Anno Accademico Corso di Laurea in Scienze biologiche Prova scritta 1 di Istituzioni di Matematiche del 13 febbraio 2007 COMPITO A

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Anno Accademico Corso di Laurea in Scienze biologiche Prova scritta 1 di Istituzioni di Matematiche del 13 febbraio 2007 COMPITO A"

Transcript

1 del 13 febbraio 007 COMPITO A 1. Dire per quali valori del parametro reale λ, il seguente sistema lineare x + y = 1 x + y = x y = λ ammette soluzioni e trovarle.. Siano date le rette r : x + 3y + 3 = 0 e r : x = t + 3 y = 3t + 8 Verificare che sono incidenti. Trovare i due punti della retta s : x + 3y = equidistanti da r e r. Trovare, infine, le bisettrici degli angoli formati dalle rette r e r. 3. Trovare l equazione del piano α contenente la retta x + y = 1 r : x + 3y z = 0 e il punto A(1, 1, 1). Determinare il simmetrico del punto P (, 0, 4) rispetto al piano α. 4. Studiare il campo di esistenza della seguente funzione log (1 e 4x 5x+1 x 4 ) 5. Calcolare il seguente ite di funzione x x x x x + x 6. Data la funzione reale 4x 5x + 1 se x 1 x 1 x se 1 x < 1 1 Durata della prova: 3 ore. Non è consentito consultare libri o appunti. La prova si intende superata se si risolvono correttamente tre esercizi dei quali almeno uno tra gli esercizi 1-3, ed almeno uno tra gli esercizi 4-6. Chi ha superato la prova in itinere deve consegnare dopo ore e supera la prova svolgendo correttamente almeno due tra gli esercizi 4-6.

2 del 13 febbraio 007 COMPITO B 1. Dire per quali valori del parametro reale λ, il seguente sistema lineare x + 3y = x + y = 0 x y = λ ammette soluzioni e trovarle.. Siano date le rette r : x = t y = t e r : x + y 6 = 0 Verificare che sono incidenti. Trovare i due punti della retta s : x y 3 = 0 equidistanti da r e r. Trovare, infine, le bisettrici degli angoli formati dalle rette r e r. 3. Trovare l equazione del piano α contenente la retta x + y + z = 3 r : x + y + 3z = 0 e il punto A(, 3, 0). Determinare la proiezione ortogonale del punto P (, 0, 4) sul piano α. 4. Studiare il campo di esistenza della seguente funzione log x + 4 (x )x 5. Calcolare il seguente ite di funzione 6. Data la funzione reale x x x + 1 4x 13x + 10 se x (x 1) x x se 0 x < 1 Durata della prova: 3 ore. Non è consentito consultare libri o appunti. La prova si intende superata se si risolvono correttamente tre esercizi dei quali almeno uno tra gli esercizi 1-3, ed almeno uno tra gli esercizi 4-6. Chi ha superato la prova in itinere deve consegnare dopo ore e supera la prova svolgendo correttamente almeno due tra gli esercizi 4-6. x

3 del 8 Febbraio 007 COMPITO A 1. Risolvere, se è possibile, i seguenti sistemi: x + 3y = 1 x + y = x + y = 1 x + 3y = 1 x + y = x + y = 3. Dati i punti A = (0, ) e B = (, ), scrivere l equazione della circonferenza γ avente per diametro il segmento AB. Determinare il punto simmetrico del centro di γ rispetto alla retta r di equazione x y 3 = 0. Scrivere l equazione della circonferenza γ simmetrica di γ rispetto ad r. 3. Scrivere le equazioni dei piani α paralleli alla retta r di equazioni x + y = 0 x z + 3 = 0 passanti per il punto O = (0, 0, 0) e formanti col piano β di equazione x + y + 1 = 0 un angolo di π Dopo aver calcolato il campo di esistenza, trovare gli intervalli dove la seguente funzione (x 3)(x + 3x 4) x risulta negativa. Controllare infine che x = 4 non appartiene a tali intervalli. 5. Calcolare il seguente ite di funzione 6. Data la funzione reale x + ( x )x+1 3x + 1 x + 3x + 1 x log se x 4 x 3 x se x < 4 x 1 Durata della prova: 3 ore. Non è consentito consultare libri o appunti. La prova si intende superata se si risolvono correttamente tre esercizi dei quali almeno uno tra gli esercizi 1-3, ed almeno uno tra gli esercizi 4-6. Chi ha superato la prova in itinere deve consegnare dopo ore e supera la prova svolgendo correttamente almeno due tra gli esercizi 4-6.

