Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo"

Transcript

1 Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO Pasquale Iandolo Laboratorio analisi ASL 4 Chiavarese, Lavagna (GE) 42 Congresso Nazionale SIBioC Roma 07/10/2010

2 1 Assunto fondamentale del modello teorico La distribuzione dei valori, ottenuta analizzando uno stesso materiale di controllo, con un sistema analitico stabile nel tempo, è di tipo Gaussiano

3 DISTRIBUZIONE degli ERRORI di MISURA Quando un campione è analizzato ripetutamente sotto identiche condizioni e con lo stesso metodo analitico, si ottengono una serie di risultati non identici. All'aumentare del numero di misure, i valori tendono ad accentrarsi attorno alla loro media e la distribuzione dei dati assume una forma a campana sempre più regolare, che può essere approssimata con una funzione reale nota come funzione di Gauss o normale. f ( x) 1 x ( ) 1 e 2 2 σ 2 2

4 DISTRIBUZIONE degli ERRORI di MISURA Qualora invece le condizioni di misurazione mutino (cambio lotto dei reagenti, turnover del personale, ecc), le diverse determinazioni del materiale di controllo possono dar vita ad altre popolazioni che, pur avendo tutte la stessa forma a campana, possono differire fra loro in altezza e in ampiezza. Per distinguere queste popolazioni è sufficiente calcolare ciò in cui esse differiscono, ovvero i due parametri che descrivono le caratteristiche peculiari di ogni distribuzione gaussiana: La media. La deviazione standard.

5 La deviata Gaussiana standard (Z) Esiste un numero infinito di combinazioni dei parametri μ e σ, a cui corrispondono altrettante distribuzioni, con l operazione di standardizzazione è possibile trasformare qualsiasi insieme di valori distribuiti normalmente nel corrispondente insieme di valori Z

6 La curva Gaussiana standardizzata

7 La curva Gaussiana standardizzata Esistono delle tabelle con i valori degli integrali di z di diverso tipo, dove possono essere indicate, in relazione ai valori della variabile standardizzata: 1)la proporzione della distribuzione per cui z a quel valore 2) la proporzione per cui z ha valori da zero al valore stesso 3) la superfice per cui z a quel valore è semplice passare da un valore tabulato all altro sapendo che l area totale è pari a 1 e che, essendo la distribuzione simmetrica, la superfice da 0 a + è pari a 0.50 (50%).

8 La curva Gaussiana standardizzata

9 La curva Gaussiana standardizzata Aree in una coda della curva gaussiana standardizzata la P (%) che un risultato sia al di fuori dell intervallo - 1DS = cioè il 15.87% la P (%) che un risultato sia al di fuori dell intervallo - 2DS = cioè il 2.27% la P (%) che un risultato sia al di fuori dell intervallo - 3DS = cioè il 0.135% è intuitivo che : la P (%)che un risultato sia fuori ± 1DS = *2 = cioè 31.74% la P (%)che un risultato sia fuori ± 2DS = *2 = cioè 4.54 % la P (%)che un risultato sia fuori ± 3DS = *2 = cioè 0.27 %

10 2 Assunto fondamentale del modello teorico Dati del controllo qualità che si discostano molto oltre la media (± 3DS; ± 4DS) si incontrano con probabilità molto bassa ciò dipende da quante e quali regole vengono utilizzate contemporaneamente (singole o multiple) e anche da quanti livelli di controllo e repliche per ogni livello di controllo vengono effettuate per serie analitica.

11 Il materiale di controllo Il materiale di controllo deve essere stabile, riproducibile, commutabile con i campioni dei pazienti, con matrice biologica molto simile ai campioni biologici, inoltre deve avere appropriati livelli di concentrazione.

12 Errore sistematico e casuale Errore sistematico (Es) = Differenza numerica tra la media ( ) di un insieme di misure ripetute e il valore bersaglio (Vero). Questa differenza, positiva o negativa, può essere espressa nelle unità in cui la grandezza è misurata (Bias), o come percentuale del valore vero (Bias%). Errore casuale (Ec) = L errore per cui, nel caso di misure replicate della stessa grandezza, le singole misure differiscono casualmente, cioè senza nessuna regola apparente al succedersi delle misure stesse, tra di loro. La stima dell errore casuale è data dall imprecisione.

