Lezione 6 Perdita di energia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 6 Perdita di energia"

Transcript

1 Abbiamo introdotto la perdita di energia per collisioni, che avviene tramite scattering coulombiani sugli elettroni del materiale. Questo è alla base di molti apparati usati per rivelare particelle cariche. Andremo ora un po più in dettaglio: de/dx Range Risalita relativistica (b min /b max ) e saturazione Fluttuazioni della perdita di energia Energia critica Rivelatori di Particelle 1

2 Per una singola collisione a parametro d impatto b: DEb energia persa o z De ( b) b v m trasferita z carica particella incidente m massa particella bersaglio La perdita di energia non dipende dalla massa della particella incidente Dipende dalla carica e dalla velocità della particella incidente Dipende dall inverso della massa del bersaglio favorito il trasferimento di energia agli elettroni atomici Va come 1/b grandi De per piccoli b Indichiamo con De il trasferimento di energia per un singolo urto e con DE la perdita di energia totale. Rivelatori di Particelle

3 Una particella veloce che attraversa la materia vede elettroni a varie distanze dal suo percorso. Se abbiamo N atomi per unità di volume con Z elettroni per atomo, il numero di elettroni dn che si hanno fra b e b+db in uno spessore dx di materia sarà: dn NZbdbdx se vogliamo la perdita di energia de/dx dovremo integrare su tutti i possibili parametri d impatto, ovvero: de dx 4NZ z mv b b max min 1 bdb b 4NZ z mv ln b b max min Nell ipotesi che ho un parametro d impatto minimo e massimo. Rivelatori di Particelle 3

4 Introducendo il numero di Avogadro N 0 : de d N0 z b 4 Z ln max x A mv bmin Osserviamo che la perdita di energia dipende solo dalla carica (z ) e dalla velocità 1/v del proiettile, non dalla sua massa M. Vediamo ora di ricavare i valori minimo e massimo del parametro d impatto b. Rivelatori di Particelle 4

5 b min >0 in quanto DE max non può divergere. Per collisioni frontali ho parametro d impatto minimo e massimo di energia trasferita: z e DE max =T max =(b g )mc ma: DE z b b c z gb mc zr b g e b min m Rivelatori di Particelle 5

6 Per ricavare b max osserviamo che l elettrone è in realtà legato ad un atomo per poterlo considerare libero il tempo di collisione deve essere minore del tempo di rivoluzione, ma t coll ~b/vg b max gv w dove con w si intende la frequenza di rivoluzione dell elettrone. Rivelatori di Particelle 6

7 Osserviamo: Lezione 6 Un trattamento, sempre classico, ma più corretto (Bohr) considera gli elettroni come degli oscillatori armonici b max. Il risultato è comunque praticamente lo stesso: de dx 4 NoZ A z mc 1 b g ln b mc Iz b Il termine di Bohr (-b /) è una piccola correzione; I = energia media di eccitazione della targhetta. Questa formula ottenuta classicamente è valida per particelle incidenti pesanti ( o nuclei), per particelle più leggere dobbiamo usare una trattazione quantistica. Rivelatori di Particelle 7

8 La formula di de/dx ricavata classicamente è comunque perfettamente adeguata per alcune osservazioni: 1. Picco di Bragg: la maggioranza della perdita di energia si ha verso la fine del percorso dove la velocità della particella è più piccola cura del cancro. de/dx x Rivelatori di Particelle 8

9 . Range: le particelle perdono energia e poi si fermano Dato un fascio monocromatico la profondità alla quale le particelle iniziali sono ridotte alla metà si chiama range medio. R E 0 E 1 de de dx Il range rappresenta la distanza attraversata dalla particella ed è diversa dallo spessore attraversato a causa dello scattering multiplo. È misurato in g/cm o in cm. (vedi Rivelatori di Particelle 9

10 Rivelatori di Particelle 10

11 Legge di scala (Range). R E M de dx R Lezione 6 Supponiamo di conoscere il range di 1 protone come f(e/m) il range di una particella con energia E è : R z z M h z E M f v 1 z g M ge M E con h funzione universale di M E M M M p Le relazioni range energia sono spesso espresse R(E)=(E/E o ) n. e.g. il range in metri di protoni di bassa energia nell aria puo essere approssimato con n=1.8 e E o =9.3 MeV. E M de M z z p R p con E M f e g funzioni Rivelatori di Particelle 11

