Lezione 6 Perdita di energia

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 6 Perdita di energia"

Transcript

1 Abbiamo introdotto la perdita di energia per collisioni, che avviene tramite scattering coulombiani sugli elettroni del materiale. Questo è alla base di molti apparati usati per rivelare particelle cariche. Andremo ora un po più in dettaglio: de/dx Range Risalita relativistica (b min /b max ) e saturazione Fluttuazioni della perdita di energia Energia critica Rivelatori di Particelle 1

2 Per una singola collisione a parametro d impatto b: DEb energia persa o z De ( b) b v m trasferita z carica particella incidente m massa particella bersaglio La perdita di energia non dipende dalla massa della particella incidente Dipende dalla carica e dalla velocità della particella incidente Dipende dall inverso della massa del bersaglio favorito il trasferimento di energia agli elettroni atomici Va come 1/b grandi De per piccoli b Indichiamo con De il trasferimento di energia per un singolo urto e con DE la perdita di energia totale. Rivelatori di Particelle

3 Una particella veloce che attraversa la materia vede elettroni a varie distanze dal suo percorso. Se abbiamo N atomi per unità di volume con Z elettroni per atomo, il numero di elettroni dn che si hanno fra b e b+db in uno spessore dx di materia sarà: dn NZbdbdx se vogliamo la perdita di energia de/dx dovremo integrare su tutti i possibili parametri d impatto, ovvero: de dx 4NZ z mv b b max min 1 bdb b 4NZ z mv ln b b max min Nell ipotesi che ho un parametro d impatto minimo e massimo. Rivelatori di Particelle 3

4 Introducendo il numero di Avogadro N 0 : de d N0 z b 4 Z ln max x A mv bmin Osserviamo che la perdita di energia dipende solo dalla carica (z ) e dalla velocità 1/v del proiettile, non dalla sua massa M. Vediamo ora di ricavare i valori minimo e massimo del parametro d impatto b. Rivelatori di Particelle 4

5 b min >0 in quanto DE max non può divergere. Per collisioni frontali ho parametro d impatto minimo e massimo di energia trasferita: z e DE max =T max =(b g )mc ma: DE z b b c z gb mc zr b g e b min m Rivelatori di Particelle 5

6 Per ricavare b max osserviamo che l elettrone è in realtà legato ad un atomo per poterlo considerare libero il tempo di collisione deve essere minore del tempo di rivoluzione, ma t coll ~b/vg b max gv w dove con w si intende la frequenza di rivoluzione dell elettrone. Rivelatori di Particelle 6

7 Osserviamo: Lezione 6 Un trattamento, sempre classico, ma più corretto (Bohr) considera gli elettroni come degli oscillatori armonici b max. Il risultato è comunque praticamente lo stesso: de dx 4 NoZ A z mc 1 b g ln b mc Iz b Il termine di Bohr (-b /) è una piccola correzione; I = energia media di eccitazione della targhetta. Questa formula ottenuta classicamente è valida per particelle incidenti pesanti ( o nuclei), per particelle più leggere dobbiamo usare una trattazione quantistica. Rivelatori di Particelle 7

8 La formula di de/dx ricavata classicamente è comunque perfettamente adeguata per alcune osservazioni: 1. Picco di Bragg: la maggioranza della perdita di energia si ha verso la fine del percorso dove la velocità della particella è più piccola cura del cancro. de/dx x Rivelatori di Particelle 8

9 . Range: le particelle perdono energia e poi si fermano Dato un fascio monocromatico la profondità alla quale le particelle iniziali sono ridotte alla metà si chiama range medio. R E 0 E 1 de de dx Il range rappresenta la distanza attraversata dalla particella ed è diversa dallo spessore attraversato a causa dello scattering multiplo. È misurato in g/cm o in cm. (vedi Rivelatori di Particelle 9

10 Rivelatori di Particelle 10

11 Legge di scala (Range). R E M de dx R Lezione 6 Supponiamo di conoscere il range di 1 protone come f(e/m) il range di una particella con energia E è : R z z M h z E M f v 1 z g M ge M E con h funzione universale di M E M M M p Le relazioni range energia sono spesso espresse R(E)=(E/E o ) n. e.g. il range in metri di protoni di bassa energia nell aria puo essere approssimato con n=1.8 e E o =9.3 MeV. E M de M z z p R p con E M f e g funzioni Rivelatori di Particelle 11

12 Cenni sulla trattazione quantistica di de/dx. Abbiamo trascurato: 1. Gli scambi di energia sono discreti modifica di b max. Il risultato classico di scambi di energia possibili su un continuo è sbagliato, ma, in media, viene praticamente corretto.. Natura ondulatoria delle particelle e principio d indeterminazione modifica di b min. L analogo quantistico di b min è b min ~ħ/p. Bethe ricavò: de dx Z 1 1 mc b g T max 4N 0re mc z ln b A b I Dove T max è la massima energia incidente trasferibile in una singola collisione ed I il potenziale di ionizzazione medio. Rivelatori di Particelle 1

