IL PROBLEMA DELLO SHORTEST SPANNING TREE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "IL PROBLEMA DELLO SHORTEST SPANNING TREE"

Transcript

1 IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia elettrica, il gas, l acqua, la fognatura, ecc... ; potenzialmente queste città possono essere collegate tra di loro mediante un elettrodotto, o un gasdotto, acquedotto, ecc.; alcuni di questi collegamenti diretti sono resi impossibili da ostacoli fisici insormontabili o difficilmente sormontabili, quali colline, laghi, ecc.; i collegamenti possibili consentono comunque di collegare tra loro a due a due le diverse cittá, passando per le altre. Si deve decidere quali collegamenti realizzare effettivamente, in maniera da servire tutte le cittá con il minimo costo. Possiamo formalizzare il problema pensando le cittá come nodi di un grafo, e i collegamenti potenziali tra due cittá come archi del grafo. Il grafo é pesato, poiché ad ogni arco puó essere associato il costo di costruzione del collegamento, qualora il collegamento venisse realmente realizzato; inoltre il grafo é non orientato, poiché il costo di costruzione di un qualunque arco (a, b) coincide con il costo dell arco (b, a). Dal momento che i collegamenti devono essere realizzati al minimo costo, non ha senso prevedere di costruire archi che collegano una cittá con se stessa e quindi possiamo supporre che il grafo sia senza lacci. Inoltre il grafo é connesso, poiché si é detto che due cittá sono sempre collegabili mediante un cammino che passa per le altre. I collegamenti che si vanno realmente a realizzare possono essere interpretati come gli archi di un sottografo G = (N, A ) di G; tale sottografo deve essere tale che: (1) due cittá sono sempre raggiungibili una dall altra, e quindi G deve essere connesso, (2) il grafo non deve contenere cicli, altrimenti ci sarebbero degli archi superflui, che comporterebbero un costo aggiuntivo evitabile, (3) tutte le cittá devono essere servite, e quindi deve essere N = N. Pertanto G deve essere un albero tale che N = N; un tale sottografo dicesi spanning tree, cioé albero invadente o ricoprente il grafo G. Naturalmente tra tutti gli alberi invadenti occorre scegliere quello di costo minimo. Pertanto il problema puó essere cosí formalizzato: Dato un grafo non orientato connesso e senza lacci G = (N, A), costruire un sottografo G = (N, A ) che sia un albero invadente e che abbia lunghezza minima tra tutti gli alberi invadenti. n. 2 - Algoritmo di PRIM Il problema testé formulato puó essere risolto in maniera iterativa: ad ogni iterazione si dispone di un sottografo G = (N, A ) che sia un albero, e, (finché N N), si aggiunge un arco ad A, (e i relativi nodi ad N ), in modo che il nuovo sottografo sia ancora un albero; ovviamente la scelta dell arco da aggiungere deve essere funzionale all obiettivo di costruire un albero di lunghezza minima. Ebbene, per individuare l arco (a, b) da aggiungere ad A, osserviamo che: (1) se ad A aggiungiamo un arco (a, b), tale che entrambi gli estremi a e b appartengono ad N, allora il nuovo sottografo contiene dei cicli; (infatti, il cammino unione dell arco (a, b) con il cammino congiungente b con a in G é un ciclo); (2) se ad A aggiungiamo un arco (a, b), tale che entrambi gli estremi a e b non appartengono ad N, allora il nuovo sottografo non é connesso, poiché a e b non sono congiungibili con i nodi di N. 1

