENTI DI ALGEBRA Unità didattica Contenuti Obiettivi Conoscenze/ Abilità. LE FUNZIONI REALI Le funzioni e le loro caratteristiche CLASSE : 3 TURISTICO MATEMATICA (Ramella) Situazione di partenza : 25 alunni. Valutazione d ingresso: 40% negativa, 60% positiva. 1. Articolazione (moduli, unità didattiche ) delle conoscenze e dei contenuti.

Dettagli

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO Carlo Sintini www.matematicamente.it INDICE TAVOLE NUMERICHE Potenze e radici quadre e cube dei numeri fino a 200

Dettagli

Approssimazione di PDE con il metodo della decomposizione di domini (DD)

Approssimazione di PDE con il metodo della decomposizione di domini (DD) Capitolo 4 Approssimazione di PDE con il metodo della decomposizione di domini (DD) Prof. Alfio Quarteroni 4.1 Introduzione Sia Ω un dominio di dimensione d, per d = 2, 3, con frontiera Lipschitziana Ω;

Dettagli

Offerta formativa 2011/12

Offerta formativa 2011/12 Offerta formativa 2011/12 Codice Titolo ECTS M00001P Progetto semestrale 6 M00002 Progetto di diploma 14 M00002P Progetto di diploma 14 M00003P Progetto semestrale 6 M00005 Progetto semestrale 4 M00005P

Dettagli

Esercizi Svolti di Analisi Numerica

Esercizi Svolti di Analisi Numerica Esercizi Svolti di nalisi Numerica Esercizi Svolti di nalisi Numerica Gli esercizi che proponiamo qui di seguito si riferiscono ai contenuti del libro. M. Perdon, Elementi di nalisi Numerica, Pitagora

Dettagli

Improvements in quality and quantification of 3D PET images

Improvements in quality and quantification of 3D PET images Università degli Studi di Milano Bicocca Facoltà di Scienze Matematiche, Fisiche e Naturali Dottorato di Ricerca in Fisica e Astronomia Coordinatore: Prof. Giberto Chirico Tesi di Dottorato di Ricerca

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

ANALISI MATEMATICA 1 Corso di Ingegneria Gestionale A.A. 2010/11 Docente: Alessandro Morando Esercitazioni: Anna Mambretti

ANALISI MATEMATICA 1 Corso di Ingegneria Gestionale A.A. 2010/11 Docente: Alessandro Morando Esercitazioni: Anna Mambretti ANALISI MATEMATICA 1 Corso di Ingegneria Gestionale A.A. 2010/11 Docente: Alessandro Morando Esercitazioni: Anna Mambretti Scopo del corso: fornire alcuni strumenti di base del calcolo differenziale e

Dettagli

Prodotti Strutturati. L Unbundling dei prodotti strutturati. L Option Pricing via FFT: una sintesi Un approccio Gauss-Lobatto all uso delle FFT

Prodotti Strutturati. L Unbundling dei prodotti strutturati. L Option Pricing via FFT: una sintesi Un approccio Gauss-Lobatto all uso delle FFT Il Pricing delle componenti derivative dei prodotti strutturati con metodi basati su trasformate di Fourier: stato dell arte e prospettive L algoritmo Gauss-Lobatto via FFT Teoria ed Implementazione Sommario

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 COMPETENZE ABILITA /CAPACITA CONOSCENZE

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 COMPETENZE ABILITA /CAPACITA CONOSCENZE ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA/SECONDA PROFESSIONALE CORSO SERALE DOCENTE: LUBRANO LOBIANCO ANIELLO Legenda: In

Dettagli

AREA LOGICO-MATEMATICA

AREA LOGICO-MATEMATICA SCUOLA DELL INFANZIA AREA LOGICO-MATEMATICA TRAGUARDI SCUOLA DELL INFANZIA 3 ANNI 4 ANNI 5 ANNI NUCLEO: NUMERO E SPAZIO PREREQUISITI -Raggruppare e ordinare secondo criteri diversi, confrontare e valutare

Dettagli

MATEMATICA LINEE GENERALI E COMPETENZE

MATEMATICA LINEE GENERALI E COMPETENZE MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso dei licei classico, linguistico, musicale coreutico e della scienze umane lo studente conoscerà i concetti e i metodi elementari della matematica,

Dettagli

Elementi Finiti: stime d errore e adattività della griglia

Elementi Finiti: stime d errore e adattività della griglia Elementi Finiti: stime d errore e adattività della griglia Elena Gaburro Università degli studi di Verona Master s Degree in Mathematics and Applications 05 giugno 2013 Elena Gaburro (Università di Verona)

Dettagli

Esame di Analisi Matematica prova scritta del 23 settembre 2013

Esame di Analisi Matematica prova scritta del 23 settembre 2013 Esame di Analisi Matematica prova scritta del 23 settembre 2013 1. Determinare dominio, limiti significativi, intervalli di monotonia della funzione f (x) = (2x + 3) 2 e x/2 e tracciarne il grafico. In