13 Osserviamo che de/dx: Lezione 6 de dx Z 1 1 mc b g T max 4N 0re mc z ln b A b I i. Dipende dalla carica della particella incidente (z ). (interazione Coulombiana). ii. iii. Per b crescente decresce come 1/b raggiungendo un minimo per bg ~3 4 e poi risale in quanto log(b g ) domina. (risalita relativistica). Dipende dal potenziale di ionizzazione medio del materiale. ( I dipende da Z, per Z 0 I/Z~10 ev. (Per una lista delle proprietà elettromagnetiche degli elementi vedi Fernow pag. 39 e figura prossima diapositiva) Rivelatori di Particelle 13

14 Rivelatori di Particelle 14

15 Rivelatori di Particelle 15

16 Effetto densità. La salita relativistica satura crescendo g plateau di Fermi. In materiali densi la polarizzazione del dielettrico del materiale altera i campi della particella incidente dai valori nello spazio vuoto a quelli caratteristici di campi macroscopici in un dielettrico. La polarizzazione del mezzo agisce da schermo e modifica il massimo parametro d impatto. Questo fenomeno è chiamato effetto densità in quanto dipende dalla densità del mezzo. Più denso è il mezzo tanto prima si raggiunge il plateau di Fermi la salita relativistica è più importante nei gas che nei liquidi e nei solidi. La formula di Bethe Block diventa: de dx Kz E funziona fino al % per particelle fino al nucleo di per b Per basse velocità (b~0.05) non è più valida in quanto non sono più valide molte delle assunzioni di Bethe Block. Z 1 b g mc b g ln A b I Rivelatori di Particelle 16

17 de/dx per composti e miscugli. Lezione 6 Una buona approssimazione della perdita di energia per composti e miscugli è data dalla regola di Bragg (vedi range) 1 de dx w1 de dx Dove w 1, w. Sono le frazioni in peso 1,.del composto: a Possiamo definire dei valori efficaci come segue: ln I E riscrivere la de/dx in termini dei valori efficaci. Z eff w eff i i 1 Ai A M a Z i i eff 1 aizi ln I Z i w de dx A M i ai Ai A eff eff a i A i aizi i Z eff Rivelatori di Particelle 17

18 Particelle della stessa velocità hanno praticamente la stessa de/dx in materiali diversi, se escludiamo l idrogeno. È presente una piccola diminuzione della perdita di energia all aumentare di Z. In pratica, la maggioranza delle particelle relativistiche hanno una perdita di energia simile a quella del minimo MIP (minimum ionizing particle). La perdita di energia è normalmente espressa in termini della densità di area ds=dx e le particelle ionizzanti al minimo perdono in media 1.94 MeV/(gr/cm ) in He, 1.08 in Uranio e ~4 MeV/(gr/cm ) in H. Rivelatori di Particelle 18

19 Fluttuazioni della perdita di energia. Lezione 6 Ricordiamo che la perdita di energia de/dx (Bethe Block) è un valore medio. de dx Kz Z 1 b g mc b g ln A b I La reale perdita di energia per una particella che attraversa del materiale fluttua a causa della natura statistica delle sue interazioni con i singoli atomi del materiale. Rivelatori di Particelle 19

20 Gli apparati sperimentali (granularità limitata) non misurano <de/dx>, ma l energia DE depositata in uno strato di spessore finito x. DE è il risultato di un certo numero i di collisioni con trasferimenti di energia E i e sezioni d urto ds/de. ds/dw~1/w tendo a trasferire piccole quantità di energia Gli eventi in cui ho una grossa perdita di energia sono associati alla produzione di e di rinculo ad alta energia ( rays ) la distribuzione della perdita di energia è tendenzialmente asimmetrica con una coda verso le alte energie. Rivelatori di Particelle 0

21 Fluttuazioni della perdita di energia. Lezione 6 Assorbitori spessi teorema del limite centrale distribuzione Gaussiana Assorbitori sottili Landau se molto sottili, Vavilov se poco sottili. Straggling functions in silicon for 500 MeV pions, normalized to unity at the most probable value Dp/x. The width w is the FWHM. Bibliografia Fernow (Introduction to experimental particle physics) Rivelatori di Particelle 1

22 Fluttuazioni di de/dx Assorbitori spessi: limite gaussiano. Per assorbitori relativamente spessi la distribuzione della perdita di energia è gaussiana. Ciò deriva direttamente dal teorema del limite centrale: la somma di N variabili casuali, ciascuna che segue la stessa distribuzione statistica diventa distribuita gaussianamente nel limite di N. Se consideriamo come variabile casuale la E, cioè l energia persa in una collisione singola ed assumiamo che in ogni collisione la velocità b del proiettile non è cambiata (in maniera apprezzabile) in modo che s(p) è costante l energia totale persa è la somma di tutte le E, tutte con la stessa distribuzione. Rivelatori di Particelle