2 2 Pertanto, se vogliamo che il nuovo sottografo sia ancora un albero, dobbiamo aggiungere ad A un arco che congiunge un nodo a N con un nodo b N N. In effetti, si vede facilmente che, se a N e b / N, allora il sottografo G = (N, A ), con N = N {b}, A = A {(a, b)}, é ancora connesso e senza cicli, e quindi é ancora un albero. Infatti, G é connesso poiché: - due nodi distinti di N sono tra loro congiungibili in G e quindi in G, - il nodo b é congiungibile con a mediante l arco (a, b), ed é congiungibile con qualunque a N, a a mediante il cammino unione del cammino congiungente a ad a con l arco (a, b). Inoltre, G non ha cicli; infatti se esistesse un ciclo in G, tale ciclo dovrebbe passare per il nodo b, (altrimenti sarebbe un ciclo in G, contro l ipotesi che G non ha cicli). Ne seguirebbe che il ciclo dovrebbe contenere l arco (a, b) ed un ulteriore arco (b, a ) A, con a a: ma allora ne seguirebbe che b N, mentre b era stato scelto in N N. D altra parte, dovendo cercare l albero invadente di lunghezza minima, sembra ragionevole scegliere, (tra gli archi candidati ad essere aggiunti ad A ), quello di lunghezza minima. Siamo dunque in grado di formulare il seguente Algoritmo di PRIM (0) - (Inizializzazione) - Si sceglie arbitrariamente un nodo a N e si pone N = {a}, A =. (1) - (Fase iterativa) - Finché N N, si cercano ā N, b N N tali che (ā, b) A e l(ā, b) = min {l(a, b) : a N, b N N, (a, b) A}. Si aggiunge b ad N ed (ā, b) ad A. Dopo n 1 iterazioni l algoritmo si interrompe e fornisce un sottografo G che é un albero invadente di lunghezza minima. Infatti é evidente che il sottografo iniziale G = (N, A ), con A =, é un albero; conseguentemente, il sottografo trovato dopo la prima iterazione é un albero. Ma allora anche quello trovato dopo la seconda iterazione é un albero, e in generale il sottografo trovato dopo ogni iterazione é un albero. Pertanto, il sottografo G = (N, A ) trovato dopo n 1 iterazioni é un albero; d altra parte tale albero é invadente, perché, dopo n 1 iterazioni, l insieme N avrá n elementi e quindi coincide con N. E inoltre intuitivo che, avendo ogni volta selezionato l arco piú breve tra quelli candidati, tale albero invadente sia quello di lunghezza minima. I dettagli della dimostrazione della ottimalitá dell albero prodotto dall algoritmo di Prim sono contenuti nella Appendice. Osservazione L algoritmo di Prim puó essere formalizzato in maniera piú dettagliata, utilizzando un contatore k dei nodi giá serviti, una variabile reale MIN che serve per calcolare la minima lunghezza degli archi congiungenti un nodo a N con un nodo b / N, una variab ile NEXT che serve per individuare il prossimo nodo da servire, e due vettori n-dimensionali, LABEL e P RED, per memorizzare i nodi e gli archi giá selezionati, nel senso che per ogni j = 1, 2,..., n risulta: { 1 se aj N, LABEL(j) = 0 altrimenti, j se a j é il nodo iniziale P RED(j) = i > 0 se a j N ed (a i, a j ) A,. 0 se a j / N L algoritmo di PRIM assume allora la forma:

3 3 Algoritmo di PRIM (0) - (Inizializzazione) - Si sceglie arbitrariamente un nodo, ad esempio a 1 N, e si pone k = 1, LABEL(1) = P RED(1) = 1, LABEL(j) = P RED(j) = 0 per ogni j = 2, 3,..., n. (1) - (Fase iterativa) - Si pone M IN = M, (dove M é un numero molto grande rispetto alle lunghezze degli archi del grafo), e si esegue il ciclo: Per i = 1, 2,..., n e per j = 1, 2,..., n esegui: se LABEL(i) = 1 e LABEL(j) = 0 ed l(a i, a j ) < M, allora poni: MIN = l(a i, a j ), NEXT = j, PRED (NEXT)=i. Alla fine del ciclo si pone k = k + 1, LABEL(NEXT)=1. (2) -(Test di arresto) - Se k = n STOP, altrimenti si torna al Passo 1. Osservazione Alla fine della esecuzione dell algoritmo di Prim, dal vettore P RED si ricostruisce l albero invadente di lunghezza minima: esso é formato dagli n 1 archi (P RED(2), 2), (P RED(3), 3),..., (P RED(n), n). La lunghezza di tale albero é data ovviamente dalla somma delle lunghezze di tali archi. n. 3 - L algoritmo di PRIM-DIJKSTRA L algoritmo di Prim descritto sopra effettua ad ogni iterazione n 2 confronti, prima di individuare il prossimo nodo da servire e il relativo arco da aggiungere. L algoritmo giunge quindi alla soluzione ottima con (n 1) n 2 operazioni, e non é molto efficiente perché non cerca di tenere conto delle informazioni via via acquisite. Un approccio piú efficiente si otterrebbe se ad ogni iterazione noi ricercassimo per ogni nodo a j non ancora scelto l arco piú breve che congiunge a j con i nodi giá scelti, e memorizzassimo, per un successivo utilizzo, la lunghezza LMIN(j) di tale arco e l arco stesso (P RED(j), j). E chiaro, infatti, che la scelta del prossimo arco da aggiungere si restringe a tali archi, e per trovare il prossimo nodo da servire sará sufficiente cercare il nodo non servito per cui si ha il min {LMIN(j) : a j N }. D altra parte, se abbiamo trovato che il nodo da aggiungere é a h ed LMIN(j) rappresenta la lunghezza dell arco piú breve che congiunge a j con i nodi serviti prima dell aggiunta di a h, per trovare l arco piú breve che congiunge a j ai nodi scelti dopo l aggiunta di a h basterá confrontare LMIN(j) con la lunghezza l(h, j) dell arco (a h, a j ). E chiaro, infatti, che se LMIN(j) l(h, h), allora l arco piú breve trovato prima é rimasto competitivo anche dopo l aggiunta di a h ; se peró risulta l(h, j) < LMIN(j), allora l arco piú breve dopo l aggiunta di a h é diventato l arco (a h, a j ), ed occorre quindi sostituire LMIN(j) e P RED(j) trovati prima, rispettivamente, con l(h, j) e h. Siamo cosí in grado di formulare la seguente variante dell algoritmo di Prim che va sotto il nome di Algoritmo di Prim - Dijkstra. Consideriamo dunque i vettori LABEL e P RED per memorizzare i nodi e gli archi serviti, il vettore LMIN, la cui generica componente j-esima rappresenta, per ogni nodo a j non servito, la lunghezza dell arco piú breve che congiunge a j ai nodi giá serviti. Consideriamo inoltre il contatore k dei nodi serviti, le variabili NEXT e LAST che rappresentano il prossimo nodo da servire e l ultimo nodo servito, e la variabile M IN necessaria per calcolare la lunghezza dell arco da aggiungere ad ogni iterazione. Si ha allora il seguente

