Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente"

Transcript

1 Minimo sottografo ricoprente Minimo sottografo ricoprente Dato un grafo connesso G = (V, E) con costi positivi sugli archi c e, un minimo sottografo ricoprente è un insieme di archi E E tale che: G = (V, E ) è connesso c(e ) = e ce c(f) per ogni altro insieme di archi F E tale che H = (V, F) è connesso. Dato un grafo connesso G = (V, E) con costi positivi sugli archi c e, un minimo sottografo ricoprente è un insieme di archi E E tale che: G = (V, E ) è connesso c(e ) = e ce c(f) per ogni altro insieme di archi F E tale che H = (V, F) è connesso. Osservazione: G = (V, E ) non contiene cicli, quindi è un albero Minimo albero ricoprente Minimo albero ricoprente Dato un grafo connesso G = (V, E) con costi positivi sugli archi c e, un minimo albero ricoprente è un insieme di archi E E tale che: G = (V, E ) è un albero c(e ) = e ce c(f) per ogni altro insieme di archi F E tale che H = (V, F) è un albero. Dato un grafo connesso G = (V, E) con costi positivi sugli archi c e, un minimo albero ricoprente è un insieme di archi E E tale che: G = (V, E ) è un albero c(e ) = e ce c(f) per ogni altro insieme di archi F E tale che H = (V, F) è un albero. MST di costo = 0 = MST di costo = 0 = non possiamo cercarlo esaustivamente Osservazione: G = (V, E ) non contiene cicli, quindi è un albero Teorema[Cayley]. Un grafo può avere fino a n n alberi ricoprenti 0

2 Applicazioni MST è un problema che si ritrova in numerose applicazioni. design di reti (telefoniche, idrauliche, stradali) clustering. compressione dati in proteomica. generazione di ipotesi evolutive. MST su aplotipi di Salmonella Typhi la lunghezza degli archi rappresenta la differenza in numero di SNP

3

4 0

5

6 Osservazioni Cicli. Aggiungendo un arco e ad un albero (ricoprente) T crea un ciclo C. Eliminando un arco f C da T { e } otteniamo un nuovo albero ricoprente. f e T = (V, F) Osservazione. Se c e < c f, allora T NON è un MST. 0

7 Ottimalità dell algoritmo di Algoritmo di : implementazione Teorema. L algoritmo di produce un MST Dim sia f il primo arco scelto da che non è in un MST S è il sottoalbero costruito da che è parte di un MST gli archi verdi sono la restante parte di un tale MST T se aggiungiamo f creiamo un ciclo e L algoritmo di può essere implementato in tempo O(m log n). quasi identica a quella dell algoritmo di Dijkstra. [ d(v) = minimo costo di un arco tra v e S ] PRIM (V, E, c) Crea una coda a priorità S. s un qualsiasi nodo di V. FOR EACH v s : d(v) ; d(s) 0. S f FOR EACH v : Insert (S, v, d(v)). WHILE (S is not empty) (u, d[u]) Extract-min(S). FOR EACH arco (u, v) Adj[u]: IF d(v) > c(u, v) cf < ce (perché scelto da ) quindi T - e f ha costo inferiore a T Decrease-val(S, v, c(u, v)). d(v) c(u, v). 0

8

9

10

11

12

13 0 0 Algoritmo di : implementazione L algoritmo di può essere implementato in tempo O(m log n). quasi identica a quella dell algoritmo di Dijkstra. [ d(v) = minimo costo di un arco tra v e S ] PRIM (V, E, c) Crea una coda a priorità S. s un qualsiasi nodo di V. FOR EACH v s : d(v) ; d(s) 0. FOR EACH v : Insert (S, v, d(v)). WHILE (S is not empty) (u, d[u]) Extract-min(S). u degree(u) = m Running time T(n) = O(m log n) FOR EACH arco (u, v) Adj[u]: IF d(v) > c(u, v) Decrease-val(S, v, c(u, v)). d(v) c(u, v).