23 Assorbitori spessi Se il materiale è spesso (ma non troppo) o denso N è grande quindi vale il teorema del limite centrale e la perdita totale di energia W è distribuita secondo una gaussiana f ( x, W ) exp W W s Essendo x lo spessore del materiale, W la perdita di energia nell assorbitore, la perdita di energia media, e s la deviazione standard. W Rivelatori di Particelle 3

24 Assorbitori spessi Bohr ha calcolato la deviazione standard s 0 per particelle non relativistiche: Dove N è il numero di Avogadro, la densità, A il peso atomico e Z il numero atomico del materiale. Estesa a particelle relativistiche diventa: Attenzione: Z s x e ) A s MeV 4Nr ( mc x s 0 Abbiamo assunto che la perdita di energia W è piccola rispetto ad E (energia iniziale) in modo che la velocità del proiettile non cambia se il materiale è molto spesso questo non è più vero e quanto detto sopra non vale. 1 1 b 1 b Z A Rivelatori di Particelle 4

25 Assorbitori sottili Assorbitori sottili. Nel caso di assorbitori sottili (o poco densi) N non è così grande da far valere il teorema del limite centrale. Il calcolo diventa estremamente complicato a causa di trasferimenti di grosse quantità di energia (raggi delta) in una singola collisione avrò una distribuzione di perdite di energia con una coda verso le alte energie, cioè asimmetrica. Rivelatori di Particelle 5

26 Assorbitori sottili La probabilità che una particella incidente di energia E perda energia compresa fra W e W+dW attraversando un dx infinitesimo è: Dove n a =N 0 /A= numero di atomi per unità di volume, ds/dw= sezione d urto differenziale per la particella incidente di perdere energia W in una singola collisione con un atomo. La probabilità totale di una collisione di perdere qualunque W nell infinitesimo dx sarà: q si chiama rate di ionizzazione primaria. W dwdx n a ds W dwdx dw d qdx na dw dx s dw Rivelatori di Particelle 6

27 Assorbitori sottili Semplice se dx è infinitesimo, ma complicato per dx finito. Consideriamo un fascio di N particelle di energia E. Sia (W,x) la probabilità che una particella perda un energia fra W e W+dW dopo avere attraversato uno spessore x. La forma di può essere determinata considerando come varia quando le particelle attraversano un ulteriore spessore dx. Il numero di particelle con perdita di energia fra W e W+dW cresce perché qualcuna che ad x aveva perso meno energia di W colliderà e perderà un energia fra W e W+dW in dx. Il numero di particelle con perdita fra W e W+dW diminuisce perché alcune particelle che avevano già perso l energia giusta prima del tratto dx ne perderanno ancora e quindi ne perdono di più di W+dW. Rivelatori di Particelle 7

28 Assorbitori sottili Se assumiamo che le collisioni che avvengono successivamente sono statisticamente indipendenti, che il mezzo assorbitore è omogeneo e che la perdita totale di energia è piccola rispetto all energia della particella incidente: Cioè: N W 0 W, x dxdw NW, x W e, xdxe dwdxde NW, xdwqdx W, x x W 0 Equazione integro-differenziale molto difficile da risolvere. Le differenze nelle soluzioni derivano essenzialmente dalle assunzioni fatte sulla probabilità (W) cioè dal trasferimento di energia per collisione singola. Ciascuno dei calcoli teorici ha un suo limite di validità ed una particolare zona di applicabilità a seconda del valore di un parametro k=/e max ( rappresenta l energia al di sopra della quale avrò almeno un raggio delta =kz (Z/A)(1/b )x essendo x lo spessore attraversato). dw e W e, xde qw, x Rivelatori di Particelle 8

29 Teoria di Landau Valida per /E max <0.01 Assunzioni: Lezione 6 Assorbitori sottili piccola rispetto al massimo possibile in una singola collisione (/E max piccolo) grande se paragonata all energia di legame degli elettroni (elettrone libero). Si trascurano quindi le piccole perdite di energia dovute alle collisioni lontane. Rivelatori di Particelle 9

30 Teoria di Landau Con queste assunzioni può essere fattorizzata come segue: con W, x f 1 W 1 ln 1 c e' ; 1 b I ln e' ln b ; mv c (costantedi Eulero) E L E e è il taglio sulla minima energia persa. Rivelatori di Particelle 30

31 Teoria di Landau La funzione universale f L () può essere espressa come segue: f L 1 0 ulnu e sin udu Valutando f L () si ottiene per il valore più probabile per la perdita di energia: W mp ln e ' = correzione per effetto densità e FWHM=4.0 Rivelatori di Particelle 31

32 Teoria di Vavilov Valida per 0.01<k<1. Lezione 6 Assorbitori sottili Caratterizzata da code un po meno asimmetriche. Osserviamo: Anche se il limite gaussiano si ha per k 10 già per k 1 la distribuzione assomiglia ad una gaussiana. Vavilov landau per k 0 ed ad una gaussiana per k. Rivelatori di Particelle 3