12 Cenni sulla trattazione quantistica di de/dx. Abbiamo trascurato: 1. Gli scambi di energia sono discreti modifica di b max. Il risultato classico di scambi di energia possibili su un continuo è sbagliato, ma, in media, viene praticamente corretto.. Natura ondulatoria delle particelle e principio d indeterminazione modifica di b min. L analogo quantistico di b min è b min ~ħ/p. Bethe ricavò: de dx Z 1 1 mc b g T max 4N 0re mc z ln b A b I Dove T max è la massima energia incidente trasferibile in una singola collisione ed I il potenziale di ionizzazione medio. Rivelatori di Particelle 1

13 Osserviamo che de/dx: Lezione 6 de dx Z 1 1 mc b g T max 4N 0re mc z ln b A b I i. Dipende dalla carica della particella incidente (z ). (interazione Coulombiana). ii. iii. Per b crescente decresce come 1/b raggiungendo un minimo per bg ~3 4 e poi risale in quanto log(b g ) domina. (risalita relativistica). Dipende dal potenziale di ionizzazione medio del materiale. ( I dipende da Z, per Z 0 I/Z~10 ev. (Per una lista delle proprietà elettromagnetiche degli elementi vedi Fernow pag. 39 e figura prossima diapositiva) Rivelatori di Particelle 13

14 Rivelatori di Particelle 14

15 Rivelatori di Particelle 15

16 Effetto densità. La salita relativistica satura crescendo g plateau di Fermi. In materiali densi la polarizzazione del dielettrico del materiale altera i campi della particella incidente dai valori nello spazio vuoto a quelli caratteristici di campi macroscopici in un dielettrico. La polarizzazione del mezzo agisce da schermo e modifica il massimo parametro d impatto. Questo fenomeno è chiamato effetto densità in quanto dipende dalla densità del mezzo. Più denso è il mezzo tanto prima si raggiunge il plateau di Fermi la salita relativistica è più importante nei gas che nei liquidi e nei solidi. La formula di Bethe Block diventa: de dx Kz E funziona fino al % per particelle fino al nucleo di per b Per basse velocità (b~0.05) non è più valida in quanto non sono più valide molte delle assunzioni di Bethe Block. Z 1 b g mc b g ln A b I Rivelatori di Particelle 16

17 de/dx per composti e miscugli. Lezione 6 Una buona approssimazione della perdita di energia per composti e miscugli è data dalla regola di Bragg (vedi range) 1 de dx w1 de dx Dove w 1, w. Sono le frazioni in peso 1,.del composto: a Possiamo definire dei valori efficaci come segue: ln I E riscrivere la de/dx in termini dei valori efficaci. Z eff w eff i i 1 Ai A M a Z i i eff 1 aizi ln I Z i w de dx A M i ai Ai A eff eff a i A i aizi i Z eff Rivelatori di Particelle 17

18 Particelle della stessa velocità hanno praticamente la stessa de/dx in materiali diversi, se escludiamo l idrogeno. È presente una piccola diminuzione della perdita di energia all aumentare di Z. In pratica, la maggioranza delle particelle relativistiche hanno una perdita di energia simile a quella del minimo MIP (minimum ionizing particle). La perdita di energia è normalmente espressa in termini della densità di area ds=dx e le particelle ionizzanti al minimo perdono in media 1.94 MeV/(gr/cm ) in He, 1.08 in Uranio e ~4 MeV/(gr/cm ) in H. Rivelatori di Particelle 18

19 Fluttuazioni della perdita di energia. Lezione 6 Ricordiamo che la perdita di energia de/dx (Bethe Block) è un valore medio. de dx Kz Z 1 b g mc b g ln A b I La reale perdita di energia per una particella che attraversa del materiale fluttua a causa della natura statistica delle sue interazioni con i singoli atomi del materiale. Rivelatori di Particelle 19

20 Gli apparati sperimentali (granularità limitata) non misurano <de/dx>, ma l energia DE depositata in uno strato di spessore finito x. DE è il risultato di un certo numero i di collisioni con trasferimenti di energia E i e sezioni d urto ds/de. ds/dw~1/w tendo a trasferire piccole quantità di energia Gli eventi in cui ho una grossa perdita di energia sono associati alla produzione di e di rinculo ad alta energia ( rays ) la distribuzione della perdita di energia è tendenzialmente asimmetrica con una coda verso le alte energie. Rivelatori di Particelle 0