13 Errore totale sperimentale La formula generale di calcolo è: ETs = Bias + z*ds, di solito viene definito come somma di Bias + 1,65*DS. In realtà esistono altre formule che si differenziano fra loro per il valore assunto dal coefficiente z, il quale stabilisce la porzione dei dati della popolazione inclusi nella stima dell errore totale.

14 La procedura di CQI Procedura che controlla adeguatamente le caratteristiche delle prestazioni analitiche dichiarate e, allo stesso tempo, permette di rilevare le prestazioni insoddisfacenti. La procedura di CQI deve considerare adeguatamente i parametri di prestazione critici di Bias, Imprecisione ed Errore totale. Il laboratorio, inoltre, deve : 1. esaminare la stabilità del sistema per determinare il numero, il tipo e la frequenza di materiali controllo 2. Definire e documentare gli interventi correttivi 3. Riesaminare periodicamente le prestazioni ottenute per confermare o modificare se necessario, la procedura di CQI scelta.

15 Il Controllo di qualità interno deve essere impostato in modo tale da fornire allarmi nel momento in cui il sistema analitico non stia più lavorando entro i limiti di ETa predefiniti. Controllo di Qualità Interno 15

16 Definizione delle specifiche di qualità dell esame La specifica di qualità di un esame può essere definita come la massima variazione accettabile nelle prestazioni di un metodo che non comprometta l interpretazione clinica del dato. Per definire la qualità richiesta, alcuni criteri possono essere : 1. Clinico (opinione dei clinici, linee guida, ecc). 2. Biologico (teoria della variabilità biologica). 3. Analitico (stato dell arte). La scelta effettuata va concretizzata in un traguardo analitico (Errore Totale accettabile), fissando dei limiti di tolleranza

17 Le regole del Controllo qualità interno

18 La carta di controllo: I limiti di controllo statistici e le specifiche di qualità

19 Quali indicatori per l errore clinicamente significativo? L errore clinicamente significativo: è quella condizione per la quale i risultati (dei controlli e dei pazienti) saranno al di fuori dei limiti di tolleranza ammessi. Per conoscere qual è l errore significativo che dobbiamo rilevare con la procedura di CQI, dobbiamo stimare qual è il rapporto fra le prestazioni tipiche del metodo in esame e le specifiche di qualità scelte. In base al rapporto fra i traguardi analitici e le prestazioni ottenute e infatti possibile calcolare: L ERRORE SISTEMATICO CRITICO L ERRORE CASUALE CRITICO La METRICA SIGMA.

20 Metodologia 6 Sigma Nacque negli anni 80 alla Motorola, l dea fu sviluppare processi così eccellenti che virtualmente dovevano essere prodotti con zero difetti. Questa metodologia utilizza alcune tecniche del Total Quality Management (TQM) e coinvolge nelle attività di misura e miglioramento tutto il personale. La gestione della qualità sei sigma, include un indice di capacità che può essere direttamente relazionato all errore sistematico critico ( SEc) Metrica Sigma = ( ETa- Bias )/ CV SEcrit = metrica σ - 1,65 Dove: ETa % = errore totale massimo accettabile Bias % = scostamento stimato CV % = coefficiente di variazione stimato

21 Relazione fra SEc e metrica sigma Sec = [(TEa - Bias )/CV 1.65] Metrica Sigma = (TEa- Bias )/CV La grandezza dell errore che deve essere calcolato dipende proprio da SIGMA

22 Metodologia 6 Sigma Le prestazioni di tutti i processi possono essere caratterizzate sulla scala sigma, i valori variano tipicamente tra 2 (minima qualità) e 6 (eccellente qualità). Per le variazioni del processo si assume una distribuzione normale (Gaussiana), l area nelle code della distribuzione può essere utilizzata per stimare i difetti attesi (DPM difetti per milione): per ± 2 DS avremo DPM ± 3 DS avremo 2700 DPM ± 4 DS avremo 63 DPM ± 5 DS avremo 0.57 DPM ± 6 DS avremo DPM