4 4 Algoritmo di PRIM - DIJKSTRA (0) - (Inizializzazione) - Si sceglie arbitrariamente un nodo, ad esempio a 1 N, e si inizializzano i vettori LABEL, P RED, e LM IN, ponendo LABEL(1) = 1, P RED(1) = 1, LMIN(1) = 0, LABEL(j) = 0, P RED(j) = 1, LMIN(j) = l(1, j) per ogni j = 2, 3,..., n. Si inizializza il contatore k ponendo k = 1 e si pone LAST = 1. (1) - (Fase iterativa) - Si pone M IN = M, (dove M é un numero molto grande rispetto alle lunghezze degli archi del grafo), e si esegue il ciclo: Per j = 1, 2,..., n esegui: se LABEL(j) = 0 ed LMIN(j) < M, allora si pone MIN = LMIN(j), NEXT = j. Alla fine del ciclo si pone LABEL(NEXT ) = 1, k = k + 1. (2) - (Test di arresto) - Se k = n STOP, altrimenti si va al Passo 3. (3) - (Aggiornamento) - Si pone LAST = NEXT e si esegue il ciclo: per ogni j = 2, 3,..., n esegui: se LABEL(j) = 0 e risulta LMIN(j) > l(last, j), allora poni: LMIN(j) = l(last, j) e P RED(j) = LAST. Con i vettori LMIN e P RED cosí modificati si torna al Passo 1. Osservazione L algoritmo di Prim-Dijkstra effettua, in ciascuna delle n 1 iterazioni, al massimo n confronti per calcolare MIN e quindi NEXT, ed al massimo n confronti per aggiornare i vettori LM IN e P RED, e dunque complessivamente al massimo 2n(n 1) operazioni, e quindi ha una complessitá computazionale di ordine n 2, mentre l algoritmo di Prim aveva una complessitá computazionale di ordine n 3. Alla fine dell esecuzione dell algoritmo si ricostruisce l albero invadente dal vettore P RED, mentre dal vettore LM IN si ottiene direttamente la lunghezza dello shortest spanning tree. Infatti, se in una generica iterazione si seleziona il nodo a j, allora LMIN(j) rappresenterá la lunghezza dell arco scelto in quella iterazione; di conseguenza la lunghezza dell intero albero invadente sará dato da j LMIN(j). n. 4 - Algoritmo di Kruskal L algoritmo di Prim costruisce l albero invadente di lunghezza minima in maniera iterativa, aggiungendo ad ogni iterazione al sottografo G = (N, A ) l arco piú breve che aggiunto ai precedenti conserva al sottografo G la caratteristica di essere un albero, cioé un sottografo connesso e senza cicli. E possibile seguire peró un altro approccio: ad ogni iterazione si possiede un sottografo G che puó essere sconnesso, ma deve essere senza cicli, e si aggiunge l arco piú breve che non forma cicli con quelli giá scelti. Di conseguenza gli estremi dell arco (a, b) da aggiungere devono appartenere a due diverse componenti connesse del grafo G ; aggiungendo l arco (a, b) ad A, le due componenti connesse di G a cui appartenevano a e b verranno a formare un unica componente connessa. Pertanto ad ogni iterazione si costruisce un sottografo in cui il numero delle componenti connesse diminuisce di una unitá. Ebbene, si parte con il sottografo (N, ), in cui non c é nessun arco, e quindi nessun nodo puó essere raggiungibile da un altro nodo, ed in cui quindi ci sono n componenti connesse, quanti sono i nodi, e ad ogni iterazione si aggiunge un arco che produce una riduzione di una unitá del numero delle componenti connesse. Dopo n 1 iterazioni avremo costruito un sottografo G = (N, A ) senza cicli, in cui sono rimaste n (n 1) componenti connesse, cioé in cui é rimasta un unica componente connessa. Pertanto il sottografo trovato dopo n 1 iterazioni é connesso, senza cicli e serve tutti i nodi, cioé é un albero invadente.