LEZIONE 5 Interazione Particelle Cariche-Materia

LEZIONE 5 Interazione Particelle Cariche-Materia LEZIONE 5 Interazione Particelle Cariche-Materia Particelle alfa Le particelle alfa interagiscono intensamente con la materia attraverso collisioni/interazioni che producono lungo la traccia una elevata

Dettagli

LEZIONE 2 ( Interazione delle particelle con la materia)

LEZIONE 2 ( Interazione delle particelle con la materia) LEZIONE 2 ( Interazione delle particelle con la materia) INTERAZIONE DELLE RADIAZIONI FOTONICHE La materia viene ionizzata prevalentemente ad opera degli elettroni secondari prodotti a seguito di una interazione

Dettagli

Gas perfetti e sue variabili

Gas perfetti e sue variabili Gas perfetti e sue variabili Un gas è detto perfetto quando: 1. è lontano dal punto di condensazione, e quindi è molto rarefatto 2. su di esso non agiscono forze esterne 3. gli urti tra le molecole del

Dettagli

Generalità sull energia eolica

Generalità sull energia eolica Generalità sull energia eolica Una turbina eolica converte l energia cinetica della massa d aria in movimento ad una data velocità in energia meccanica di rotazione. Per la produzione di energia elettrica

Dettagli

May 5, 2013. Fisica Quantistica. Monica Sambo. Sommario

May 5, 2013. Fisica Quantistica. Monica Sambo. Sommario May 5, 2013 Bohr, Born,, Dirac e Pauli accettano in modo incondizionato la nuova fisica Einstein, De, e pur fornendo importanti contributi alla nuova teoria cercano di ottenere una descrizione CAUSALE

Dettagli

Insegnare relatività. nel XXI secolo

Insegnare relatività. nel XXI secolo Insegnare relatività nel XXI secolo L ' i n e r z i a d e l l ' e n e r g i a L'inerzia dell'energia Questa è la denominazione più corretta, al posto della consueta equivalenza massa energia. Einstein

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Le proprietà periodiche degli elementi LA LEZIONE

Le proprietà periodiche degli elementi LA LEZIONE Le proprietà periodiche degli elementi LA LEZIONE Le proprietà degli elementi mostrano delle tendenze che possono essere predette usando il sistema periodico ed essere spiegate e comprese analizzando la

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas

Dettagli

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI.

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. 1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. Tutti i fenomeni elettrici e magnetici hanno origine da cariche elettriche. Per comprendere a fondo la definizione di carica elettrica occorre risalire alla

Dettagli

La fisica di Feynmann Termodinamica

La fisica di Feynmann Termodinamica La fisica di Feynmann Termodinamica 3.1 TEORIA CINETICA Teoria cinetica dei gas Pressione Lavoro per comprimere un gas Compressione adiabatica Compressione della radiazione Temperatura Energia cinetica

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Fluorescenza IR di eccimeri Xe 2 in gas denso

Fluorescenza IR di eccimeri Xe 2 in gas denso Fluorescenza IR di eccimeri Xe 2 in gas denso A. F. Borghesani *,+ and G. Carugno + * Dipartimento di Fisica, Unità CNISM, Università di Padova + Istituto Nazionale di Fisica Nucleare, Sezione di Padova

Dettagli

con sorgenti di luce laser

con sorgenti di luce laser Corso di Laurea Triennale in Fisica A.A 2003-2004 Tesi di Laurea Caratterizzazione di rivelatori al silicio con sorgenti di luce laser Laureando: Leonardo Brizi Relatore: Giovanni Ambrosi Indice Introduzione...pag.1

Dettagli

RIVELAZIONE DELLE RADIAZIONI IONIZZANTI. Nelle tecniche di rivelazione delle radiazioni ionizzanti le grandezze da rivelare possono essere diverse:

RIVELAZIONE DELLE RADIAZIONI IONIZZANTI. Nelle tecniche di rivelazione delle radiazioni ionizzanti le grandezze da rivelare possono essere diverse: RIVELAZIONE DELLE RADIAZIONI IONIZZANTI Nelle tecniche di rivelazione delle radiazioni ionizzanti le grandezze da rivelare possono essere diverse: -Fluenza di particelle -Fluenza di energia -Informazioni

Dettagli

Proprieta meccaniche dei fluidi

Proprieta meccaniche dei fluidi Proprieta meccaniche dei fluidi 1. Definizione di fluido: liquido o gas 2. La pressione in un fluido 3. Equilibrio nei fluidi: legge di Stevino 4. Il Principio di Pascal 5. Il barometro di Torricelli 6.