21 Fluttuazioni della perdita di energia. Lezione 6 Assorbitori spessi teorema del limite centrale distribuzione Gaussiana Assorbitori sottili Landau se molto sottili, Vavilov se poco sottili. Straggling functions in silicon for 500 MeV pions, normalized to unity at the most probable value Dp/x. The width w is the FWHM. Bibliografia Fernow (Introduction to experimental particle physics) Rivelatori di Particelle 1

22 Fluttuazioni di de/dx Assorbitori spessi: limite gaussiano. Per assorbitori relativamente spessi la distribuzione della perdita di energia è gaussiana. Ciò deriva direttamente dal teorema del limite centrale: la somma di N variabili casuali, ciascuna che segue la stessa distribuzione statistica diventa distribuita gaussianamente nel limite di N. Se consideriamo come variabile casuale la E, cioè l energia persa in una collisione singola ed assumiamo che in ogni collisione la velocità b del proiettile non è cambiata (in maniera apprezzabile) in modo che s(p) è costante l energia totale persa è la somma di tutte le E, tutte con la stessa distribuzione. Rivelatori di Particelle

23 Assorbitori spessi Se il materiale è spesso (ma non troppo) o denso N è grande quindi vale il teorema del limite centrale e la perdita totale di energia W è distribuita secondo una gaussiana f ( x, W ) exp W W s Essendo x lo spessore del materiale, W la perdita di energia nell assorbitore, la perdita di energia media, e s la deviazione standard. W Rivelatori di Particelle 3

24 Assorbitori spessi Bohr ha calcolato la deviazione standard s 0 per particelle non relativistiche: Dove N è il numero di Avogadro, la densità, A il peso atomico e Z il numero atomico del materiale. Estesa a particelle relativistiche diventa: Attenzione: Z s x e ) A s MeV 4Nr ( mc x s 0 Abbiamo assunto che la perdita di energia W è piccola rispetto ad E (energia iniziale) in modo che la velocità del proiettile non cambia se il materiale è molto spesso questo non è più vero e quanto detto sopra non vale. 1 1 b 1 b Z A Rivelatori di Particelle 4

25 Assorbitori sottili Assorbitori sottili. Nel caso di assorbitori sottili (o poco densi) N non è così grande da far valere il teorema del limite centrale. Il calcolo diventa estremamente complicato a causa di trasferimenti di grosse quantità di energia (raggi delta) in una singola collisione avrò una distribuzione di perdite di energia con una coda verso le alte energie, cioè asimmetrica. Rivelatori di Particelle 5

26 Assorbitori sottili La probabilità che una particella incidente di energia E perda energia compresa fra W e W+dW attraversando un dx infinitesimo è: Dove n a =N 0 /A= numero di atomi per unità di volume, ds/dw= sezione d urto differenziale per la particella incidente di perdere energia W in una singola collisione con un atomo. La probabilità totale di una collisione di perdere qualunque W nell infinitesimo dx sarà: q si chiama rate di ionizzazione primaria. W dwdx n a ds W dwdx dw d qdx na dw dx s dw Rivelatori di Particelle 6

27 Assorbitori sottili Semplice se dx è infinitesimo, ma complicato per dx finito. Consideriamo un fascio di N particelle di energia E. Sia (W,x) la probabilità che una particella perda un energia fra W e W+dW dopo avere attraversato uno spessore x. La forma di può essere determinata considerando come varia quando le particelle attraversano un ulteriore spessore dx. Il numero di particelle con perdita di energia fra W e W+dW cresce perché qualcuna che ad x aveva perso meno energia di W colliderà e perderà un energia fra W e W+dW in dx. Il numero di particelle con perdita fra W e W+dW diminuisce perché alcune particelle che avevano già perso l energia giusta prima del tratto dx ne perderanno ancora e quindi ne perdono di più di W+dW. Rivelatori di Particelle 7