23 Margine di sicurezza del processo analitico (6 sigma) Il concetto 6 sigma di Motorola è quello di ridurre la variabilità naturale del processo di ogni componente in modo tale che i limiti di specifica risultino posti a una distanza della media pari a ±6 volte la DS. Quanto più il metodo e preciso ed esatto, tanto più alto è il valore Sigma e tanto più basse saranno le probabilità che il nostro sistema non rispetti il traguardo analitico scelto; per questo motivo il valore Sigma può essere definito come il margine di sicurezza per ogni metodo analitico. Anche in presenza di uno scostamento sistematico della media pari a ± 1,5 volte la DS i risultati che non rispettano i traguardi analitici rimangono virtualmente assenti (3,4 per milione)

24 Il controllo della qualità analitica Il CQI è una tecnica per confrontare le prestazioni correnti del metodo con le prestazioni attese sotto condizioni stabili. Ogni procedura di CQI si contraddistingue per usare delle regole di controllo ed un certo numero di determinazioni di controllo (N). Le regole di controllo che usiamo nella procedura sono simili ai test di significatività statistici le cui prestazioni possono essere descritte in termini di falsi allarmi e veri allarmi: Falso allarme : viene segnalato un rifiuto della serie analitica anche se non ci sono errori (cioè il metodo è nelle condizioni di stabilità). Vero allarme: viene segnalato un errore reale e la serie analitica viene rifiutata (cioè siamo in presenza di un errore reale oltre all imprecisione tipica del metodo). Le probabilità di falso rigetto (Pfr = probability of false rejection) e di vero allarme (Ped) in condizioni ideali dovrebbero rispettivamente essere sempre pari allo 0% (Pfr) e 100% (Ped = probability of error detection). Nella pratica quotidiana riuscire ad usare procedure di CQI con una Ped 90% e una Pfr 5% è un ottimo obbiettivo.

25 Curve di potenza delle regole di controllo E un grafico che riporta la Probabilità di rilevare l errore (ordinate) in funzione della grandezza dell errore stesso (ascisse) Curva di potenza ideale 25

26 Probabilità di falso rigetto associata a regole singole con più determinazioni di controllo Le probabilità finora osservate si riferiscono a regole singole e un unica determinazione per serie analitica, se aumentiamo le determinazioni otterremo le seguenti probabilità di falso rigetto: z Pfr Regola n Pfr% n Pfr% n Pfr% n Pfr% n Pfr% n Pfr% 2 0, s 1 4,54 2 8, , ,0 5 20, ,33 2,5 0, ,5s 1 1,24 2 2, ,67 4 4,87 5 6,05 6 7,21 3 0, s 1 0,27 2 0, ,81 4 1,08 5 1,34 6 1,61 3,5 0, ,5s 1 0, , ,14 4 0,19 5 0,24 6 0,29 4 0, s 1 0, , ,02 4 0,03 5 0,04 6 0,05

27 Curve di potenza delle regole di controllo Pfr Pfr

28 CONTROLLO di PROCESSO CONTROLLO QUALITA CQI - CQA - VEQ

La ricerca del Sangue Occulto nello Screening del CCR e nella Pratica Clinica

La ricerca del Sangue Occulto nello Screening del CCR e nella Pratica Clinica La ricerca del Sangue Occulto nello Screening del CCR e nella Pratica Clinica Protocollo regionale ed esperienze a confronto Baggiovara (MO), 26/11/2010 PIANIFICAZIONE E GESTIONE DEL CONTROLLO DI QUALITÀ

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

La Distribuzione Normale (Curva di Gauss)

La Distribuzione Normale (Curva di Gauss) 1 DISTRIBUZIONE NORMALE o CURVA DI GAUSS 1. E la più importante distribuzione statistica continua e trova numerose applicazioni nello studio dei fenomeni biologici. 2. Fu proposta da Gauss (1809) nell'ambito

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

Un occhio sul Controllo di Qualità (Dott. Roberto Balducci)