4 del 8 febbraio 007 COMPITO B 1. Risolvere, se è possibile, i seguenti sistemi: x + y = x + y = 1 x + y = 3 x + y = x + y = 1 x + y = 3. Dati i punti A = (1, 1) e B = (1, 3), scrivere l equazione della circonferenza γ avente per diametro il segmento AB. Determinare il punto simmetrico del centro di γ rispetto alla retta r di equazione x y 3 = 0. Scrivere l equazione della circonferenza γ simmetrica di γ rispetto ad r. 3. Scrivere le equazioni dei piani α paralleli alla retta r di equazioni x + y 1 = 0 x z + = 0 passanti per il punto P = ( 1, 0, 0) e formanti col piano β di equazione x + y = 0 un angolo di π Dopo aver calcolato il campo di esistenza, trovare gli intervalli dove la seguente funzione (x 8)(x 7x + 6) x 7 risulta negativa. Controllare infine che x = 9 non appartiene a tali intervalli. 5. Calcolare il seguente ite di funzione 6. Data la funzione reale x + ( x )x 4 13x + 31 x 7x + 11 log x x+1 x x+1 x 5 x 4 se x se x < 5 1 Durata della prova: 3 ore. Non è consentito consultare libri o appunti. La prova si intende superata se si risolvono correttamente tre esercizi dei quali almeno uno tra gli esercizi 1-3, ed almeno uno tra gli esercizi 4-6. Chi ha superato la prova in itinere deve consegnare dopo ore e supera la prova svolgendo correttamente almeno due tra gli esercizi 4-6.

5 del 30 marzo 007 COMPITO A I Calcolare il rango della seguente matrice: II Siano r ed s le rette parallele di equazioni r : x+y+ = 0, s : x+y 18 = 0 e sia P = (0, ). Dopo aver verificato che P appartiene ad r, trovare il punto Q, proiezione ortogonale di P su s, ed il punto medio del segmento P Q. Scrivere infine l equazione della retta equidistante da r ed s. III Determinare il piano contenente la retta s : x = z + 1 y = e passante per il punto P = (1, 0, 1). Determinare poi le equazioni della retta r passante per il punto P, parallela al piano α : 3x + y z + 1 = 0 ed incidente la retta s. IV Studiare la positività della seguente funzione ( 1 ) log 1 x nel proprio campo di esistenza. V Calcolare, come ite del rapporto incrementale, la derivata della funzione nel punto di ascissa x 0 =. e x 4 log 3 1 x se /3 x < 1 9x 17 9x +1 se x < /3 Trovare gli intervalli in cui è crescente o decrescente. Trovare l estremo superiore e l estremo inferiore, e dire se sono rispettivamente massimo e minimo. 1 Durata della prova: 3 ore. Non è consentito consultare libri, né appunti. La prova si intende superata se si risolvono correttamente almeno un esercizio tra quelli del gruppo I-III e almeno uno tra quelli del gruppo IV-VI avendo a disposizione tre ore. Chi ha superato la prova in itinere deve risolvere correttamente almeno due esercizi tra quelli del gruppo IV-VI avendo a disposizione due ore

6 del 30 marzo 007 COMPITO B I Calcolare il rango della seguente matrice: II Siano r ed s le rette parallele di equazioni r : x y = 0, s : x y 10 = 0 e sia P = (4, ). Dopo aver verificato che P appartiene ad r, trovare il punto Q, proiezione ortogonale di P su s, ed il punto medio del segmento P Q. Scrivere infine l equazione della retta equidistante da r ed s. III Determinare il piano contenente la retta s : x = y + z = e passante per il punto P = (1, 1, 0). Determinare poi le equazioni della retta r passante per il punto P, parallela al piano α : x + y z + 1 = 0 ed incidente la retta s. IV Studiare la positività della seguente funzione ( 1 ) log 9 x nel proprio campo di esistenza. V Calcolare, come ite del rapporto incrementale, la derivata della funzione nel punto di ascissa x 0 =. log (x 3) log 1 x se 1 < x 3/ 4x 7 4x +1 se x > 3/ 1 Durata della prova: 3 ore. Non è consentito consultare libri, né appunti. La prova si intende superata se si risolvono correttamente almeno un esercizio tra quelli del gruppo I-III e almeno uno tra quelli del gruppo IV-VI avendo a disposizione tre ore. Chi ha superato la prova in itinere deve risolvere correttamente almeno due esercizi tra quelli del gruppo IV-VI avendo a disposizione due ore

7 Prova scritta 1. di Istituzioni di Matematiche del 6 Giugno 007 I Calcolare il determinante della seguente matrice: A = II Scrivere le equazioni delle quattro rette r che individuano segmenti di uguale lunghezza sugli assi coordinati, e tali che, detti A r e B r i punti di intersezione di r con l asse x e l asse y rispettivamente, si abbia d(a r, B r ) = 5. III Scrivere le equazioni della retta passante per il punto P = (1, 1, ) e parallela ai due piani di equazioni rispettivamente x y + z 1 = 0 e x + y 3z + = 0. IV Determinare il campo di esistenza della seguente funzione: ( x log 9 1 ). x V Scrivere le equazioni degli asintoti della seguente funzione: x 3. e x + e x se x 1 1 se x < 1 x+1 1 Durata della prova: 3 ore. Non è consentito consultare libri o appunti. Non è consentito uscire dall aula durante il compito. La prova si intende superata se si risolvono correttamente tre esercizi dei quali almeno un esercizio tra quelli del gruppo I-III e almeno uno tra quelli del gruppo IV-VI, avendo a disposizione tre ore. Chi ha superato la prova in itinere deve risolvere correttamente almeno due esercizi tra quelli del gruppo IV-VI avendo a disposizione due ore