28 Assorbitori sottili Se assumiamo che le collisioni che avvengono successivamente sono statisticamente indipendenti, che il mezzo assorbitore è omogeneo e che la perdita totale di energia è piccola rispetto all energia della particella incidente: Cioè: N W 0 W, x dxdw NW, x W e, xdxe dwdxde NW, xdwqdx W, x x W 0 Equazione integro-differenziale molto difficile da risolvere. Le differenze nelle soluzioni derivano essenzialmente dalle assunzioni fatte sulla probabilità (W) cioè dal trasferimento di energia per collisione singola. Ciascuno dei calcoli teorici ha un suo limite di validità ed una particolare zona di applicabilità a seconda del valore di un parametro k=/e max ( rappresenta l energia al di sopra della quale avrò almeno un raggio delta =kz (Z/A)(1/b )x essendo x lo spessore attraversato). dw e W e, xde qw, x Rivelatori di Particelle 8

29 Teoria di Landau Valida per /E max <0.01 Assunzioni: Lezione 6 Assorbitori sottili piccola rispetto al massimo possibile in una singola collisione (/E max piccolo) grande se paragonata all energia di legame degli elettroni (elettrone libero). Si trascurano quindi le piccole perdite di energia dovute alle collisioni lontane. Rivelatori di Particelle 9

30 Teoria di Landau Con queste assunzioni può essere fattorizzata come segue: con W, x f 1 W 1 ln 1 c e' ; 1 b I ln e' ln b ; mv c (costantedi Eulero) E L E e è il taglio sulla minima energia persa. Rivelatori di Particelle 30

31 Teoria di Landau La funzione universale f L () può essere espressa come segue: f L 1 0 ulnu e sin udu Valutando f L () si ottiene per il valore più probabile per la perdita di energia: W mp ln e ' = correzione per effetto densità e FWHM=4.0 Rivelatori di Particelle 31

32 Teoria di Vavilov Valida per 0.01<k<1. Lezione 6 Assorbitori sottili Caratterizzata da code un po meno asimmetriche. Osserviamo: Anche se il limite gaussiano si ha per k 10 già per k 1 la distribuzione assomiglia ad una gaussiana. Vavilov landau per k 0 ed ad una gaussiana per k. Rivelatori di Particelle 3

LEZIONE 5 Interazione Particelle Cariche-Materia

LEZIONE 5 Interazione Particelle Cariche-Materia LEZIONE 5 Interazione Particelle Cariche-Materia Particelle alfa Le particelle alfa interagiscono intensamente con la materia attraverso collisioni/interazioni che producono lungo la traccia una elevata

Dettagli

LA STRUTTURA DELL ATOMO 4.A PRE-REQUISITI 4.B PRE-TEST 4.6 ENERGIE DI IONIZZAZIONE E DISTRIBUZIONE DEGLI ELETTRONI 4.C OBIETTIVI

LA STRUTTURA DELL ATOMO 4.A PRE-REQUISITI 4.B PRE-TEST 4.6 ENERGIE DI IONIZZAZIONE E DISTRIBUZIONE DEGLI ELETTRONI 4.C OBIETTIVI LA STRUTTURA DELL ATOMO 4.A PRE-REQUISITI 4.B PRE-TEST 4.C OBIETTIVI 4.1 UNO SGUARDO ALLA STORIA 4.2 L ATOMO DI BOHR (1913) 4.5.2 PRINCIPIO DELLA MASSIMA MOLTEPLICITA (REGOLA DI HUND) 4.5.3 ESERCIZI SVOLTI

Dettagli

I modelli atomici da Dalton a Bohr

I modelli atomici da Dalton a Bohr 1 Espansione 2.1 I modelli atomici da Dalton a Bohr Modello atomico di Dalton: l atomo è una particella indivisibile. Modello atomico di Dalton Nel 1808 John Dalton (Eaglesfield, 1766 Manchester, 1844)

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Piano di lavoro annuale Materia : Fisica Classi Quinte Blocchi tematici Competenze Traguardi formativi

Dettagli

La dinamica delle collisioni

La dinamica delle collisioni La dinamica delle collisioni Un video: clic Un altro video: clic Analisi di un crash test (I) I filmati delle prove d impatto distruttive degli autoveicoli, dato l elevato numero dei fotogrammi al secondo,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