Dettagli

REGISTRO LEZIONI A.A. 2013/2014 (INGEGNERIA GESTIONALE)

REGISTRO LEZIONI A.A. 2013/2014 (INGEGNERIA GESTIONALE) REGISTRO LEZIONI A.A. 2013/2014 (INGEGNERIA GESTIONALE) 30/09/2013 ore 3 I numeri naturali, relativi, razionali e loro proprieta'. Incompletezza del campo dei numeri razionali. I numeri reali come allineamenti

Dettagli

COORDINAMENTO PER MATERIE SETTEMBRE 2013

COORDINAMENTO PER MATERIE SETTEMBRE 2013 Pagina 1 di 6 COORDINAMENTO PER MATERIE SETTEMBRE 2013 MATERIA DI NUOVA INTRODUZIONE PER EFFETTO DELLA RIFORMA AREA DISCIPLINARE [ ] Biennio, Attività e Insegnamenti di area generale (Settore Tecnologico)

Dettagli

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 LIBRO DI TESTO:L. Sasso Nuova Matematica a colori Algebra e Geometria 1 edizione Azzurra ed. Petrini TEMA A I numeri e linguaggio della Matemati Unità 1

Dettagli

LINEE GENERALI E COMPETENZE

LINEE GENERALI E COMPETENZE MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso del liceo scientifico lo studente conoscerà i concetti e i metodi elementari della matematica, sia interni alla disciplina in sé considerata,

Dettagli

PROGRAMMA DI MATEMATICA CORSI DELL INDIRIZZO PROFESSIONALE. Classi prime: Operatore grafico

PROGRAMMA DI MATEMATICA CORSI DELL INDIRIZZO PROFESSIONALE. Classi prime: Operatore grafico PROGRAMMA DI MATEMATICA CORSI DELL INDIRIZZO PROFESSIONALE - classi accreditate alla formazione professionale regionale: Classi prime: Operatore grafico Modulo 1: I numeri con particolare riferimento alle

Dettagli

CLASSI PRIME Scienze Applicate 5 ORE

CLASSI PRIME Scienze Applicate 5 ORE CLASSI PRIME Scienze Applicate 5 ORE Settembre Ottobre Somministrazione di test di ingresso. Novembre dicembre Insiemi numerici Operazioni negli insiemi N, Q Operazioni negli insiemi Z, Q. Potenze con

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

0.6 Filtro di smoothing Gaussiano

0.6 Filtro di smoothing Gaussiano 2 Figura 7: Filtro trapezoidale passa basso. In questo filtro l rappresenta la frequenza di taglio ed l, l rappresenta un intervallo della frequenza con variazione lineare di H, utile ad evitare le brusche

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

SciPy. Programmazione Orientata agli Oggetti e Scripting in Python

SciPy. Programmazione Orientata agli Oggetti e Scripting in Python SciPy Programmazione Orientata agli Oggetti e Scripting in Python SciPy: Informazioni di Base Libreria di algoritmi e strumenti matematici Fornisce: moduli per l'ottimizzazione, per l'algebra lineare,

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Lezione n. 1. Introduzione all analisi numerica (richiami di algebra lineare e analisi funzionale)

Lezione n. 1. Introduzione all analisi numerica (richiami di algebra lineare e analisi funzionale) Lezione n. 1 Introduzione all analisi numerica (richiami di algebra lineare e analisi funzionale) R. Albanese, "Metodi numerici Pag. 1 Pag. 2 Programma 1. Introduzione all analisi numerica (richiami di

Dettagli

Miglioramento dell analisi di immagine in GRASS tramite segmentazione

Miglioramento dell analisi di immagine in GRASS tramite segmentazione Segmentazione in GRASS Miglioramento dell analisi di immagine in GRASS tramite segmentazione Alfonso Vitti e Paolo Zatelli Dipartimento di Ingegneria Civile ed Ambientale Università di Trento Italy FOSS4G-it

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

PROGRAMMA di MATEMATICA

PROGRAMMA di MATEMATICA Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ I a.s. 2014/15 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali

Dettagli

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1 LE FUNZIONI EALI DI VAIABILE EALE Soluzioni di quesiti e problemi estratti dal Corso Base Blu di Matematica volume 5 Q[] Sono date le due funzioni: ) = e g() = - se - se = - Determina il campo di esistenza

Dettagli

Misura e integrazione Formulario

Misura e integrazione Formulario Misura e integrazione Formulario Integrale su rettangolo 1. 2. Teorema di riduzione per un rettangolo (Fubini) Per passare dal rettangolo ad un qualsiasi dominio si definisce una nuova funzione. Integrale

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Calcolo delle corrispondenze Affrontiamo il problema centrale della visione stereo, cioè la ricerca automatica di punti corrispondenti tra immagini Chiamiamo

Dettagli

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE FLAVIO ANGELINI Sommario Queste note hanno lo scopo di indicare a studenti di Economia interessati alla finanza quantitativa i concetti essenziali

Dettagli