8 del 10 luglio 007 I Dire per quali valori di a il seguente sistema non ammette soluzioni x a = 0 x + y + z = 0 x + y + z 4 = 0 x + y + 3z = 0 II Scrivere l equazione della retta r che, intersencando i semiassi positivi delle coordinate, forma con essi un triangolo equilatero di area 8. III Dati i piani α e β di equazioni rispettivamente z = 0 e 4x + 4y + z + 7 = 0, scrivere le equazioni delle rette r e s giacenti su α ed aventi dal piano β distanza uguale a 3/. IV Trovato il campo di esistenza della seguente funzione determinare l insieme dove risulta positiva. log (5 x), 1 x V Calcolare il seguente ite di funzione x + ( x ) x+1 x + x + 3 sen x 1/x + 1 se 0 < x π/ 1 + cos x se π < x 0 1 Durata della prova: 3 ore. Non è consentito consultare libri, né appunti. La prova si intende superata se si risolvono correttamente almeno un esercizio tra quelli del gruppo I-III e almeno uno tra quelli del gruppo IV-VI avendo a disposizione tre ore. Chi ha superato la prova in itinere deve risolvere correttamente almeno due esercizi tra quelli del gruppo IV-VI avendo a disposizione due ore

9 11 Settembre 007 I Determinare i valori reali di a e b in modo che la seguente matrice abbia rango : a b II Sia Γ la circonferenza di equazione x + y = 4; determinare le rette passanti per P = (, 4) e tangenti a Γ. Detti A e B i punti di tangenza, determinare l area del quadrilatero di vertici O, A, P, B. III Dati i piani α e β di equazioni, rispettivamente, z = 0 e x+y +z +3 = 0, trovare le equazioni delle rette r ed s giacenti su α ed aventi distanza uguale ad 1 da β. IV Determinare il campo di esistenza della seguente funzione: x 9 x 3x 4. V Calcolare il seguente ite: e 3x 1 x. x 0 xe x se x 0 x + x se x > 0 1 Durata della prova: 3 ore. Non è consentito consultare libri o appunti. Non è consentito uscire dall aula durante il compito. La prova si intende superata se si risolvono correttamente tre esercizi dei quali almeno un esercizio tra quelli del gruppo I-III e almeno uno tra quelli del gruppo IV-VI, avendo a disposizione tre ore. Chi ha superato la prova in itinere deve risolvere correttamente almeno due esercizi tra quelli del gruppo IV-VI avendo a disposizione due ore.

10 5 Settembre 007 I Dire, al variare del parametro reale a, quante soluzioni ammette il seguente sistema lineare (non è necessario calcolare esplicitamente le eventuali soluzioni): x + y +az = 0 x + y +(a + 1)z = a x + y +(a + a 1)z = a + 1 II Data la retta x + y 6 = 0 e i due punti su di essa A e B, di ordinate, rispettivamente, y A = 6 e y B =, trovare la lunghezza dell altezza OD del triangolo AOB, dove O = (0, 0); calcolare poi l area del suddetto triangolo. III Dati i piani α e β di equazioni, rispettivamente, z = 0 e x + y + z 1 = 0, trovare le equazioni delle rette r ed s giacenti su α ed aventi distanza uguale ad 3 da β. IV Determinare, all interno del campo di esistenza della seguente funzione: gli intervalli dove essa risulta positiva. (x ) log(x + 3), 6 3x V Calcolare il seguente ite: x 1 3x + 1 x x(x 1). arctan (4x x 4) se x 1 x +3 se x < 1 x 1 1 Durata della prova: 3 ore. Non è consentito consultare libri o appunti. Non è consentito uscire dall aula durante il compito. La prova si intende superata se si risolvono correttamente tre esercizi dei quali almeno un esercizio tra quelli del gruppo I-III e almeno uno tra quelli del gruppo IV-VI, avendo a disposizione tre ore. Chi ha superato la prova in itinere deve risolvere correttamente almeno due esercizi tra quelli del gruppo IV-VI avendo a disposizione due ore.

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso?

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso? A. Languasco - Esercizi Matematica B - 4. Geometria 1 A: Vettori geometrici Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Siano u, v, w vettori. Quali tra le seguenti operazioni

Dettagli

D4. Circonferenza - Esercizi

D4. Circonferenza - Esercizi D4. Circonferenza - Esercizi Trasformare l equazione della circonferenza nell altra forma e rappresentare graficamente la circonferenza trovandone prima centro e raggio. 1) + --=0 [(-1) +(-1) =, C(1;1),

Dettagli

Geometria analitica pagina 1 di 5

Geometria analitica pagina 1 di 5 Geometria analitica pagina 1 di 5 GEOMETRIA LINEARE NEL PIANO È fissato nel piano un sistema di coordinate cartesiane ortogonali monometriche Oxy. 01. Scrivere due diverse rappresentazioni parametriche