Na (T 1/2 =15 h), che a sua volta decade β - in 24 12

Na (T 1/2 =15 h), che a sua volta decade β - in 24 12 Esercizio 1 Il 24 10 Ne (T 1/2 =3.38 min) decade β - in 24 11 Na (T 1/2 =15 h), che a sua volta decade β - in 24 12 Mg. Dire quali livelli sono raggiungibili dal decadimento beta e indicare lo schema di

Dettagli

Fisica delle Particelle: esperimenti. Fabio Bossi (LNF-INFN) fabio.bossi@lnf.infn.it

Fisica delle Particelle: esperimenti. Fabio Bossi (LNF-INFN) fabio.bossi@lnf.infn.it Fisica delle Particelle: esperimenti Fabio Bossi (LNF-INFN) fabio.bossi@lnf.infn.it Il processo scientifico di conoscenza Esperimento Osservazione quantitativa di fenomeni riguardanti alcune particelle

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj 61- Quand è che volumi uguali di gas perfetti diversi possono contenere lo stesso numero di molecole? A) Quando hanno uguale pressione e temperatura diversa B) Quando hanno uguale temperatura e pressione

Dettagli

Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta

Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta L. P. 22 Aprile 2015 Sommario L espressione della quantità di moto e dell energia in relatività ristretta

Dettagli

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto.

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto. Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. Indice 1 Quantità di moto. 1 1.1 Quantità di moto di una particella.............................. 1 1.2 Quantità

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Com è fatto l atomo ATOMO. UNA VOLTA si pensava che l atomo fosse indivisibile. OGGI si pensa che l atomo è costituito da tre particelle

Com è fatto l atomo ATOMO. UNA VOLTA si pensava che l atomo fosse indivisibile. OGGI si pensa che l atomo è costituito da tre particelle STRUTTURA ATOMO Com è fatto l atomo ATOMO UNA VOLTA si pensava che l atomo fosse indivisibile OGGI si pensa che l atomo è costituito da tre particelle PROTONI particelle con carica elettrica positiva e

Dettagli

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn con N Abase = N Dcollettore = 10 16 cm 3, µ n = 0.09 m 2 /Vs, µ p = 0.035 m 2 /Vs, τ n = τ p = 10 6 s, S=1

Dettagli

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME 6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice

Dettagli

23 CAPITOLO 2: RELAZIONI TRA LE DIVERSE FASI DI UN CAMPIONE DI TERRENO

23 CAPITOLO 2: RELAZIONI TRA LE DIVERSE FASI DI UN CAMPIONE DI TERRENO v 23 CAPITOLO 2: RELAZIONI TRA LE DIERSE FASI DI UN CAMPIONE DI TERRENO CAPITOLO 2: RELAZIONI TRA LE DIERSE FASI DI UN CAMPIONE DI TERRENO Un campione di terreno viene considerato come un sistema multifase,

Dettagli

Il mistero dei muoni: perché arrivano sulla terra e cosa c entra la relatività del tempo e dello spazio?

Il mistero dei muoni: perché arrivano sulla terra e cosa c entra la relatività del tempo e dello spazio? Il mistero dei muoni: perché arrivano sulla terra e cosa c entra la relatività del tempo e dello spazio? Carlo Cosmelli, Dipartimento di Fisica, Sapienza Università di Roma Abbiamo un problema, un grosso

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

(2) t B = 0 (3) E t In presenza di materia, le stesse equazioni possono essere scritte E = B

(2) t B = 0 (3) E t In presenza di materia, le stesse equazioni possono essere scritte E = B Equazioni di Maxwell nei mezzi e indice di rifrazione I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) E ϱ ɛ 0 () E B (2) B 0 (3) E B µ 0 j + µ 0 ɛ 0

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

La Termodinamica ed I principi della Termodinamica

La Termodinamica ed I principi della Termodinamica La Termodinamica ed I principi della Termodinamica La termodinamica è quella branca della fisica che descrive le trasformazioni subite da un sistema (sia esso naturale o costruito dall uomo), in seguito

Dettagli

PROGRAMMA SVOLTO. a.s. 2012/2013

PROGRAMMA SVOLTO. a.s. 2012/2013 Liceo Scientifico Statale LEONARDO DA VINCI Via Cavour, 6 Casalecchio di Reno (BO) - Tel. 051/591868 051/574124 - Fax 051/6130834 C. F. 92022940370 E-mail: LSLVINCI@IPERBOLE.BOLOGNA.IT PROGRAMMA SVOLTO