5 Infine avendo avuto cura di aggiungere sempre l arco piú breve tra quelli disponibili, il sottografo finale é un albero invadente di lunghezza minima. Il procedimento descritto é la sostanza del procedimento di ricerca dello shortest spanning tree, noto come algoritmo di KRUSKAL Per illustrarne i dettagli supponiamo che il grafo sia stato memorizzato mediante i vettori F ROM, T O e LEN GT H, ordinati in ordine crescente di lunghezza. Consideriamo a) un vettore m-dimensionale LABEL per memorizzare gli archi accettati: LABEL(j) = 1 se l arco j-esimo é stato giá scelto, altrimenti LABEL(j) = 0, b) un vettore n dimensionale COMP, caratterizzato dal fatto che COMP (j) = i se a j appartiene alla stessa componente connessa del nodo a i, c) il contatore k degli archi giá accettati, d) una variabile intera ARCO che rappresenta l indice dell arco sotto esame, da accettare o da scartare. Si ha allora il seguente: 5 ALGORITMO DI KRUSKAL (0) - (inizializzazione) Si pone k = 0, ARCO = 1 e si inizializzano i vettori LABEL e COMP ponendo LABEL(j) = 0 per ogni j = 1, 2,..., m e COMP (i) = i per ogni i = 1, 2,... n. (1) - (Fase iterativa) - Si esegue il ciclo: finché COMP(FROM(ARCO)) = COMP(TO(ARCO)), si pone ARCO = ARCO + 1. Alla fine del ciclo si pone LABEL(ARCO) = 1, k = k + 1. (2) - (Test di arresto) Se k = n 1 STOP, altrimenti si va al Passo 3 (3) - (Aggiornamento) Si esegue il ciclo: per i = 1, 2,..., n esegui: se COMP (i) = COMP (T O(ARCO)), allora poni COMP (i) = COMP (F ROM(ARCO)). Con il vettore COMP cosí modificato si torna al Passo 1. n. 5 - Appendice Dimostrazione della ottimalitá dell albero generato dall algoritmo di Prim Per dimostrare che l albero generato dall algoritmo di Prim é quello di lunghezza minima, é opportuno premettere la seguente Definizione. Si dice sottoalbero ottimo di G un sottografo G = (N, A ) di G per cui esiste un albero invadente di lunghezza minima G = (N, A ) tale che A A. Sussiste allora il seguente Teorema di Prim. Sia G = (N, A ) un sottoalbero ottimo di G tale che N N e siano ā N, b N N tali che (ā, b) A e (*) l(ā, b) = min {l(a, b) : a N, b N N, (a, b) A}. Allora il sottografo G = (N { b}, A {(ā, b)} é ancora un sottoalbero ottimo. Dim. Sia G = (N, A ) un albero invadente di lunghezza minima tale che A A e dimostriamo che esiste un albero invadente di lunghezza minima G = (N, A ) tale che A A (ā, b).

6 6 Ebbene, se (ā, b) A, l albero G soddisfa la tesi. In caso contrario, esiste un cammino in G che congiunge ā con b; tale cammino conterrá un arco (a, b) tale che a N e b / N. Consideriamo allora il sottografo G di G ottenuto sostituendo in A l arco (a, b) con l arco (ā, b), (cioé G = (N, A ), con A = A {(ā, b)} {(a, b)}), e dimostriamo che : (1) G é connesso, (2) G non ha cicli, (3) la lunghezza di G é minore o uguale della lunghezza di G ; ne seguirá che G é (al pari di G ), un albero invadente di lunghezza minima, e quindi soddisfa la tesi, dal momento che risulta chiaramente G A {(ā, b)}. Dim. di (1). Siano a, b N, a b e dimostriamo che esiste un cammino in G un acmmino congiungente a con b. A tal fine, sia Γ il cammino in G congiungente a con b ; se Γ non contiene l arco (a, b), allora Γ soddisfa la tesi. In caso contrario, il cammino cercato si ottiene sostituendo Gamma con il cammino Γ unione dei seguenti cammini: il cammino congiungente a con a, il cammino congiungente a con ā, l arco (ā, b), il cammino congiungente b con b, il cammino congiungente b con b. Dim. di (2). Supponiamo per assurdo che G contiene un ciclo Γ e dimostriamo che allora esiste un ciclo in G, il che é impossibile, poiché G é un albero. Infatti, se Γ non contiene l arco (ā, b), allora Γ stesso é un ciclo in G. Se Γ contiene l arco (ā, b), allora un ciclo in G si ottiene sostituendo, in Γ, l arco (ā, b) con il cammino Γ unione dei seguenti cammini: il cammino congiungente ā con a, l arco (a, b), il cammino congiungente b con b. Dim di (3). I sottografi G e G differiscono solo per gli archi (ā, b) e (a, b) e risulta l(ā, b) l(a, b), in virtú di (*); ne segue che la lunghezza di G é minore o uguale della lunghezza di G. Dal teorema di Prim si deduce che il sottografo trovato alla fine dell esecuzione dell algoritmo di Prim é un albero invadente di lunghezza minima. Infatti é evidente che il sottografo iniziale G = (N, A ), con A =, é un sottoalbero ottimo; conseguentemente, il sottografo trovato dopo la prima iterazione é un sottoalbero ottimo. Ma allora anche quello trovato dopo la seconda iterazione é un sottoalbero ottimo, e in generale il sottografo trovato dopo ogni iterazione é un sottoalbero ottimo. Pertanto, il sottoalbero G = (N, A ) trovato dopo n 1 iterazioni é un sottoalbero ottimo, e quindi esiste un albero invadente di lunghezza minima G = (N, A ), tale che A A. Ebbene si vede facilmente che N = N, A = A, e quindi che il sottoalbero G trovato dall algoritmo di Prim é proprio l albero invadente di lunghezza minima G = (N, A ). Infatti, dopo n 1 iterazioni, l insieme N avrá n elementi e quindi coincide con N; d altra parte, deve essere A = A, perché se ci fosse un arco (a, b) A A, il cammino unione dell arco (a, b) con il cammino in G congiungente b con a sarebbe un ciclo in G, e questo é impossibile, poiché G é un albero.