Dettagli

Geometria analitica - Testo pagina 1 di 5 67

Geometria analitica - Testo pagina 1 di 5 67 Geometria analitica - Testo pagina di 5 67 5. GEOMETRI NLITI: Geometria lineare nel piano È fissato nel piano un sistema di coordinate cartesiane ortogonali monometriche Oxy. 50. 502. 503. 504. Scrivere

Dettagli

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002 Compito di Geometria assegnato il 1 Febbraio 2002 Trovare l equazione della conica irriducibile tangente all asse x nel punto A(2, 0), tangente all asse y e passante per i punti B(1, 1) e C(2, 2) Scrivere

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

2 di quello dela circonferenza data. Scrivere le

2 di quello dela circonferenza data. Scrivere le PROBLEMA. Raccolta di problemi sulla circonferenza Scritta l equazione della circonferenza con centro in ( ) C e passante per l origine O, si conducano per O la retta a di equazione + y indicando con A

Dettagli

Università degli Studi di Catania CdL in Ingegneria Civile e Ambientale

Università degli Studi di Catania CdL in Ingegneria Civile e Ambientale CdL in ngegneria Civile e Ambientale Prova scritta di Algebra Lineare e Geometria del 26 gennaio 2018 Usare solo carta fornita dal Dipartimento di Matematica e nformatica, riconsegnandola tutta. 1) Siano

Dettagli

ARGOMENTI MATEMATICA PER L INGEGNERIA

ARGOMENTI MATEMATICA PER L INGEGNERIA ARGOMENTI DI MATEMATICA PER L INGEGNERIA VOLUME 2 Esercizi proposti Quando non diversamente precisato, nel seguito si intenderà( sempre che nel piano sia stato introdotto un sistema cartesiano ortogonale

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Corso di laurea in Chimica. Matematica

Corso di laurea in Chimica. Matematica Corso di laurea in Chimica Matematica Esercizi di ricapitolazione per la prova in itinere (tratti dalle prove in itinere degli anni precedenti) (Gli esercizi segnati con una crocetta sono di livello più

Dettagli

A.A. 2018/2019 Corso di Laurea in Matematica Corso di Laurea in Informatica. Precorso di Matematica. L. Paladino. Foglio di esercizi n.

A.A. 2018/2019 Corso di Laurea in Matematica Corso di Laurea in Informatica. Precorso di Matematica. L. Paladino. Foglio di esercizi n. AA 2018/2019 Corso di Laurea in Matematica Corso di Laurea in Informatica Precorso di Matematica L Paladino Foglio di esercizi n 3 Risolvere le seguenti equazioni: 1) x + 2 = 2x 2 + 3x; 2) x + 3 = x 2

Dettagli

) Trovare l equazione canonica della conica: 8x 2 12xy + 17y x 70y = 0 Poi classificarla. ...

) Trovare l equazione canonica della conica: 8x 2 12xy + 17y x 70y = 0 Poi classificarla. ... 9 Gennaio 13 Ingegneria... Matricola... In caso di esito sufficiente, desidero sostenere la prova orale [ ] oggi (aula I.1 ore 15.) [ ] Mercoledì 3/1/13 (aula I.13 ore 9.3) [ ] Mercoledì 13//13 (aula I.1

Dettagli

f(x) = sin cos α = k2 2 k

f(x) = sin cos α = k2 2 k 28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza

Dettagli

GEOMETRIA Nome... COGNOME...

GEOMETRIA Nome... COGNOME... GEOMETRIA Nome... COGNOME... 17 Gennaio 217 Ingegneria... Matricola... In caso di esito sufficiente, desidero sostenere la prova orale: [ ] in questo appello (con inizio oggi alle ore 15: in aula Magna

Dettagli

3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0.

3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0. 1 Calcolo vettoriale 1 Scrivere il vettore w =, 6 sotto forma di combinazione lineare dei vettori u = 1, e v = 3, 1 R w = v 4u Determinare la lunghezza o il modulo del vettore, 6, 3 R 7 3 Determinare la

Dettagli

GEOMETRIA ANALITICA: LE CONICHE

GEOMETRIA ANALITICA: LE CONICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale

Dettagli

y = [Sol. y 2x = 4x Verifica n.1

y = [Sol. y 2x = 4x Verifica n.1 Verifica n.1 disegnare curve, con valori assoluti e radicali luoghi geometrici (con retta, parabola, circonferenza) funzione omografica parabola aree (ellisse, segmento parabolico) formule goniometriche:

Dettagli

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte.

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte. Piano proiettivo Conica: curva algebrica reale del II ordine. a 11 x 2 1 + 2a 12 x 1 x 2 + a 22 x 2 2 + 2a 13 x 1 x 3 + 2a 23 x 2 x 3 + a 33 x 2 3 = 0 x T A x = 0 Classificazione proiettiva delle coniche:

Dettagli

1) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: 3x y + 11z = x y + 9z = 2x + y 6z = 0.

1) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: 3x y + 11z = x y + 9z = 2x + y 6z = 0. 12 Gennaio 211 Ingegneria...... Matricola... In caso di esito sufficiente desidero sostenere la prova orale: [ ] oggi [ ] Mercoledì 19 Gennaio ore 15. [ ] Giovedì 27 Gennaio ore 11. [ ] Lunedì 14 Febbraio

Dettagli

CdL in Ingegneria Industriale (A-E e F-O)

CdL in Ingegneria Industriale (A-E e F-O) CdL in Ingegneria Industriale (A-E e F-O) Prova scritta di Algebra lineare e Geometria- Febbraio 06 Durata della prova: tre ore. È vietato uscire dall aula prima di aver consegnato definitivamente il compito.

Dettagli

L algebra lineare nello studio delle coniche

L algebra lineare nello studio delle coniche L algebra lineare nello studio delle coniche È possibile utilizzare le tecniche dell algebra lineare per studiare e classificare le coniche. Data l equazione generale di una conica, si considera la sua

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore A = 1 2 0 0 2 1 B = 2 1 0 1 0 2 u = (1, 2, 1), 3 2 1 1 1 1 [E.2] Date le due matrici e il vettore A = 1 2 0 0 1 0 0 1 3 B = 1

Dettagli

ESERCIZI PRECORSO DI MATEMATICA

ESERCIZI PRECORSO DI MATEMATICA ESERCIZI PRECORSO DI MATEMATICA EQUAZIONI 1. cot( 10 ) 3. tan 3 3. cos( 45 ) +1 0 4. sin sin 5. tan( 180 ) tan( 3) 6. 5 cos 4sin cos 7. 3sin 3 cos 0 8. 3 cos + sin 3 0 9. sin3 sin( 45 + ) 10. 6sin 13sin

Dettagli

Prova scritta di Algebra lineare e Geometria- 8 Settembre 2010

Prova scritta di Algebra lineare e Geometria- 8 Settembre 2010 CdL in Ingegneria d(el Recupero Edilizio ed Ambientale - - Ingegneria Edile-Architettura (A-L),(M-Z)- Ingegneria delle Telecomunicazioni - - Ingegneria Informatica (A-F), (R-Z) Prova scritta di Algebra

Dettagli

D2. Problemi sulla retta - Esercizi

D2. Problemi sulla retta - Esercizi D. Problemi sulla retta - Esercizi Per tutti gli esercizi è OBBLIGATORIO tracciare il grafico. 1) Trovare il perimetro del triangolo ABC, con A(1;0), B(-1;1), C(0;-). [ 5 + 10 ) Trovare il perimetro del

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio

Dettagli

RELAZIONI e CORRISPONDENZE

RELAZIONI e CORRISPONDENZE RELAZIONI e CORRISPONDENZE Siano X e Y due insiemi non vuoti si chiama relazione tra X e Y un qualunque sottoinsieme del prodotto cartesiano: X x Y = {(x,y): x X, y Y} L insieme costituito dai primi (secondi)

Dettagli

Esercizi riepilogativi sulle coniche verso l esame di stato

Esercizi riepilogativi sulle coniche verso l esame di stato Esercizi riepilogativi sulle coniche verso l esame di stato n. 9 pag. 55 Sono date le curve α e β definite dalle seguenti relazioni: α : xy x y + 4 = 0 β : luogo dei punti P (k + ; 1 + k ), k R a) Dopo

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

TEST PER RECUPERO OFA 10 febbraio 2010

TEST PER RECUPERO OFA 10 febbraio 2010 TEST PER RECUPERO OFA 0 febbraio 00. Quante soluzioni ammette l'equazione sen x( sen x + cos x) = tra 0 e π? nessuna B) una C) due D) tre E) quattro.. Si indichi con ln x il logaritmo naturale (in base

Dettagli

D3. Parabola - Esercizi

D3. Parabola - Esercizi D3. Parabola - Esercizi Traccia il grafico delle seguenti parabole e trova i punti d incontro con l asse e con l asse graficamente e/o algebricamente. 1) = ++ (0;)] ) = -+1 ( + 3 ;0), ( 3 ;0), (0;1)] 3)

Dettagli

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO FACOLTÀ DI INGEGNERIA CORSO DI AZZERAMENTO - MATEMATICA ANNO ACCADEMICO 010-011 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

... 3) Trovare la distanza tra le rette r : x + 3y 27 = y 2z = 0 e s : 3x + 5z = x + 2y + 2z = 0.

... 3) Trovare la distanza tra le rette r : x + 3y 27 = y 2z = 0 e s : 3x + 5z = x + 2y + 2z = 0. Nome....... Cognome... 0 Gennaio 016 Ingegneria... Matricola... In caso di esito sufficiente, desidero sostenere la prova orale [ ] OGGI (ore 15:00) [ ] Mercoledì 7/01/016 ore 9:00 (l'aula verrà comunicata

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Compito A Corso del Prof.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Compito A Corso del Prof. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. 202-203 PROVA SCRITTA DI GEOMETRIA DEL 8-02-3 Compito A Corso del Prof. Manlio BORDONI Esercizio. Sia W il sottospazio vettoriale di R 4 generato dai vettori

Dettagli

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 013-014 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento

Dettagli

GEOMETRIA Nome... COGNOME...