Un occhio sul Controllo di Qualità (Dott. Roberto Balducci) Un occhio sul Controllo di Qualità (Dott. Roberto Balducci) In tempi recenti si è dibattuto tanto e giustamente sugli aspetti dell appropriatezza degli esami di laboratorio nel contesto più generale della

Dettagli

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica EPIDEMIOLOGIA Ha come oggetto lo studio della distribuzione delle malattie in un popolazione e dei fattori che la influenzano

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli

SPC e distribuzione normale con Access

SPC e distribuzione normale con Access SPC e distribuzione normale con Access In questo articolo esamineremo una applicazione Access per il calcolo e la rappresentazione grafica della distribuzione normale, collegata con tabelle di Clienti,

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

Per la valutazione statistica del test è necessario conoscere alcune caratteristiche del risultato del test quali:

Per la valutazione statistica del test è necessario conoscere alcune caratteristiche del risultato del test quali: Per la valutazione statistica del test è necessario conoscere alcune caratteristiche del risultato del test quali: la sensibilità diagnostica o clinica, la specificità diagnostica o clinica, l incidenza

Dettagli

Congresso Nazionale Congiunto SIMMESN e SIMGePeD. Malattie genetico-metaboliche tra tecnologia e assistenza 27-29 Ottobre 2011, Bologna

Congresso Nazionale Congiunto SIMMESN e SIMGePeD. Malattie genetico-metaboliche tra tecnologia e assistenza 27-29 Ottobre 2011, Bologna Congresso Nazionale Congiunto SIMMESN e SIMGePeD Malattie genetico-metaboliche tra tecnologia e assistenza 27-29 Ottobre 2011, Bologna Controllo Qualità L'analisi è un procedimento metrologico che ha lo

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni Controllo Statistico della Qualità Qualità come primo obiettivo dell azienda produttrice di beni Qualità come costante aderenza del prodotto alle specifiche tecniche Qualità come controllo e riduzione

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

L analisi statistica

L analisi statistica Statistica medica per IMS / 1 L analisi statistica Statistica medica per IMS / 2 Esempio (de Gans et al. NEJM 2002, 347: 1549-56) Esito Desametazone Trattamento Placebo Totale Sfavorevole Favorevole Totale

Dettagli

Inferenza statistica

Inferenza statistica Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione in base ad informazioni ricavate da un campione. Inferenza statistica: indurre

Dettagli

Carte di controllo per attributi

Carte di controllo per attributi Carte di controllo per attributi Il controllo per variabili non sempre è effettuabile misurazioni troppo difficili o costose troppe variabili che definiscono qualità di un prodotto le caratteristiche dei

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema

Dettagli

Il farmaco generico. Contenuti tecnico-scientifici del farmaco generico: comunicazione a corrente alternata

Il farmaco generico. Contenuti tecnico-scientifici del farmaco generico: comunicazione a corrente alternata Il farmaco generico Contenuti tecnico-scientifici del farmaco generico: comunicazione a corrente alternata Il farmaco generico Cos è un farmaco generico? È un medicinale EQUIVALENZA terapeuticamente equivalente

Dettagli

Il risultato di un analisi chimica è un informazione costituita da: un numero un incertezza un unità di misura

Il risultato di un analisi chimica è un informazione costituita da: un numero un incertezza un unità di misura Il risultato di un analisi chimica è un informazione costituita da: un numero un incertezza un unità di misura Conversione del risultato in informazione utile È necessario fare alcune considerazioni sul

Dettagli

Prefazione all edizione originale. Prefazione all edizione italiana

Prefazione all edizione originale. Prefazione all edizione italiana Indice Prefazione all edizione originale Prefazione all edizione italiana xiii xv 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

INDICE PREFAZIONE VII

INDICE PREFAZIONE VII INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

CONTROLLI STATISTICI

CONTROLLI STATISTICI CONTROLLI STATISTICI Si definisce Statistica la disciplina che si occupa della raccolta, effettuata in modo scientifico, dei dati e delle informazioni, della loro classificazione, elaborazione e rappresentazione