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

La radioattività e la datazione al radio-carbonio

La radioattività e la datazione al radio-carbonio 1 Espansione 2.2 La radioattività e la datazione al radio-carbonio Henry Becquerel. I coniugi Pierre e Marie Curie. La radioattività La radioattività è un fenomeno naturale provocato dai nuclei atomici

Dettagli

Prova scritta intercorso 2 31/5/2002

Prova scritta intercorso 2 31/5/2002 Prova scritta intercorso 3/5/ Diploma in Scienza e Ingegneria dei Materiali anno accademico - Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione ora e 45 minuti ) Un elettrone

Dettagli

RIASSUNTO DI FISICA 3 a LICEO

RIASSUNTO DI FISICA 3 a LICEO RIASSUNTO DI FISICA 3 a LICEO ELETTROLOGIA 1) CONCETTI FONDAMENTALI Cariche elettriche: cariche elettriche dello stesso segno si respingono e cariche elettriche di segno opposto si attraggono. Conduttore:

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Condensatore elettrico

Condensatore elettrico Condensatore elettrico Sistema di conduttori che possiedono cariche uguali ma di segno opposto armature condensatore La presenza di cariche crea d.d.p. V (tensione) fra i due conduttori Condensatore piano

Dettagli

Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione. Foronomia

Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione. Foronomia Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione Foronomia In idrostatica era lecito trascurare l attrito interno o viscosità e i risultati ottenuti valevano sia per i liquidi

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

LA GIUNZIONE PN. Sulla base delle proprietà elettriche i materiali si classificano in: conduttori semiconduttori isolanti

LA GIUNZIONE PN. Sulla base delle proprietà elettriche i materiali si classificano in: conduttori semiconduttori isolanti LA GIUNZIONE PN Sulla base delle proprietà chimiche e della teoria di Bohr sulla struttura dell atomo (nucleo costituito da protoni e orbitali via via più esterni in cui si distribuiscono gli elettroni),

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro I FENOMENI TERMICI Temperatura Calore Trasformazioni termodinamiche Gas perfetti Temperatura assoluta Gas reali Principi della Termodinamica Trasmissione del calore Termoregolazione del corpo umano Temperatura

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti Unità di misura Le unità di misura sono molto importanti 1000 è solo un numero 1000 lire unità di misura monetaria 1000 unità di misura monetaria ma il valore di acquisto è molto diverso 1000/mese unità

Dettagli

FISICA (modulo 1) PROVA SCRITTA 10/02/2014

FISICA (modulo 1) PROVA SCRITTA 10/02/2014 FISICA (modulo 1) PROVA SCRITTA 10/02/2014 ESERCIZI E1. Un proiettile del peso di m = 10 g viene sparato orizzontalmente con velocità v i contro un blocco di legno di massa M = 0.5 Kg, fermo su una superficie

Dettagli

Una reazione a due corpi in generale è rappresentata dall espressione: a + X Y + b

Una reazione a due corpi in generale è rappresentata dall espressione: a + X Y + b Le reazioni nucleari bilancio energetico: Q della reazione Le reazioni nucleari sono analizzate quantitativamente in termini di massa ed energia dei nuclei e delle particelle interessate (bilancio energetico).

Dettagli

Capitolo 7 Le particelle dell atomo

Capitolo 7 Le particelle dell atomo Capitolo 7 Le particelle dell atomo 1. La natura elettrica della materia 2. La scoperta delle proprietà elettriche 3. Le particelle fondamentali dell atomo 4. La scoperta dell elettrone 5. L esperimento

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato gassoso Classificazione della materia MATERIA Composizione Struttura Proprietà Trasformazioni 3 STATI DI AGGREGAZIONE SOLIDO (volume e forma propri) LIQUIDO

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

LA LEGGE DI GRAVITAZIONE UNIVERSALE

LA LEGGE DI GRAVITAZIONE UNIVERSALE GRAVIMETRIA LA LEGGE DI GRAVITAZIONE UNIVERSALE r La legge di gravitazione universale, formulata da Isaac Newton nel 1666 e pubblicata nel 1684, afferma che l'attrazione gravitazionale tra due corpi è

Dettagli

RIVELATORI A SEMICONDUTTORE. Dal punto di vista della conducibilità elettrica i materiali si possono classificare in :

RIVELATORI A SEMICONDUTTORE. Dal punto di vista della conducibilità elettrica i materiali si possono classificare in : Dal punto di vista della conducibilità elettrica i materiali si possono classificare in : (a) Metalli: banda di valenza (BV) e banda di conduzione (BC) sono sovrapposte (E g = 0 ev) (b) Semiconduttori:

Dettagli

FISICA-TECNICA Miscela di gas e vapori. Igrometria

FISICA-TECNICA Miscela di gas e vapori. Igrometria FISICA-TECNICA Miscela di gas e vapori. Igrometria Katia Gallucci Spesso è necessario variare il contenuto di vapore presente in una corrente gassosa. Lo studio di come si possono realizzare queste variazioni

Dettagli

Na (T 1/2 =15 h), che a sua volta decade β - in 24 12

Na (T 1/2 =15 h), che a sua volta decade β - in 24 12 Esercizio 1 Il 24 10 Ne (T 1/2 =3.38 min) decade β - in 24 11 Na (T 1/2 =15 h), che a sua volta decade β - in 24 12 Mg. Dire quali livelli sono raggiungibili dal decadimento beta e indicare lo schema di

Dettagli

IL MODELLO ATOMICO DI BOHR

IL MODELLO ATOMICO DI BOHR IL MODELLO ATOMICO DI BOHR LA LUCE Un valido contributo alla comprensione della struttura dell atomo venne dato dallo studio delle radiazioni luminose emesse dagli atomi opportunamente sollecitati. Lo

Dettagli

TX Figura 1: collegamento tra due antenne nello spazio libero.