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Introduzione Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Il problema del massimo flusso è uno dei fondamentali problemi nell ottimizzazione su rete. Esso è presente

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

Alberto Montresor Università di Trento

Alberto Montresor Università di Trento !! Algoritmi e Strutture Dati! Capitolo 1 - Greedy!!! Alberto Montresor Università di Trento!! This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy

Dettagli

DESMATRON TEORIA DEI GRAFI

DESMATRON TEORIA DEI GRAFI DESMATRON TEORIA DEI GRAFI 0 Teoria dei Grafi Author: Desmatron Release 1.0.0 Date of Release: October 28, 2004 Author website: http://desmatron.altervista.org Book website: http://desmatron.altervista.org/teoria_dei_grafi/index.php

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati Tipologie di pianificatori Pianificazione Intelligenza Artificiale e Agenti II modulo Pianificazione a ordinamento parziale (POP) (HTN) pianificazione logica (SatPlan) Pianificazione come ricerca su grafi

Dettagli

Autori: M. Di Ianni, A. Panepuccia

Autori: M. Di Ianni, A. Panepuccia AR Analisi di Reti 2010/2011 M.Di Ianni Assegnazioni di ruoli Autori: M. Di Ianni, A. Panepuccia In questa dispensa verrà trattato il problema dell assegnazione dei ruoli in un grafo. Tale problema è stato

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Dispense del Corso di Algoritmi e Strutture Dati

Dispense del Corso di Algoritmi e Strutture Dati Dispense del Corso di Algoritmi e Strutture Dati Marco Bernardo Edoardo Bontà Università degli Studi di Urbino Carlo Bo Facoltà di Scienze e Tecnologie Corso di Laurea in Informatica Applicata Versione

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Sistemi Operativi. Interfaccia del File System FILE SYSTEM : INTERFACCIA. Concetto di File. Metodi di Accesso. Struttura delle Directory

Sistemi Operativi. Interfaccia del File System FILE SYSTEM : INTERFACCIA. Concetto di File. Metodi di Accesso. Struttura delle Directory FILE SYSTEM : INTERFACCIA 8.1 Interfaccia del File System Concetto di File Metodi di Accesso Struttura delle Directory Montaggio del File System Condivisione di File Protezione 8.2 Concetto di File File

Dettagli

The Directed Closure Process in Hybrid Social-Information Networks

The Directed Closure Process in Hybrid Social-Information Networks The Directed Closure Process in Hybrid Social-Information Networks with an Analysis of Link Formation on Twitter Dario Nardi Seminario Sistemi Complessi 15 Aprile 2014 Dario Nardi (CAS) 15/4/14 1 / 20

Dettagli

Ricorsione. Rosario Culmone. - p. 1/13

Ricorsione. Rosario Culmone. - p. 1/13 Ricorsione Rosario Culmone - p. 1/13 Induzione e Ricorsione Spesso utilizzeremo le definizioni induttive. Sono forme di definizione compatte che descrivono un numero infinito di elementi. I contesti di

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ 1 Operazioni su Liste Doppie e Circolari 2 1 Indice Liste puntate semplici: Gli elementi sono

Dettagli

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni

Dettagli

Ricerca sequenziale di un elemento in un vettore

Ricerca sequenziale di un elemento in un vettore Ricerca sequenziale di un elemento in un vettore La ricerca sequenziale o lineare è utilizzata per ricercare i dati in un vettore NON ordinato. L algoritmo di ricerca sequenziale utilizza quan non ha alcuna

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova. Metodi per supportare le decisioni relative alla gestione di progetti

Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova. Metodi per supportare le decisioni relative alla gestione di progetti Project Management Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova Project Management 2 Metodi per supportare le decisioni relative alla gestione di progetti esempi sono progetti nell

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

Realizzazione di Politiche di Gestione delle Risorse: i Semafori Privati

Realizzazione di Politiche di Gestione delle Risorse: i Semafori Privati Realizzazione di Politiche di Gestione delle Risorse: i Semafori Privati Condizione di sincronizzazione Qualora si voglia realizzare una determinata politica di gestione delle risorse,la decisione se ad

Dettagli

Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN)

Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN) Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN) System Overview di Mattia Bargellini 1 CAPITOLO 1 1.1 Introduzione Il seguente progetto intende estendere