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

I principi della meccanica quantistica nella scuola secondaria Un contributo

I principi della meccanica quantistica nella scuola secondaria Un contributo I principi della meccanica quantistica nella scuola secondaria Un contributo Paolo Cavallo 10 marzo 2004 Sommario Si riassume una strategia per la presentazione dei principi della meccanica quantistica

Dettagli

La sicurezza dell LHC Il Large Hadron Collider (LHC) può raggiungere un energia che nessun altro acceleratore di particelle ha mai ottenuto finora,

La sicurezza dell LHC Il Large Hadron Collider (LHC) può raggiungere un energia che nessun altro acceleratore di particelle ha mai ottenuto finora, La sicurezza dell LHC Il Large Hadron Collider (LHC) può raggiungere un energia che nessun altro acceleratore di particelle ha mai ottenuto finora, ma la natura produce di continuo energie superiori nelle

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1 CAPITOLO I CORRENTE ELETTRICA Copyright ISHTAR - Ottobre 2003 1 INDICE CORRENTE ELETTRICA...3 INTENSITÀ DI CORRENTE...4 Carica elettrica...4 LE CORRENTI CONTINUE O STAZIONARIE...5 CARICA ELETTRICA ELEMENTARE...6

Dettagli

modulo: CHIMICA DEI POLIMERI

modulo: CHIMICA DEI POLIMERI CORSO PON Esperto nella progettazione, caratterizzazione e lavorazione di termoplastici modulo: CHIMICA DEI POLIMERI Vincenzo Venditto influenza delle caratteristiche strutturali, microstrutturali e morfologiche

Dettagli

La Funzione Caratteristica di una Variabile Aleatoria

La Funzione Caratteristica di una Variabile Aleatoria La Funzione Caratteristica di una Variabile Aleatoria La funzione caratteristica Φ densità di probabilità è f + Φ ω = ω di una v.a., la cui x, è definita come: jωx f x e dx E e j ω Φ ω = 1 La Funzione

Dettagli

Strumenti Elettronici Analogici/Numerici

Strumenti Elettronici Analogici/Numerici Facoltà di Ingegneria Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Strumenti Elettronici Analogici/Numerici Ing. Andrea Zanobini Dipartimento di Elettronica e Telecomunicazioni

Dettagli

Il fotone. Emanuele Pugliese, Lorenzo Santi URDF Udine

Il fotone. Emanuele Pugliese, Lorenzo Santi URDF Udine Il fotone Emanuele Pugliese, Lorenzo Santi URDF Udine Interpretazione di Einstein dell effetto fotoelettrico Esistono «particelle»* di luce: i fotoni! La luce è composta da quantità indivisibili di energia

Dettagli

Lo schema a blocchi di uno spettrofotometro

Lo schema a blocchi di uno spettrofotometro Prof.ssa Grazia Maria La Torre è il seguente: Lo schema a blocchi di uno spettrofotometro SORGENTE SISTEMA DISPERSIVO CELLA PORTACAMPIONI RIVELATORE REGISTRATORE LA SORGENTE delle radiazioni elettromagnetiche

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

1. Diodi. figura 1. figura 2

1. Diodi. figura 1. figura 2 1. Diodi 1.1. Funzionamento 1.1.1. Drogaggio 1.1.2. Campo elettrico di buil-in 1.1.3. Larghezza della zona di svuotamento 1.1.4. Curve caratteristiche Polarizzazione Polarizzazione diretta Polarizzazione

Dettagli

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo).

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo). 1 Modelli matematici Un modello è un insieme di equazioni e altre relazioni matematiche che rappresentano fenomeni fisici, spiegando ipotesi basate sull osservazione della realtà. In generale un modello

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

Esercizi e Problemi di Termodinamica.

Esercizi e Problemi di Termodinamica. Esercizi e Problemi di Termodinamica. Dr. Yves Gaspar March 18, 2009 1 Problemi sulla termologia e sull equilibrio termico. Problema 1. Un pezzetto di ghiaccio di massa m e alla temperatura di = 250K viene

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

Alice e la zuppa di quark e gluoni

Alice e la zuppa di quark e gluoni Alice e la zuppa di quark e gluoni Disegnatore: Jordi Boixader Storia e testo: Federico Antinori, Hans de Groot, Catherine Decosse, Yiota Foka, Yves Schutz e Christine Vanoli Produzione: Christine Vanoli

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

SUPERCONDUTTIVITÀ. A cura di: Andrea Sosso I.N.RI.M. (IEN)

SUPERCONDUTTIVITÀ. A cura di: Andrea Sosso I.N.RI.M. (IEN) SUPERCONDUTTIVITÀ A cura di: Andrea Sosso I.N.RI.M. (IEN) Il fenomeno della superconduttività è stato osservato per la prima volta nel 1911 dal fisico olandese Heike Kamerlingh Onnes dell'università de

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica Potenziale Elettrico Q V 4pe 0 R Q 4pe 0 r C R R R r r B q B r A A independenza dal cammino Superfici Equipotenziali Due modi per analizzare i problemi Con le forze o i campi (vettori) per determinare

Dettagli

ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA. CLASSE: V A Corso Ordinario

ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA. CLASSE: V A Corso Ordinario ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA CLASSE: V A Corso Ordinario DOCENTE: STEFANO GARIAZZO ( Paola Frau dal 6/02/2015) La corrente

Dettagli

Soluzioni classiche dell'equazione di Laplace e di Poisson

Soluzioni classiche dell'equazione di Laplace e di Poisson Soluzioni classiche dell'equazione di Laplace e di Poisson Antonio Paradies Dipartimento di Matematica e Applicazioni Renato Caccioppoli Università degli studi di Napoli Federico II Napoli, 25 Febbraio

Dettagli

pianeti terrestri pianeti gioviani migliaia di asteroidi (nella fascia degli asteroidi tra Marte e Giove)

pianeti terrestri pianeti gioviani migliaia di asteroidi (nella fascia degli asteroidi tra Marte e Giove) mappa 3. Il sistema solare IL SISTEMA SOLARE il Sole Mercurio pianeti terrestri Venere Terra Marte 8 pianeti Giove Il Sistema solare 69 satelliti principali pianeti gioviani Saturno Urano Nettuno migliaia

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Gli uni e gli altri. Strategie in contesti di massa

Gli uni e gli altri. Strategie in contesti di massa Gli uni e gli altri. Strategie in contesti di massa Alessio Porretta Universita di Roma Tor Vergata Gli elementi tipici di un gioco: -un numero di agenti (o giocatori): 1,..., N -Un insieme di strategie

Dettagli

Università degli Studi di Firenze Facoltà di Scienze Mat., Fis. e Nat. Corso di Laurea in Fisica. Corso di Esperimentazioni I

Università degli Studi di Firenze Facoltà di Scienze Mat., Fis. e Nat. Corso di Laurea in Fisica. Corso di Esperimentazioni I Università deli Studi di Firenze Facoltà di Scienze Mat., Fis. e Nat. Corso di Laurea in Fisica Corso di Esperimentazioni I Prof. R. Falciani Prof. A. Stefanini Appunti su: PROPAGAZIONE DEGLI ERRORI NELLE

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il Circuiti in Corrente Continua direct currentdc ASSUNTO: La carica elettrica La corrente elettrica l Potenziale Elettrico La legge di Ohm l resistore codice dei colori esistenze in serie ed in parallelo

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

tanhαl + i tan(ωl/v) 1 + i tanh αl tan(ωl/v). (10.1)

tanhαl + i tan(ωl/v) 1 + i tanh αl tan(ωl/v). (10.1) 10 - La voce umana Lo strumento a fiato senz altro più importante è la voce, ma è anche il più difficile da trattare in modo esauriente in queste brevi note, a causa della sua complessità. Vediamo innanzitutto

Dettagli

Andiamo più a fondo nella conoscenza del Sistema Solare

Andiamo più a fondo nella conoscenza del Sistema Solare Andiamo più a fondo nella conoscenza del Sistema Solare Come abbiamo visto nelle pagine precedenti il Sistema Solare è un insieme di molti corpi celesti, diversi fra loro. La sua forma complessiva è quella

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

Quantità di moto. Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v.