Dettagli

IL COLLAUDO DI ACCETTAZIONE

IL COLLAUDO DI ACCETTAZIONE IL COLLAUDO DI ACCETTAZIONE Il collaudo di accettazione 1 Popolazione Campione Dati MISURA Processo Lotto Campione DATI CAMPIONAMENTO INTERVENTO MISURA Lotto Campione DATI CAMPIONAMENTO INTERVENTO Il collaudo

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) Aspetti Statistici della Regressione Aspetti Statistici della Regressione

Dettagli

i=1 Y i, dove Y i, i = 1,, n sono indipendenti e somiglianti e con la stessa distribuzione di Y.

i=1 Y i, dove Y i, i = 1,, n sono indipendenti e somiglianti e con la stessa distribuzione di Y. Lezione n. 5 5.1 Grafici e distribuzioni Esempio 5.1 Legame tra Weibull ed esponenziale; TLC per v.a. esponenziali Supponiamo che X Weibull(α, β). (i) Si consideri la distribuzione di Y = X β. (ii) Fissato

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI Esercizio 1. Per la caratteristica di un processo distribuita gaussianamente sono note media e deviazione standard: µ = 100, σ = 0.2. 1a. Calcolare la linea centrale

Dettagli

Il coefficiente di correlazione di Spearman per ranghi

Il coefficiente di correlazione di Spearman per ranghi Il coefficiente di correlazione di Spearman per ranghi Questo indice di correlazione non parametrico viene indicato con r s o Spearman rho e permette di valutare la forza del rapporto tra due variabili

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

CORSO DI STATISTICA La Misurazione, Scale di Misura, Errori di Misura

CORSO DI STATISTICA La Misurazione, Scale di Misura, Errori di Misura CORSO DI STATISTICA La Misurazione, Scale di Misura, Errori di Misura Bruno Mario Cesana Bruno M. Cesana 1 MISURAZIONE La figura 1.1 è tratta da: Bossi A. et al.: Introduzione alla Statistica Medica A

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Il campionamento statistico

Il campionamento statistico Lezione 13 Gli strumenti per il miglioramento della Qualità Il campionamento statistico Aggiornamento: 19 novembre 2003 Il materiale didattico potrebbe contenere errori: la segnalazione e di questi errori

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

A.A. 2014-2015. Obiettivi formativi del CI di Metodologia epidemiologica OBIETTIVO GENERALE

A.A. 2014-2015. Obiettivi formativi del CI di Metodologia epidemiologica OBIETTIVO GENERALE A.A. 2014-2015 Obiettivi formativi del CI di Metodologia epidemiologica OBIETTIVO GENERALE Utilizzare gli strumenti epidemiologici e statistici appropriati per ridurre l'area dell'incertezza nella rilevazione

Dettagli

Statistica per l azienda 19.06.2014 (1)

Statistica per l azienda 19.06.2014 (1) Statistica per l azienda 19.06.2014 (1) COGNOME NOME Matr. Firma Modulo: singolo con Informatica con StatII & PDRM con Mat. & PDRM altro (specificare) Attenzione: Il presente foglio deve essere compilato

Dettagli

Principi generali. Vercelli 9-10 dicembre 2005. G. Bartolozzi - Firenze. Il Pediatra di famiglia e gli esami di laboratorio ASL Vercelli

Principi generali. Vercelli 9-10 dicembre 2005. G. Bartolozzi - Firenze. Il Pediatra di famiglia e gli esami di laboratorio ASL Vercelli Il Pediatra di famiglia e gli esami di laboratorio ASL Vercelli Principi generali Carlo Federico Gauss Matematico tedesco 1777-1855 G. Bartolozzi - Firenze Vercelli 9-10 dicembre 2005 Oggi il nostro lavoro

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

matematica probabilmente

matematica probabilmente IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice Altezze e

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione CAPITOLO 10 Controllo di qualità Strumenti per il controllo della qualità e la sua gestione STRUMENTI PER IL CONTROLLO E LA GESTIONE DELLA QUALITÀ - DIAGRAMMI CAUSA/EFFETTO - DIAGRAMMI A BARRE - ISTOGRAMMI