Dettagli

SCHEDA 1: PROGRAMMA TRIENNALE DELLE OPERE PUBBLICHE 2013/2015 DELL'AMMINISTRAZIONE PROVINCIA DI SIENA

SCHEDA 1: PROGRAMMA TRIENNALE DELLE OPERE PUBBLICHE 2013/2015 DELL'AMMINISTRAZIONE PROVINCIA DI SIENA CHEDA 1: PROGRAMMA TRIENNALE DELLE OPERE PUBBLICHE 2013/2015 DELL'AMMINITRAZIONE PROVINCIA DI IENA QUADRO DELLE RIORE DIPONIBILI ARCO TEMPORALE DI VALIDITÀ DEL PROGRAMMA TIPOLOGIE RIORE Disponibilità finanziaria

Dettagli

Attività 9. La città fangosa Minimal Spanning Trees

Attività 9. La città fangosa Minimal Spanning Trees Attività 9 La città fangosa Minimal Spanning Trees Sommario la nostra società ha molti collegamenti in rete: la rete telefonica, la rete energetica, la rete stradale. Per una rete in particolare, ci sono

Dettagli

Strato di rete. Argomenti: Obiettivi:

Strato di rete. Argomenti: Obiettivi: Strato di rete Obiettivi: Principi e servizi dello strato di rete: Routing (selezione del cammino da host sorg. (. dest a host Problemi di scala Come funziona un router Implementazione in Internet Argomenti:

Dettagli

AREA RETTANGOLO LIRE IN EURO

AREA RETTANGOLO LIRE IN EURO AREA RETTANGOLO Private Sub Area() Dim h As Integer h = InputBox("altezza") b = InputBox("base") A = b * h MsgBox( L area del Rettangolo è : & A) LIRE IN EURO Dim lire As Double Dim euro As Double lire

Dettagli

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile.

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile. Deduzione automatica La maggior parte dei metodi di deduzione automatica sono metodi di refutazione: anziché dimostrare direttamente che S A, si dimostra che S { A} è un insieme insoddisfacibile (cioè

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/ ~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Pr oblema: Supponiamo che

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Routing (instradamento) in Internet. Internet globalmente consiste di Sistemi Autonomi (AS) interconnessi:

Routing (instradamento) in Internet. Internet globalmente consiste di Sistemi Autonomi (AS) interconnessi: Routing (instradamento) in Internet Internet globalmente consiste di Sistemi Autonomi (AS) interconnessi: Stub AS: istituzione piccola Multihomed AS: grande istituzione (nessun ( transito Transit AS: provider

Dettagli

SCHEDA 1: PROGRAMMA TRIENNALE DELLE OPERE PUBBLICHE AAAA/AAAA DELL AMMINISTRAZIONE QUADRO DELLE RISORSE DISPONIBILI

SCHEDA 1: PROGRAMMA TRIENNALE DELLE OPERE PUBBLICHE AAAA/AAAA DELL AMMINISTRAZIONE QUADRO DELLE RISORSE DISPONIBILI SCHEDA 1: PROGRAMMA TRIENNALE DELLE OPERE PUBBLICHE AAAA/AAAA QUADRO DELLE RISORSE DISPONIBILI TIPOLOGIE RISORSE Entrate aventi destinazione vincolata per legge Entrate acquisite mediante contrazione di

Dettagli

Lezione 9: Strutture e allocazione dinamica della memoria

Lezione 9: Strutture e allocazione dinamica della memoria Lezione 9: Strutture e allocazione dinamica della memoria Laboratorio di Elementi di Architettura e Sistemi Operativi 9 Maggio 2012 Allocazione dinamica della memoria Memoria dinamica È possibile creare

Dettagli

Sistemi Operativi 1. Mattia Monga. a.a. 2008/09. Dip. di Informatica e Comunicazione Università degli Studi di Milano, Italia mattia.monga@unimi.