Quantità di moto. Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v. Quantità di moto Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v. La seconda legge di Newton può essere scritta con la quantità di moto: d Q F =

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Pag 1 di 92 Francesco Sardo ELEMENTI DI STATISTICA PER VALUTATORI DI SISTEMI QUALITA AMBIENTE - SICUREZZA REV. 11 16/08/2009 Pag 2 di 92 Pag 3 di 92 0 Introduzione PARTE I 1 Statistica descrittiva 1.1

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

L=F x s lavoro motore massimo

L=F x s lavoro motore massimo 1 IL LAVORO Nel linguaggio scientifico la parola lavoro indica una grandezza fisica ben determinata. Un uomo che sposta un libro da uno scaffale basso ad uno più alto è un fenomeno in cui c è una forza

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica).

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica). 3.4. I LIVELLI I livelli sono strumenti a cannocchiale orizzontale, con i quali si realizza una linea di mira orizzontale. Vengono utilizzati per misurare dislivelli con la tecnica di livellazione geometrica

Dettagli

Prefazione alla II edizione

Prefazione alla II edizione Prefazione alla II edizione La seconda edizione di questo testo mantiene tutte le caratteristiche della prima edizione, progettata in modo specifico per i corsi semestrali della Laurea Magistrale in Fisica:

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

Progetto di un alimentatore con Vo = +5 V e Io = 1 A

Progetto di un alimentatore con Vo = +5 V e Io = 1 A Progetto di un alimentatore con o +5 e Io A U LM7805/TO IN OUT S F T 5 4 8 - ~ ~ + + C GND + C + C3 3 R D LED Si presuppongono noti i contenuti dei documenti Ponte di Graetz Circuito raddrizzatore duale

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

MODALITA DI VALUTAZIONE DELLA DOSE EFFICACE PER I LAVORATORI ESPOSTI

MODALITA DI VALUTAZIONE DELLA DOSE EFFICACE PER I LAVORATORI ESPOSTI MODALITA DI VALUTAZIONE DELLA DOSE EFFICACE PER I LAVORATORI ESPOSTI Premessa La presente relazione fornisce i criteri e le modalità mediante i quali verranno valutate le dosi efficaci per lavoratori dipendenti,

Dettagli

/ * " 6 7 -" 1< " *,Ê ½, /, "6, /, Ê, 9Ê -" 1/ " - ÜÜÜ Ìi «V Ì

/ *  6 7 - 1<  *,Ê ½, /, 6, /, Ê, 9Ê - 1/  - ÜÜÜ Ìi «V Ì LA TRASMISSIONE DEL CALORE GENERALITÀ 16a Allorché si abbiano due corpi a differenti temperature, la temperatura del corpo più caldo diminuisce, mentre la temperatura di quello più freddo aumenta. La progressiva

Dettagli

La fisica delle particelle nello Spazio Andrea Vacchi

La fisica delle particelle nello Spazio Andrea Vacchi La fisica delle particelle nello Spazio Andrea Vacchi Alle sei di mattina del 7 agosto 1912 da un campo presso la città austriaca di Aussig si levò in volo un pallone che trasportava tre uomini, uno di

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

Dinamica dei corpi deformabili. Conservazione della quantità di moto

Dinamica dei corpi deformabili. Conservazione della quantità di moto Capitolo 2 Dinamica dei corpi deformabili. Conservazione della quantità di moto 2.1 Forze Le forze che agiscono su un elemento B n del corpo B sono essenzialmente di due tipi: a) forze di massa che agiscono

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

Esposizioni in condizioni complesse. Gian Marco Contessa grazie a Rosaria Falsaperla gianmarco.contessa@ispesl.it

Esposizioni in condizioni complesse. Gian Marco Contessa grazie a Rosaria Falsaperla gianmarco.contessa@ispesl.it Esposizioni in condizioni complesse Gian Marco Contessa grazie a Rosaria Falsaperla gianmarco.contessa@ispesl.it Valutazione dell esposizione a CEM La valutazione pratica dell esposizione ai campi elettrici

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Fisica quantistica. Introduzione alla polarizzazione e altri sistemi a due livelli. Christian Ferrari. Liceo di Locarno

Fisica quantistica. Introduzione alla polarizzazione e altri sistemi a due livelli. Christian Ferrari. Liceo di Locarno Fisica quantistica Introduzione alla polarizzazione e altri sistemi a due livelli Christian Ferrari Liceo di Locarno Sommario La polarizzazione della luce e del fotone Altri sistemi a due livelli L evoluzione

Dettagli