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente Minimo sottografo ricoprente Minimo sottografo ricoprente Dato un grafo connesso G = (V, E) con costi positivi sugli archi c e, un minimo sottografo ricoprente è un insieme di archi E E tale che: G = (V,

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Introduzione Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Il problema del massimo flusso è uno dei fondamentali problemi nell ottimizzazione su rete. Esso è presente

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

Attività 9. La città fangosa Minimal Spanning Trees

Attività 9. La città fangosa Minimal Spanning Trees Attività 9 La città fangosa Minimal Spanning Trees Sommario la nostra società ha molti collegamenti in rete: la rete telefonica, la rete energetica, la rete stradale. Per una rete in particolare, ci sono

Dettagli

DESMATRON TEORIA DEI GRAFI

DESMATRON TEORIA DEI GRAFI DESMATRON TEORIA DEI GRAFI 0 Teoria dei Grafi Author: Desmatron Release 1.0.0 Date of Release: October 28, 2004 Author website: http://desmatron.altervista.org Book website: http://desmatron.altervista.org/teoria_dei_grafi/index.php

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Alberto Montresor Università di Trento

Alberto Montresor Università di Trento !! Algoritmi e Strutture Dati! Capitolo 1 - Greedy!!! Alberto Montresor Università di Trento!! This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Dispense del Corso di Algoritmi e Strutture Dati

Dispense del Corso di Algoritmi e Strutture Dati Dispense del Corso di Algoritmi e Strutture Dati Marco Bernardo Edoardo Bontà Università degli Studi di Urbino Carlo Bo Facoltà di Scienze e Tecnologie Corso di Laurea in Informatica Applicata Versione

Dettagli

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo Logica Numerica Approfondimento E. Barbuto Minimo Comune Multiplo e Massimo Comun Divisore Il concetto di multiplo e di divisore Considerato un numero intero n, se esso viene moltiplicato per un numero

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)).

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)). Calcolo differenziale Il teorema di Rolle TEOREMA DI ROLLE Ipotesi f continua su [a, b] f derivabile per lo meno su (a,b) f(a) = f(b) Tesi Esiste almeno un punto c in (a, b) tale che Giustificazione con

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Sistemi Operativi. Interfaccia del File System FILE SYSTEM : INTERFACCIA. Concetto di File. Metodi di Accesso. Struttura delle Directory

Sistemi Operativi. Interfaccia del File System FILE SYSTEM : INTERFACCIA. Concetto di File. Metodi di Accesso. Struttura delle Directory FILE SYSTEM : INTERFACCIA 8.1 Interfaccia del File System Concetto di File Metodi di Accesso Struttura delle Directory Montaggio del File System Condivisione di File Protezione 8.2 Concetto di File File

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Esercitazione 7. Procedure e Funzioni

Esercitazione 7. Procedure e Funzioni Esercitazione 7 Procedure e Funzioni Esercizio Scrivere un programma che memorizza in un array di elementi di tipo double le temperature relative al mese corrente e ne determina la temperatura massima,

Dettagli

Cenni su algoritmi, diagrammi di flusso, strutture di controllo

Cenni su algoritmi, diagrammi di flusso, strutture di controllo Cenni su algoritmi, diagrammi di flusso, strutture di controllo Algoritmo Spesso, nel nostro vivere quotidiano, ci troviamo nella necessità di risolvere problemi. La descrizione della successione di operazioni

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati Tipologie di pianificatori Pianificazione Intelligenza Artificiale e Agenti II modulo Pianificazione a ordinamento parziale (POP) (HTN) pianificazione logica (SatPlan) Pianificazione come ricerca su grafi

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizione di uno schema Dato uno schema relazionale R={A1,A2, An} una sua decomposizione

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Realizzazione di Politiche di Gestione delle Risorse: i Semafori Privati

Realizzazione di Politiche di Gestione delle Risorse: i Semafori Privati Realizzazione di Politiche di Gestione delle Risorse: i Semafori Privati Condizione di sincronizzazione Qualora si voglia realizzare una determinata politica di gestione delle risorse,la decisione se ad

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Cicli in Visual Basic for Application. For contatore = inizio To fine istruzioni Next contatore

Cicli in Visual Basic for Application. For contatore = inizio To fine istruzioni Next contatore Cicli in Visual Basic for Application Le strutture del programma che ripetono l'esecuzione di una o più istruzioni sono chiamate Cicli. Alcune strutture per i cicli sono costruite in modo da venire eseguite

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

Particelle identiche : schema (per uno studio più dettagliato vedi lezione 2) φ 1

Particelle identiche : schema (per uno studio più dettagliato vedi lezione 2) φ 1 Particelle identiche : schema (per uno studio più dettagliato vedi lezione ) Funzioni d onda di un sistema composto Sistema costituito da due particelle (eventualmente identiche) H φ q H φ H ψ φ φ stato

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Routing (instradamento) in Internet. Internet globalmente consiste di Sistemi Autonomi (AS) interconnessi:

Routing (instradamento) in Internet. Internet globalmente consiste di Sistemi Autonomi (AS) interconnessi: Routing (instradamento) in Internet Internet globalmente consiste di Sistemi Autonomi (AS) interconnessi: Stub AS: istituzione piccola Multihomed AS: grande istituzione (nessun ( transito Transit AS: provider

Dettagli

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti Dai sistemi concorrenti ai sistemi distribuiti Problemi nei sistemi concorrenti e distribuiti I sistemi concorrenti e distribuiti hanno in comune l ovvio problema di coordinare le varie attività dei differenti

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

Determinare la grandezza della sottorete

Determinare la grandezza della sottorete Determinare la grandezza della sottorete Ogni rete IP possiede due indirizzi non assegnabili direttamente agli host l indirizzo della rete a cui appartiene e l'indirizzo di broadcast. Quando si creano

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

In un collegamento in parallelo ogni lampadina ha. sorgente di energia (pile) del circuito. i elettrici casalinghi, dove tutti gli utilizzatori sono

In un collegamento in parallelo ogni lampadina ha. sorgente di energia (pile) del circuito. i elettrici casalinghi, dove tutti gli utilizzatori sono I CIRCUITI ELETTRICI di CHIARA FORCELLINI Materiale Usato: 5 lampadine Mammut 4 pile da 1,5 volt (6Volt)+Portabatteria Tester (amperometro e voltmetro) I circuiti in Parallelo In un collegamento in parallelo

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

6. Moto in due dimensioni

6. Moto in due dimensioni 6. Moto in due dimensioni 1 Vettori er descriere il moto in un piano, in analogia con quanto abbiamo fatto per il caso del moto in una dimensione, è utile usare una coppia di assi cartesiani, come illustrato

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1 UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Filippo Romano 1 1. Introduzione 2. Analisi Multicriteri o Multiobiettivi 2.1 Formule per l attribuzione del

Dettagli