Sistemi Operativi 1. Mattia Monga. a.a. 2008/09. Dip. di Informatica e Comunicazione Università degli Studi di Milano, Italia mattia.monga@unimi. 1 Mattia Dip. di Informatica e Comunicazione Università degli Studi di Milano, Italia mattia.monga@unimi.it a.a. 2008/09 1 c 2009 M.. Creative Commons Attribuzione-Condividi allo stesso modo 2.5 Italia

Dettagli

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione Analisi del dominio: i sistemi per la localizzazione Definizione e implementazione del framework e risultati sperimentali e sviluppi futuri Tecniche di localizzazione Triangolazione Analisi della scena

Dettagli

RICORSIVITA. Vediamo come si programma la soluzione ricorsiva al problema precedente: Poniamo S 1 =1 S 2 =1+2 S 3 =1+2+3

RICORSIVITA. Vediamo come si programma la soluzione ricorsiva al problema precedente: Poniamo S 1 =1 S 2 =1+2 S 3 =1+2+3 RICORSIVITA 1. Cos è la ricorsività? La ricorsività è un metodo di soluzione dei problemi che consiste nell esprimere la soluzione relativa al caso n in funzione della soluzione relativa al caso n-1. La

Dettagli

Integrali di superficie: esercizi svolti

Integrali di superficie: esercizi svolti Integrali di superficie: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. Calcolare i seguenti integrali superficiali sulle superfici

Dettagli

Esercizi sull Association Analysis

Esercizi sull Association Analysis Data Mining: Esercizi sull Association Analysis 1 Esercizi sull Association Analysis 1. Si consideri il mining di association rule da un dataset T di transazioni, rispetto a delle soglie minsup e minconf.

Dettagli

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo.

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo. Lavoro ed energia 1. Forze conservative 2. Energia potenziale 3. Conservazione dell energia meccanica 4. Conservazione dell energia nel moto del pendolo 5. Esempio: energia potenziale gravitazionale 6.

Dettagli

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti Dai sistemi concorrenti ai sistemi distribuiti Problemi nei sistemi concorrenti e distribuiti I sistemi concorrenti e distribuiti hanno in comune l ovvio problema di coordinare le varie attività dei differenti

Dettagli

Grafi, alberi e re1: modelli su cui cercare soluzioni o;me

Grafi, alberi e re1: modelli su cui cercare soluzioni o;me Università degli Studi Roma Tre Dipar-mento di Scienze della Formazione Laboratorio di Matema-ca per la Formazione Primaria Grafi, alberi e re: modelli su cui cercare soluzioni o;me Mini corso Informa.ca

Dettagli

e-spare Parts User Manual Peg Perego Service Site Peg Perego [Dicembre 2011]

e-spare Parts User Manual Peg Perego Service Site Peg Perego [Dicembre 2011] Peg Perego Service Site Peg Perego [Dicembre 2011] 2 Esegui il login: ecco la nuova Home page per il portale servizi. Log in: welcome to the new Peg Perego Service site. Scegli il servizio selezionando

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Le funzionalità di un DBMS

Le funzionalità di un DBMS Le funzionalità di un DBMS Sistemi Informativi L-A Home Page del corso: http://www-db.deis.unibo.it/courses/sil-a/ Versione elettronica: DBMS.pdf Sistemi Informativi L-A DBMS: principali funzionalità Le

Dettagli

Descrizioni VHDL Behavioral

Descrizioni VHDL Behavioral 1 Descrizioni VHDL Behavioral In questo capitolo vedremo come la struttura di un sistema digitale è descritto in VHDL utilizzando descrizioni di tipo comportamentale. Outline: process wait statements,

Dettagli

Accordo su chiavi. (key agreement) Alfredo De Santis. Marzo 2015. Dipartimento di Informatica Università di Salerno

Accordo su chiavi. (key agreement) Alfredo De Santis. Marzo 2015. Dipartimento di Informatica Università di Salerno Accordo su chiavi (key agreement) Alfredo De Santis Dipartimento di Informatica Università di Salerno ads@dia.unisa.it http://www.dia.unisa.it/professori/ads Marzo 2015 Accordo su una chiave Alice Bob??

Dettagli

2- Identificazione del processo. (o dei processi) da analizzare. Approcci: Esaustivo. In relazione al problema. Sulla base della rilevanza

2- Identificazione del processo. (o dei processi) da analizzare. Approcci: Esaustivo. In relazione al problema. Sulla base della rilevanza PROCESS MAPPING (2) Approcci: 2- Identificazione del processo Esaustivo (o dei processi) da analizzare Mappatura a largo spettro (es.: vasta implementazione di un ERP) In relazione al problema ad es. i

Dettagli

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table Universita' di Ferrara Dipartimento di Matematica e Informatica Algoritmi e Strutture Dati Rappresentazione concreta di insiemi e Hash table Copyright 2006-2015 by Claudio Salati. Lez. 9a 1 Rappresentazione

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla http://www.moreno.marzolla.name/ Ultimo Aggiornamento: 25 giugno 2014 Copyright Copyright 2012, 2013, 2014 Moreno Marzolla. Quest'opera è stata rilasciata

Dettagli

Esercitazione 7. Procedure e Funzioni

Esercitazione 7. Procedure e Funzioni Esercitazione 7 Procedure e Funzioni Esercizio Scrivere un programma che memorizza in un array di elementi di tipo double le temperature relative al mese corrente e ne determina la temperatura massima,

Dettagli

CALCOLO DEL MASSIMO COMUN DIVISORE

CALCOLO DEL MASSIMO COMUN DIVISORE CALCOLO DEL MASSIMO COMUN DIVISORE Problema: "calcolare il Massimo Comun Divisore (M.C.D.) di due numeri naturali, A e B, secondo l'algoritmo cosiddetto delle sottrazioni successive". L'algoritmo "delle

Dettagli

PLANIMETRIA E PROFILO INSIEME

PLANIMETRIA E PROFILO INSIEME PLANIMETRIA E PROFILO INSIEME planimetria profili 11 RELAZIONE TRA PLANIMETRIA E PROFILO La correlazione tra andamento planimetrico e altimetrico è molto stretta; variazioni del primo incidono subito sul

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

SOA GOVERNANCE: WHAT DOES IT MEAN? Giorgio Marras

SOA GOVERNANCE: WHAT DOES IT MEAN? Giorgio Marras SOA GOVERNANCE: WHAT DOES IT MEAN? Giorgio Marras 2 Introduzione Le architetture basate sui servizi (SOA) stanno rapidamente diventando lo standard de facto per lo sviluppo delle applicazioni aziendali.

Dettagli

Process mining & Optimization Un approccio matematico al problema

Process mining & Optimization Un approccio matematico al problema Res User Meeting 2014 con la partecipazione di Scriviamo insieme il futuro Paolo Ferrandi Responsabile Tecnico Research for Enterprise Systems Federico Bonelli Engineer Process mining & Optimization Un

Dettagli

Le Stringhe. Un introduzione operativa. Luigi Palopoli

Le Stringhe. Un introduzione operativa. Luigi Palopoli Le Stringhe p.1/19 Le Stringhe Un introduzione operativa Luigi Palopoli ReTiS Lab - Scuola Superiore S. Anna Viale Rinaldo Piaggio 34 Pontedera - Pisa Tel. 050-883444 Email: palopoli@sssup.it URL: http://feanor.sssup.it/

Dettagli

Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto

Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto Claudio Tamagnini Dipartimento di Ingegneria Civile e Ambientale Università degli Studi di

Dettagli

Analisi dei requisiti e casi d uso

Analisi dei requisiti e casi d uso Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello del sistema 4 2.1 Requisiti hardware........................ 4 2.2 Requisiti software.........................

Dettagli

Ragionamento Automatico Model checking. Lezione 12 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 12 0. Sommario. Formulazione del problema

Ragionamento Automatico Model checking. Lezione 12 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 12 0. Sommario. Formulazione del problema Sommario Ragionamento Automatico Model checking Capitolo 3 paragrafo 6 del libro di M. Huth e M. Ryan: Logic in Computer Science: Modelling and reasoning about systems (Second Edition) Cambridge University

Dettagli

Fondamenti di Informatica e Laboratorio T-AB T-16 Progetti su più file. Funzioni come parametro. Parametri del main

Fondamenti di Informatica e Laboratorio T-AB T-16 Progetti su più file. Funzioni come parametro. Parametri del main Fondamenti di Informatica e Laboratorio T-AB T-16 Progetti su più file. Funzioni come parametro. Parametri del main Paolo Torroni Dipartimento di Elettronica, Informatica e Sistemistica Università degli

Dettagli

Semplici Algoritmi di Ordinamento

Semplici Algoritmi di Ordinamento Fondamenti di Informatica Semplici Algoritmi di Ordinamento Fondamenti di Informatica - D. Talia - UNICAL 1 Ordinamento di una sequenza di elementi Esistono molti algoritmi di ordinamento. Tutti ricevono

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

Gestione dinamica di una pila

Gestione dinamica di una pila Gestione dinamica di una pila Una pila o stack è una lista lineare a lunghezza variabile in cui inserimenti (push) ed estrazioni (pop) vengono effettuate ad un solo estremo, detto testa (top) della pila.