GEOMETRIA Nome... COGNOME... GEOMETRIA Nome... COGNOME... 21 Gennaio 2015 Ingegneria... Matricola... In caso di esito sufficiente, desidero sostenere la prova orale [ ] OGGI (aula I.14 inizio ore 15:00) [ ] Giovedì 29/01/2015 (aula

Dettagli

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e Corso di Laurea in Matematica (A.A. 2007-2008) SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004 Rispondere (nello spazio assegnato) alle seguenti domande (1) Calcolare il MCD e il mcm tra i numeri

Dettagli

Nome... Cognome... Prof.

Nome... Cognome... Prof. Nome...... Cognome... Prof. 11 Gennaio 2012 Matricola...... Ingegneria... In caso di esito sufficiente desidero sostenere la prova orale: [ ] Oggi ore 15 [ ] Domani ore 10 [ ] Mercoledì 18 Gennaio ore

Dettagli

CdL in Ingegneria Industriale (F-O)

CdL in Ingegneria Industriale (F-O) CdL in Ingegneria Industriale (F-O) Prova scritta di Algebra lineare e Geometria- 1 Giugno 018 Durata della prova: tre ore. È vietato uscire dall aula prima di aver consegnato definitivamente il compito.

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. - PROVA SCRITTA DI GEOMETRIA DEL -- Corsi dei Proff. M. BORDONI, A. FOSCHI Esercizio. E data l applicazione lineare L : R 4 R 3 definita dalla matrice A = 3

Dettagli

CdL in Ingegneria Informatica (A-F), (G-S)

CdL in Ingegneria Informatica (A-F), (G-S) CdL in ngegneria nformatica (A-F), (G-S) Prova scritta di Algebra Lineare e Geometria del giorno 29 Gennaio 2008 Usare solo carta fornita dal Dipartimento di Matematica e nformatica, riconsegnandola tutta.

Dettagli

esercizi 107 Problemi sulla retta

esercizi 107 Problemi sulla retta esercizi 107 Problemi sulla retta Es. 1 Detto C il punto in cui l asse del segmento di estremi A( 3, 3) e B(1, 5) incontra l asse x, calcolare le coordinate del punto D equidistante da A, B e C. Determinare

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

Esercizi di Geometria e Algebra Lineare

Esercizi di Geometria e Algebra Lineare Esercizi di Geometria e Algebra Lineare 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}) 2) Nello spazio vettoriale R 3 sul campo R, sia

Dettagli

Piano euclideo. In E 2 (R) fissiamo un riferimento cartesiano ortonormale [O, B], con B = ( e 1, e 2 ).

Piano euclideo. In E 2 (R) fissiamo un riferimento cartesiano ortonormale [O, B], con B = ( e 1, e 2 ). Definizione Si dice spazio (affine) euclideo di dimensione n sul campo reale, uno spazio affine A[A, (V n (R), ), a] in cui il prodotto scalare è definito positivo. Lo si indica con E n (R). In E 2 (R)

Dettagli

Soluzioni dello scritto di Geometria del 28 Maggio 2009

Soluzioni dello scritto di Geometria del 28 Maggio 2009 Soluzioni dello scritto di Geometria del 8 Maggio 9 1) Trovare le equazioni del sottospazio V(w, x, y, z) R 4 generato dalle quaterne c 1 = (,,, 1) e c = (, 1, 1, ). ) Trovare una base per OGNI autospazio

Dettagli

Geometria BAER Canale A-K Esercizi 10

Geometria BAER Canale A-K Esercizi 10 Geometria BAER 2016-2017 Canale A-K Esercizi Esercizio 1. Data la retta r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di

Dettagli

CdL in Ingegneria Informatica - Ingegneria Elettronica (P-Z) Ingegneria delle Telecomunicazioni

CdL in Ingegneria Informatica - Ingegneria Elettronica (P-Z) Ingegneria delle Telecomunicazioni CdL in Ingegneria Informatica - Ingegneria Elettronica (P-Z) Ingegneria delle Telecomunicazioni Prova scritta di Algebra lineare e Geometria- 9 Gennaio 3 Durata della prova: tre ore. È vietato uscire dall

Dettagli

b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse

b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse Verifiche anno scolastico 2011 2012 1) Riferendoti alla figura ricava l equazione della retta t. a) A è il punto di t che ha ascissa - 1, ricava la sua ordinata. B è il punto di t che ha ordinata 3 ricava

Dettagli

x + x + 1 < Compiti vacanze classi 4D

x + x + 1 < Compiti vacanze classi 4D Compiti vacanze classi D Ripassare scomposizioni e prodotti notevoli, metodo di Ruffini, razionalizzazioni, equazioni irrazionali. (Libro di prima e seconda). Recuperare formulario con regole di risoluzione

Dettagli

1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli

1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli 1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli A) 1 2 B) [ A) 2 x 1; B) (-, - 3) ( - 3, 0) ( 0, + ) ] 2) Riferendoti al grafico rappresentato completa a) Il dominio