TX Figura 1: collegamento tra due antenne nello spazio libero. Collegamenti Supponiamo di avere due antenne, una trasmittente X e una ricevente X e consideriamo il collegamento tra queste due antenne distanti X X Figura : collegamento tra due antenne nello spazio

Dettagli

Cenni di Teoria Cinetica dei Gas

Cenni di Teoria Cinetica dei Gas Cenni di Teoria Cinetica dei Gas Introduzione La termodinamica descrive i sistemi termodinamici tramite i parametri di stato (p, T,...) Sufficiente per le applicazioni: impostazione e progettazione di

Dettagli

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.c. 2/83

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.c. 2/83 I convertitori c.c.-c.c. monodirezionali sono impiegati per produrre in uscita un livello di tensione diverso da quello previsto per la sorgente. Verranno presi in considerazione due tipi di convertitori

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

LEZIONE 4 INTERAZIONE DEI RAGGI X E GAMMA CON LA MATERIA

LEZIONE 4 INTERAZIONE DEI RAGGI X E GAMMA CON LA MATERIA LZION 4 INTRZION DI RGGI X GMM CON L MTRI I raggi X hanno generalmente energie comprese fra i 5KeV e i 500 kev. Interagendo con la materia i raggi X (interazione primaria) producono elettroni secondari

Dettagli

TAVOLA DI PROGRAMMAZIONE PER GRUPPI DIDATTICI

TAVOLA DI PROGRAMMAZIONE PER GRUPPI DIDATTICI TAVOLA DI PROGRAMMAZIONE PER GRUPPI DIDATTICI MATERIA: CHIMICA CLASSI: PRIME I II QUADRIMESTRE Competenze Abilità/Capacità Conoscenze* Attività didattica Strumenti Tipologia verifiche Osservare, descrivere

Dettagli

LABORATORIO DI CHIMICA GENERALE E INORGANICA

LABORATORIO DI CHIMICA GENERALE E INORGANICA UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli

Dettagli

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004 Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 200 Esercizio 1 Tre apparecchiature M 1, M 2 e M 3 in un anno si guastano, in maniera indipendente, con probabilità

Dettagli

Un altro importante parametro di questo processo è la risoluzione che rappresenta la distanza minima che la litografia può apprezzare.

Un altro importante parametro di questo processo è la risoluzione che rappresenta la distanza minima che la litografia può apprezzare. TECNICHE LITOGRAFICHE La litografia è un processo basilare nella realizzazione di circuiti integrati,esso consiste nel depositare un materiale detto resist sul wafer da processare che una volta esposto

Dettagli

LE PARTICELLE ELEMENTARI: loro scoperta

LE PARTICELLE ELEMENTARI: loro scoperta LE PARTICELLE ELEMENTARI: loro scoperta Atomo: composto da particelle elementari più piccole (protoni, neutroni, elettroni) Atomi di elementi diversi contengono le STESSE particelle, ma in numero diverso

Dettagli

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi LO STATO GASSOSO Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi STATO GASSOSO Un sistema gassoso è costituito da molecole

Dettagli

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME 6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice

Dettagli

(2) t B = 0 (3) E t In presenza di materia, le stesse equazioni possono essere scritte E = B

(2) t B = 0 (3) E t In presenza di materia, le stesse equazioni possono essere scritte E = B Equazioni di Maxwell nei mezzi e indice di rifrazione I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) E ϱ ɛ 0 () E B (2) B 0 (3) E B µ 0 j + µ 0 ɛ 0

Dettagli

Introduzione all Analisi dei Segnali

Introduzione all Analisi dei Segnali Tecniche innovative per l identificazione delle caratteristiche dinamiche delle strutture e del danno Introduzione all Analisi dei Segnali Prof. Ing. Felice Carlo PONZO - Ing. Rocco DITOMMASO Scuola di

Dettagli

Determinazione della composizione elementare dello ione molecolare. Metodo dell abbondanza isotopica. Misure di massa esatta

Determinazione della composizione elementare dello ione molecolare. Metodo dell abbondanza isotopica. Misure di massa esatta Determinazione della composizione elementare dello ione molecolare Metodo dell abbondanza isotopica Misure di massa esatta PREMESSA: ISOTOPI PICCHI ISOTOPICI Il picco dello ione molecolare è spesso accompagnato

Dettagli

L ACQUISIZIONE DIGITALE DEI SEGNALI I vantaggi principali dei sistemi digitali consistono in: elevata insensibilità ai disturbi bassa incertezza con costi relativamente contenuti compatibilità intrinseca

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

LA STRUTTURA DELL ATOMO 4.A PRE-REQUISITI 4.B PRE-TEST 4.6 ENERGIE DI IONIZZAZIONE E DISTRIBUZIONE DEGLI ELETTRONI 4.C OBIETTIVI

LA STRUTTURA DELL ATOMO 4.A PRE-REQUISITI 4.B PRE-TEST 4.6 ENERGIE DI IONIZZAZIONE E DISTRIBUZIONE DEGLI ELETTRONI 4.C OBIETTIVI LA STRUTTURA DELL ATOMO 4.A PRE-REQUISITI 4.B PRE-TEST 4.C OBIETTIVI 4.1 UNO SGUARDO ALLA STORIA 4.2 L ATOMO DI BOHR (1913) 4.5.2 PRINCIPIO DELLA MASSIMA MOLTEPLICITA (REGOLA DI HUND) 4.5.3 ESERCIZI SVOLTI

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Attilio Piana, Andrea Ziggioto 1 egime variabile in un circuito elettrico. Circuito C. 1.1 Carica del condensatore

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

19 Il campo elettrico - 3. Le linee del campo elettrico

19 Il campo elettrico - 3. Le linee del campo elettrico Moto di una carica in un campo elettrico uniforme Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice se il campo elettrico è uniforme,

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Capitolo 8 Moneta, prezzi e inflazione

Capitolo 8 Moneta, prezzi e inflazione Capitolo 8 Moneta, prezzi e inflazione Francesco Prota Piano della lezione Le funzioni della moneta La teoria quantitativa della moneta Inflazione La domanda di moneta Moneta, prezzi e inflazione I costi

Dettagli

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Gas e gas perfetti 1 Densita Densita - massa per unita di volume Si misura in g/cm 3 ρ = M V Bassa densita Alta densita Definizione di Pressione Pressione = Forza / Area P = F/A unita SI : 1 Nt/m 2 = 1

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Caratterizzazione di finestre da vuoto e radome. Modello circuitale delle finestre da vuoto e dei radome

Caratterizzazione di finestre da vuoto e radome. Modello circuitale delle finestre da vuoto e dei radome ISTITUTO NAZIONALE DI ASTROFISICA OSSERVATORIO ASTROFISICO DI ARCETRI L.GO E. FERMI, 5, 50125 FIRENZE TEL. 39-055-27521; FAX: 39-055-220039 C.F./P.IVA: 97220210583 Caratterizzazione di finestre da vuoto

Dettagli

0.6 Filtro di smoothing Gaussiano

0.6 Filtro di smoothing Gaussiano 2 Figura 7: Filtro trapezoidale passa basso. In questo filtro l rappresenta la frequenza di taglio ed l, l rappresenta un intervallo della frequenza con variazione lineare di H, utile ad evitare le brusche

Dettagli

1 di 3 07/06/2010 14.04

1 di 3 07/06/2010 14.04 Principi 1 http://digilander.libero.it/emmepi347/la%20pagina%20di%20elettronic... 1 di 3 07/06/2010 14.04 Community emmepi347 Profilo Blog Video Sito Foto Amici Esplora L'atomo Ogni materiale conosciuto

Dettagli

Misureremo e analizzeremo la distribuzione di intensità luminosa di diverse figure di diffrazione in funzione della posizione acquisite on- line.

Misureremo e analizzeremo la distribuzione di intensità luminosa di diverse figure di diffrazione in funzione della posizione acquisite on- line. 4 IV Giornata Oggi termineremo questo percorso sulla luce misurando l intensità luminosa della distribuzione di massimi e minimi delle figure di diffrazione e di interferenza. In particolare confronteremo

Dettagli

LEZIONE 5-6 GAS PERFETTI, CALORE, ENERGIA TERMICA ESERCITAZIONI 1: SOLUZIONI

LEZIONE 5-6 GAS PERFETTI, CALORE, ENERGIA TERMICA ESERCITAZIONI 1: SOLUZIONI LEZIONE 5-6 G PERFETTI, CLORE, ENERGI TERMIC EERCITZIONI 1: OLUZIONI Gas Perfetti La temperatura è legata al movimento delle particelle. Un gas perfetto (ovvero che rispetta la legge dei gas perfetti PV

Dettagli

1 Giochi d ombra [Punti 10] 2 Riscaldatore elettrico [Punti 10] AIF Olimpiadi di Fisica 2015 Gara di 2 Livello 13 Febbraio 2015

1 Giochi d ombra [Punti 10] 2 Riscaldatore elettrico [Punti 10] AIF Olimpiadi di Fisica 2015 Gara di 2 Livello 13 Febbraio 2015 1 Giochi d ombra [Punti 10] Una sorgente di luce rettangolare, di lati b e c con b > c, è fissata al soffitto di una stanza di altezza L = 3.00 m. Uno schermo opaco quadrato di lato a = 10cm, disposto

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Funzioni esponenziali e logaritmiche. Mauro Saita. e-mail maurosaita@tiscalinet.it Versione provvisoria. Febbraio 2014

Funzioni esponenziali e logaritmiche. Mauro Saita. e-mail maurosaita@tiscalinet.it Versione provvisoria. Febbraio 2014 Funzioni esponenziali e logaritmiche. Mauro Saita. e-mail maurosaita@tiscalinet.it Versione provvisoria. Febbraio 2014 Indice 1 Esponenziali 1 1.1 Funzioni esponenziali con dominio Z.......................

Dettagli

CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007

CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007 CORRENTE ELETTRICA INTRODUZIONE Dopo lo studio dell elettrostatica, nella quale abbiamo descritto distribuzioni e sistemi di cariche elettriche in quiete, passiamo allo studio di fenomeni nei quali le

Dettagli

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO Pasquale Iandolo Laboratorio analisi ASL 4 Chiavarese, Lavagna (GE) 42 Congresso Nazionale SIBioC Roma

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 22 Il primo principio della termodinamica non è altro che una affermazione del principio di conservazione dell energia. Ci dice che se un sistema

Dettagli

VALORE DELLE MERCI SEQUESTRATE

VALORE DELLE MERCI SEQUESTRATE La contraffazione in cifre: NUOVA METODOLOGIA PER LA STIMA DEL VALORE DELLE MERCI SEQUESTRATE Roma, Giugno 2013 Giugno 2013-1 Il valore economico dei sequestri In questo Focus si approfondiscono alcune

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

SISTEMA INTEGRATO A LETTURA AUTOMATICA DI RIVELATORI A TRACCIA PADC CON ANALISI DEI DATI COMPUTERIZZATA

SISTEMA INTEGRATO A LETTURA AUTOMATICA DI RIVELATORI A TRACCIA PADC CON ANALISI DEI DATI COMPUTERIZZATA SISTEMA INTEGRATO A LETTURA AUTOMATICA DI RIVELATORI A TRACCIA PADC CON ANALISI DEI DATI COMPUTERIZZATA 1. INTRODUZIONE Il Radon ( 222 Rn) è un gas radioattivo monoatomico presente nell atmosfera e generato

Dettagli

TECNOLOGIE DI FABBRICAZIONE

TECNOLOGIE DI FABBRICAZIONE CAP 6 INDUTTORI TECNOLOGIE DI FABBRICAZIONE Induttori con nucleo isolante o in aria Induttori con nucleo ferromagnetico TECNOLOGIE DI FABBRICAZIONE Gli induttori vengono realizzati avvolgendo un filo conduttore

Dettagli

APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi. CAPITOLO 1 NMR Risonanza Magnetica Nucleare

APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi. CAPITOLO 1 NMR Risonanza Magnetica Nucleare APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi CAPITOLO 1 NMR Risonanza Magnetica Nucleare INTRODUZIONE Nel 1946 due ricercatori, F. Block ed E.M.Purcell, hanno indipendentemente osservato per

Dettagli

Energia potenziale L. P. Maggio 2007. 1. Campo di forze

Energia potenziale L. P. Maggio 2007. 1. Campo di forze Energia potenziale L. P. Maggio 2007 1. Campo di forze Consideriamo un punto materiale di massa m che si muove in una certa regione dello spazio. Si dice che esso è soggetto a un campo di forze, se ad

Dettagli

Capitolo 2 Le trasformazioni fisiche della materia

Capitolo 2 Le trasformazioni fisiche della materia Capitolo 2 Le trasformazioni fisiche della materia 1.Gli stati fisici della materia 2.I sistemi omogenei e i sistemi eterogenei 3.Le sostanze pure e i miscugli 4.I passaggi di stato 5. la teoria particellare

Dettagli

Capitolo 4 Le spettroscopie. 1. Lo spettro elettromagnetico

Capitolo 4 Le spettroscopie. 1. Lo spettro elettromagnetico Capitolo 4 Le spettroscopie 1. Lo spettro elettromagnetico 2) Tipi di spettroscopia Emissione: transizione da livello superiore a livello inferiore Assorbimento: contrario 2.1 Spettroscopie rotazionali,

Dettagli

LEZIONE 1. Materia: Proprietà e Misura

LEZIONE 1. Materia: Proprietà e Misura LEZIONE 1 Materia: Proprietà e Misura MISCELE, COMPOSTI, ELEMENTI SOSTANZE PURE E MISCUGLI La materia può essere suddivisa in sostanze pure e miscugli. Un sistema è puro solo se è formato da una singola

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 1 Carica elettrica, legge

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA SOMMARIO: 2.1 La domanda. - 2.2 Costi, economie di scala ed economie di varietà. - 2.2.1 I costi. - 2.2.2 Le economie di scala. - 2.2.3 Le economie di varietà.

Dettagli