Dettagli

Ricorsione. Corso di Fondamenti di Informatica

Ricorsione. Corso di Fondamenti di Informatica Dipartimento di Informatica e Sistemistica Antonio Ruberti Sapienza Università di Roma Ricorsione Corso di Fondamenti di Informatica Laurea in Ingegneria Informatica (Canale di Ingegneria delle Reti e

Dettagli

ARGOMENTI MATEMATICA PER L INGEGNERIA VOLUME 4

ARGOMENTI MATEMATICA PER L INGEGNERIA VOLUME 4 ARGOMENTI DI MATEMATICA PER L INGEGNERIA VOLUME 4 Indice LA LUNGHEZZA DI UNA CURVA. Alcuni richiami sull integrazione............................2 Uniforme continuità..................................

Dettagli

le parti concordano e stipulano quanto segue

le parti concordano e stipulano quanto segue Logo Prefettura Logo Ufficio Scolastico Regionale BOZZA PROTOCOLLO DI INTESA tra Il Prefetto di.. nella persona del dott.. e il Direttore dell Ufficio Scolastico Regionale di.,. nella persona del dott....,

Dettagli

Esercizi e Problemi di Termodinamica.

Esercizi e Problemi di Termodinamica. Esercizi e Problemi di Termodinamica. Dr. Yves Gaspar March 18, 2009 1 Problemi sulla termologia e sull equilibrio termico. Problema 1. Un pezzetto di ghiaccio di massa m e alla temperatura di = 250K viene

Dettagli

IL SISTEMA NERVOSO. Organizzazione e struttura

IL SISTEMA NERVOSO. Organizzazione e struttura IL SISTEMA NERVOSO Organizzazione e struttura IL SISTEMA NERVOSO. è costituito due tipi cellulari: il neurone (cellula nervosa vera e propria) e le cellule gliali (di supporto, di riempimento: astrociti,

Dettagli

Calcolo delle linee elettriche a corrente continua

Calcolo delle linee elettriche a corrente continua Calcolo delle linee elettriche a corrente continua Il calcolo elettrico delle linee a corrente continua ha come scopo quello di determinare la sezione di rame della linea stessa e la distanza tra le sottostazioni,

Dettagli

Strutture. Strutture e Unioni. Definizione di strutture (2) Definizione di strutture (1)

Strutture. Strutture e Unioni. Definizione di strutture (2) Definizione di strutture (1) Strutture Strutture e Unioni DD cap.10 pp.379-391, 405-406 KP cap. 9 pp.361-379 Strutture Collezioni di variabili correlate (aggregati) sotto un unico nome Possono contenere variabili con diversi nomi

Dettagli

Cenni sulla Teoria dei Nodi

Cenni sulla Teoria dei Nodi Cenni sulla Teoria dei Nodi Presentata da: Francesco Dolce Relatore: Prof. Claudio G. Bartolone Anno Accademico 2008/2009 2 La matematica non si capisce, alla matematica ci si abitua. John von Neumann

Dettagli

Creare una applicazione Winsock di base

Creare una applicazione Winsock di base Creare una applicazione Winsock di base Usiamo le API Winsock incluse in Creare un progetto per una Socket Windows (in Dev C++) Selezionare la file New Projects Selezionare Empty Project Salvare

Dettagli

Lezione 12: La visione robotica

Lezione 12: La visione robotica Robotica Robot Industriali e di Servizio Lezione 12: La visione robotica L'acquisizione dell'immagine L acquisizione dell immagine Sensori a tubo elettronico (Image-Orthicon, Plumbicon, Vidicon, ecc.)

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

Data Alignment and (Geo)Referencing (sometimes Registration process)

Data Alignment and (Geo)Referencing (sometimes Registration process) Data Alignment and (Geo)Referencing (sometimes Registration process) All data aquired from a scan position are refered to an intrinsic reference system (even if more than one scan has been performed) Data

Dettagli

Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai chiesti, Qual è la via più breve tra tre punti? o tra quattro punti?

Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai chiesti, Qual è la via più breve tra tre punti? o tra quattro punti? Dov'è Moriart? Cerchiamo la via più breve con Mathcad Potete determinare la distanza più breve da tre punti e trovare Moriart? Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Permutazione degli elementi di una lista

Permutazione degli elementi di una lista Permutazione degli elementi di una lista Luca Padovani padovani@sti.uniurb.it Sommario Prendiamo spunto da un esercizio non banale per fare alcune riflessioni su un approccio strutturato alla risoluzione

Dettagli

Esercizio di Sincronizzazione tra Processi: Ponte a Senso Unico Alternato con Capacità Limitata

Esercizio di Sincronizzazione tra Processi: Ponte a Senso Unico Alternato con Capacità Limitata Esercizio di Sincronizzazione tra Processi: Ponte a Senso Unico Alternato con Capacità Limitata Supponiamo sempre di avere un ponte stretto che permette il passaggio delle auto solo in un verso per volta,

Dettagli

Le system call: fork(), wait(), exit()

Le system call: fork(), wait(), exit() Le system call: fork(), wait(), exit() Di seguito viene mostrato un programma che fa uso di puntatori a funzione, nel quale si mette in evidenza il loro utilizzo. Programma A1 #include int add(a,b,c)

Dettagli

Elementi di semantica denotazionale ed operazionale

Elementi di semantica denotazionale ed operazionale Elementi di semantica denotazionale ed operazionale 1 Contenuti! sintassi astratta e domini sintattici " un frammento di linguaggio imperativo! semantica denotazionale " domini semantici: valori e stato

Dettagli

Esperienze e soluzioni realizzate nell ambito del Progetto S.I.MO.NE

Esperienze e soluzioni realizzate nell ambito del Progetto S.I.MO.NE Programma Enti Locali Innovazione di Sistema Esperienze e soluzioni realizzate nell ambito del Progetto S.I.MO.NE 1 Premessa Il presente documento ha lo scopo di facilitare la disseminazione e il riuso

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007

Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007 Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007 Dott.Davide Di Ruscio Dipartimento di Informatica Università degli Studi di L Aquila Lezione del 08/03/07 Nota Questi lucidi sono tratti

Dettagli

Verifica che una grammatica sia Context Free nel GrammaReader

Verifica che una grammatica sia Context Free nel GrammaReader Verifica che una grammatica sia Context Free nel GrammaReader Sommario Dispensa di Linguaggi di Programmazione Corrado Mencar Pasquale Lops In questa dispensa si descrivono alcune soluzioni per verificare

Dettagli

MISURA PERFETTA DEL TUO ANELLO

MISURA PERFETTA DEL TUO ANELLO TROVA LA MISURA PERFETTA DEL TUO ANELLO ANELLI misure PANDORA Diametro Ø Controlla le tue impostazioni di stampa per essere sicuro che la misura in scala corrisponda esattamente a 50 millimetri. 48 50

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

Logica del primo ordine

Logica del primo ordine Logica del primo ordine Sistema formale sviluppato in ambito matematico formalizzazione delle leggi del pensiero strette relazioni con studi filosofici In ambito Intelligenza Artificiale logica come linguaggio

Dettagli

Sistemi avanzati di gestione dei Sistemi Informativi

Sistemi avanzati di gestione dei Sistemi Informativi Esperti nella gestione dei sistemi informativi e tecnologie informatiche Sistemi avanzati di gestione dei Sistemi Informativi Docente: Email: Sito: Eduard Roccatello eduard@roccatello.it http://www.roccatello.it/teaching/gsi/

Dettagli

Esempi introduttivi Variabili casuali Eventi casuali e probabilità

Esempi introduttivi Variabili casuali Eventi casuali e probabilità Esempi introduttivi Esempio tipico di problema della meccanica razionale: traiettoria di un proiettile. Esempio tipico di problema idraulico: altezza d'acqua corrispondente a una portata assegnata. Come

Dettagli