Dettagli

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 };

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 }; ESERCIZI. INSIEMISTICA. Sia l insieme dei punti dello spazio, Γ una sfera e N il suo polo nord. Quali delle seguenti relazioni sono corrette? N Γ; N ; Γ ; Γ ; N ; Γ N.. Dire quali dei seguenti insiemi

Dettagli

Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile) 1. Tra le seguenti matrici, eseguire tutti i prodotti possibili:

Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile) 1. Tra le seguenti matrici, eseguire tutti i prodotti possibili: Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 0 5 F = 4 2

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE 1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Problemi sull iperbole

Problemi sull iperbole 1 ricerca dell equazione dell iperbole Scrivere l equazione, riferita agli assi, dell iperbole che ha l asse delle ascisse come asse traverso, le rette xx yy = 0, xx + yy = 0 come asintoti e passa per

Dettagli

CdL in Ingegneria Informatica (Orp-Z)

CdL in Ingegneria Informatica (Orp-Z) Prova scritta di Algebra Lineare e Geometria del giorno 1 Febbraio 2006 Sia f : R 4 R 4 l applicazione lineare definita dalla legge f (x, y, z, t) = (2x + (h + 3)y + (1 h)z + t, 2x + 5y + (h + 5)z + 2t,

Dettagli

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

(c) Calcolare il vettore P W (v) proiezione ortogonale su W del vettore v = Soluzione.

(c) Calcolare il vettore P W (v) proiezione ortogonale su W del vettore v = Soluzione. CORSI DI LAUREA IN INGEGNERIA MECCANICA Corso del Prof. Manlio BORDONI A.A - PROVA SCRITTA DI GEOMETRIA DEL 8-- Esercizio. Sia W il sottospazio vettoriale di R rappresentato dal sistema lineare omogeneo

Dettagli

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte Politecnico di Torino Facoltà di Architettura Raccolta di esercizi proposti nelle prove scritte relativi a: algebra lineare, vettori e geometria analitica Esercizio. Determinare, al variare del parametro

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L AA 2006/2007 1 Foglio 1 In tutti gli esercizi che seguiranno lo spazio ambiente sarà il piano cartesiano a valori nel campo dei numeri reali, dove supporremo

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry)

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) SISTEMA DI RIFERIMENTO NELLO SPAZIO La geometria analitica dello spazio è molto simile alla geometria analitica del piano. Per questo motivo le formule sono

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

Domanda Risposta

Domanda Risposta Esame di Geometria 18 Maggio 010 Cognome e Nome: Matricola: Corso di Laurea Regolamento della prova. La prova consiste in 7 Domande a risposta multipla chiusa (di cui una soltanto è corretta) e di Esercizi.

Dettagli

04 LA CIRCONFERENZA ESERCIZI. 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza 2 dal punto C(1; 3).

04 LA CIRCONFERENZA ESERCIZI. 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza 2 dal punto C(1; 3). 04 LA CIRCONFERENZA ESERCIZI 1. LA CIRCONFERENZA E LA SUA EQUAZIONE 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza dal punto C(1; 3). x + y x 6y + 6 = 0 Indica se le seguenti

Dettagli

1 Esonero di GEOMETRIA 2 - C. L. Matematica Aprile 2009

1 Esonero di GEOMETRIA 2 - C. L. Matematica Aprile 2009 1. Si consideri la matrice 1 Esonero di GEOMETRIA 2 - C. L. Matematica Aprile 2009 A = ( 1 1 1 3 Sia g : R 2 R 2 R la forma bilineare e simmetrica avente A come matrice associata rispetto alla base canonica

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

PROVA SCRITTA DI GEOMETRIA 2 14 Febbraio 2017

PROVA SCRITTA DI GEOMETRIA 2 14 Febbraio 2017 PROVA SCRITTA DI GEOMETRIA 2 14 Febbraio 2017 La prova orale deve essere sostenuta entro il 28 Febbraio 2017 A Fissato un sistema di riferimento cartesiano nello spazio si consideri la quadriche Q di equazione

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

ESERCIZI INTRODUTTIVI

ESERCIZI INTRODUTTIVI ESERCIZI INTRODUTTIVI () Data la proposizione p: Tutti gli uomini hanno la coda, discutere la validità delle seguenti proposte di negazione di p: (i) non tutti gli uomini hanno la coda; (ii) nessun uomo

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 3

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 3 PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 0/0 CLASSI DISEQUAZIONI Risolvi le seguenti disequazioni numeriche intere. ) ) 9 ) ) 9 ( ) ) ) non esiste R non esiste R Risolvi le seguenti disequazioni

Dettagli

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x.

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x. 0 Gennaio 006 Teoria: Definizione di derivata puntuale e suo significato geometrico Esercizio Determinare l equazione del piano contenente i vettori u = (,, 3 e v = (,, e passante per P o = (,, Scrivere

Dettagli

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a Questo documento riporta commenti, approfondimenti o metodi di soluzione alternativi per alcuni esercizi dell esame Ovviamente alcuni esercizi potevano essere risolti utilizzando metodi ancora diversi

Dettagli

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni

Dettagli

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura VERIFICHE TERZA C a.s. 2010 2011 1) Sono assegnati i punti A(0; 10) B(8; - 6) C(0; 0). Rappresentali. a) Verifica che il triangolo ABC è isoscele e calcola la sua area b) Tra i punti P che hanno ordinata

Dettagli

CdL in Ingegneria Informatica (A-Faz), (Orp-Z) CdL in Ingegneria del Recupero Edilizio ed Ambientale

CdL in Ingegneria Informatica (A-Faz), (Orp-Z) CdL in Ingegneria del Recupero Edilizio ed Ambientale Prova scritta di Geometria assegnata il 13 Dicembre 2003 Sia Si consideri l equazione AX = A t. 0 1 1 A = 1 1 5 R 3,3. 1 2 1 h 1) Determinare i valori di h per cui tale equazione ammette soluzioni. 2)

Dettagli

ORDINAMENTO 2014 SESSIONE SUPPLETIVA - PROBLEMA 1

ORDINAMENTO 2014 SESSIONE SUPPLETIVA - PROBLEMA 1 www.matefilia.it ORDINAMENTO 20 SESSIONE SUPPLETIVA - PROBLEMA Sono dati un quarto di cerchio AOB e la tangente t ad esso in A. Dal punto O si mandi una semiretta che intersechi l arco AB e la tangente

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Capitolo 8: introduzione alla trigonometria

Capitolo 8: introduzione alla trigonometria Capitolo 8: introduzione alla trigonometria 8.1 Trasformare da gradi sessagesimali a radianti o viceversa a 0 0 ; b 70 0 ; c 60 0 ; d 1 0 ; e 5 0 ; f 15 0 ; g 5 0 ; h 15 0 ; i 10 0 0 ; j 1 0 9 ; k 1 0

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Geometria BAER Canale I Esercizi 10

Geometria BAER Canale I Esercizi 10 Geometria BAER Canale I Esercizi 10 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA MECCANICA Padova II prova parziale TEMA n.1

CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA MECCANICA Padova II prova parziale TEMA n.1 CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA MECCANICA Padova 15-06-2010 II prova parziale TEMA n.1 Parte 1. Quesiti preliminari. Stabilire se le seguenti affermazioni sono

Dettagli

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 0/03 Prof. Francesca Visentin CAPITOLO V ELEMENTI DI GEOMETRIA ANALITICA Riprendiamo alcune nozioni già date nel Capitolo II.. Coordinate cartesiane

Dettagli

Verifiche anno scolastico 2009/2010 Classi 3 C 3 H

Verifiche anno scolastico 2009/2010 Classi 3 C 3 H Verifiche anno scolastico 2009/2010 Classi 3 C 3 H 1) Scrivi l equazione della circonferenza γ che ha centro C(- 2; 0) e raggio r = 2 2. Ricava le coordinate dei punti A, B in cui γ interseca l asse delle

Dettagli

0 < x 3. x 2 mod 5 x 0 mod 3. x 27 mod 7. 1 [7 punti] Risolvere il seguente sistema di congruenze:

0 < x 3. x 2 mod 5 x 0 mod 3. x 27 mod 7. 1 [7 punti] Risolvere il seguente sistema di congruenze: Dipartimento di Matematica e Informatica Anno Accademico 05-06 Corso di Laurea in Informatica (L-3) Prova scritta di Matematica Discreta ( CFU) 7 Settembre 06 Parte A Tempo a disposizione Ognuna delle

Dettagli

SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO

SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO 2014-15 Si precisa che, con questo syllabus, l intenzione non è quella di ridurre l apprendimento della matematica allo studio mnemonico di una serie di procedure.

Dettagli

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni:

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni: ultima modifica /0/0 ESERCIZI PROPOSTI IL PIANO CARTESIANO LE COORDINATE DI UN PUNTO NEL PIANO CARTESIANO A Quali sono le coordinate dei punti indicati in figura? B Quali sono le coordinate dei punti indicati

Dettagli

CLASSE 3^ A LICEO SCIENTIFICO 25 Febbraio 2015 Geometria analitica: la parabola (recupero per assenti)

CLASSE 3^ A LICEO SCIENTIFICO 25 Febbraio 2015 Geometria analitica: la parabola (recupero per assenti) CLASSE ^ A LICEO SCIENTIFICO 5 Febbraio 05 Geometria analitica: la parabola (recupero per assenti). Dopo aver determinato l equazione della parabola, con asse parallelo all asse y, passante per i punti

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

Compito di matematica Classe III ASA 23 aprile 2015

Compito di matematica Classe III ASA 23 aprile 2015 Compito di matematica Classe III ASA 3 aprile 015 A. Descrivere mediante un opportuno sistema di disequazioni nelle variabili x e y la parte di piano colorata: A1 A A1: y 1 x + x 1 4 x y 0 A: x 4 + y 9

Dettagli