Dettagli

Teoria degli errori. Stefano Brocchi stefano.brocchi@unifi.it. Stefano Brocchi Teoria degli errori 1 / 107

Teoria degli errori. Stefano Brocchi stefano.brocchi@unifi.it. Stefano Brocchi Teoria degli errori 1 / 107 Teoria degli errori Stefano Brocchi stefano.brocchi@unifi.it Stefano Brocchi Teoria degli errori 1 / 107 Errori ed incertezza Ogni qual volta eseguiamo una misura, dobbiamo aspettarci un errore sulla misura

Dettagli

I Metodi statistici utili nel miglioramento della qualità 27

I Metodi statistici utili nel miglioramento della qualità 27 Prefazione xiii 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento della qualità 1 1.1.1 Le componenti della qualità 2 1.1.2 Terminologia

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

ISI MANUALE PER CORSI QUALITÀ CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9

ISI MANUALE PER CORSI QUALITÀ CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9 CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9 INTRODUZIONE 1.0 PREVENZIONE CONTRO INDIVIDUAZIONE. L'approccio tradizionale nella fabbricazione dei prodotti consiste nel controllo

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Valutare un test. Affidabilità e validità di un test. Sensibilità e specificità

Valutare un test. Affidabilità e validità di un test. Sensibilità e specificità Valutare un test 9 Quando si sottopone una popolazione ad una procedura diagnostica, non tutti i soggetti malati risulteranno positivi al test, così come non tutti i soggetti sani risulteranno negativi.

Dettagli

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita

Dettagli

Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni)

Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) STATISTICA (2) ESERCITAZIONE 4 18.02.2013 Dott.ssa Antonella Costanzo Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) Sia X una popolazione distribuita secondo la legge Bernoulliana

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Continua sul retro 42.1 39.7 38.0 38.7 41.4 37.5 38.6 40.5 39.8 38.0 36.9 40.3 42.0 41.3 40.4 39.1 38.4 42.0

Continua sul retro 42.1 39.7 38.0 38.7 41.4 37.5 38.6 40.5 39.8 38.0 36.9 40.3 42.0 41.3 40.4 39.1 38.4 42.0 Statistica per l azienda Esame del 19.06.12 COGNOME NOME Matr. Firma Modulo: singolo con Informatica con StatII & PDRM con Mat. & PDRM altro (specificare) Attenzione: Il presente foglio deve essere compilato

Dettagli

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: generazione

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p

Dettagli

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati Teoria della Stima. Stima della Media e di una Porzione di Popolazione Introduzione La proceduta in base alla quale ad uno o più parametri di popolazione si assegna il valore numerico calcolato dalle informazioni

Dettagli

Abbiamo costruito il grafico delle sst in funzione del tempo (dal 1880 al 1995).

Abbiamo costruito il grafico delle sst in funzione del tempo (dal 1880 al 1995). ANALISI DI UNA SERIE TEMPORALE Analisi statistica elementare Abbiamo costruito il grafico delle sst in funzione del tempo (dal 1880 al 1995). Si puo' osservare una media di circa 26 C e una deviazione

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI 1. L azienda Wood produce legno compensato per costruzioni

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale I ESERCITAZIONE ESERCIZIO 1 Si vuole testare un nuovo farmaco contro il raffreddore. Allo studio partecipano 200 soggetti sani della stessa età e dello stesso sesso e con caratteristiche simili. i) Che

Dettagli

Che cosa è la Validità?

Che cosa è la Validità? Validità Che cosa è la Validità? Un test è valido quando misura ciò che intende misurare. Si tratta di un giudizio complessivo della misura in cui prove empiriche e principi teorici supportano l adeguatezza

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Il controllo statistico di processo

Il controllo statistico di processo Il controllo statistico di processo Torino, 02 ottobre 2012 Relatrice: Monica Lanzoni QUALITÀ DI DI UN UN PRODOTTO: l'adeguatezza del del medesimo all'uso per per il il quale quale è stato stato realizzato

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli