LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ"

Transcript

1 LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e relazioni tra fenomeni, intervenendo in tutte le situazioni nelle quali occorre assumere decisioni in condizioni di incertezza. 2 1

2 DEFINIZIONE La statistica è un metodo di studio di caratteri variabili rilevabili su collettività, avente lo scopo di sintetizzare le informazioni disponibili e di estendere induttivamente i risultati a casi più generali 3 DEFINIZIONE Caratteri: aspetti della realtà osservabili (es. lo stato di una spiaggia, la professione di una persona che lavora ) Variabili: possono assumere valori diversi (es. la spiaggia può essere pulita, ordinata, sporca, grande, piccola ). Unità statistiche:sono i casi individuali oggetto di osservazione Collettivo statistico: è l insieme di più unità statistiche Fenomeni collettivi: quei fenomeni naturali o sociali la cui conoscenza o misura richiede l osservazione delle diverse unità statistiche che fanno parte del collettivo statistico 4 2

3 DEFINIZIONE La statistica si occupa quindi dei modi di raccogliere e analizzare dati relativi a un certo insieme di persone o di oggetti, per trarne conclusioni e fare previsioni. Noi ci occuperemo della statistica descrittiva: è la parte di statistica che, data una serie di dati, trae da questi ultimi delle informazioni. 5 STATISTICA DESCRITTIVA Qualunque indagine statistica deve essere riferita a un gruppo di elementi. A questo gruppo si dà il nome di popolazione. Una parte della popolazione prende il nome di campione. Si chiama caratteristica la qualità che studiamo negli elementi del campione 6 3

4 STATISTICA DESCRITTIVA Facciamo un esempio: Voglio fare una indagine statistica sugli allievi iscritti ai CFP della provincia di Brescia. Gli allievi iscritti nei CFP rappresentano la popolazione statistica. Il campione sarà rappresentato dagli iscritti al nostro CFP. Le caratteristiche che andremo a studiare statisticamente saranno ad esempio l età, la media dei voti, l altezza ecc 7 STATISTICA DESCRITTIVA Le caratteristiche che possono essere studiate sono di due tipologie: VARIABILI QUANTITATIVE: valori che possono essere misurati come il peso, l età, l altezza ecc. Le variabili quantitative possono essere di due tipologie: Continue: possono assumere qualunque valore. Discrete: assumono solo determinati valori. VARIABILI QUALITATITE: valori che non possono essere misurati come il colore dei capelli o degli occhi ecc. 8 4

5 I DATI I dati rappresentano l insieme di numeri o categorie osservati nell indagine statistica. I dati possono essere subito disponibili per lo studio oppure, è necessario estrapolare l informazione necessaria attraverso una loro analisi (registrazione dei dati). 9 ESERCIZIO

6 ESERCIZIO 2 11 RILEVAMENTO DEI DATI Abbiamo detto che la statistica è una scienza che ragiona partendo dai dati, dove i dati sono l insieme di numeri o categorie registrati per le unità di osservazione del campione della popolazione che si sta analizzando. 12 6

7 Proviamo a rilevare dai dati 13 Proviamo a rilevare dai dati 14 7

8 Ora analizziamo i dati raccolti Le informazioni raccolte sono di vario tipo: Le variabili quantitative misurano caratteristiche numeriche: per esempio l età, l altezza, in numero di CD. Le variabili qualitative misurano delle qualità come, per esempio, il tipo di mezzo utilizzato per raggiungere la scuola. 15 Due osservazioni N.B. 1: una variabile che assume valori numerici corrispondenti a codici (es. il CAP) è qualitativa. N.B. 2: Le variabili qualitative con due sole modalità si dicono variabili dicotomiche (es. la variabile genere assume le modalità maschio e femmina). 16 8

9 Le domande nell indagine statistica Durante il questionario sono state fatte due tipologie di domande: 17 Rappresentazione dei DATI Lo scopo principale della statistica è quello di sintetizzare e descrivere i dati attraverso tre possibili rappresentazioni: Tabelle Grafici (diagrammi a barre, a torta ecc.) Indici che riassumo gli aspetti più importanti La media La varianza 18 9

10 La rappresentazione tabellare Per ottenere la sintesi dei dati ci viene in aiuto la rappresentazione tabellare che prende il nome di matrice dei dati. I dati sono di solito raccolti in forma rettangolare in una tabella che presenta: Su ogni riga una unità di osservazione Su ogni colonna una variabile di studio 19 La matrice dei dati 20 10

11 La matrice dei dati 21 Passiamo all analisi: distribuzione di frequenza Dopo avere raccolto i dati, dalla matrice si ricava la tabella delle frequenze. La tabella delle frequenze si ottiene individuando per ogni variabile l insieme dei valori assunti da tale variabile e la frequenza con cui ogni valore si presenta tra le unità di osservazione. Si parla anche di frequenza assoluta

12 Esempio: frequenza della variabile battiti cardiaci 23 La frequenza relativa La tabella è completata con una colonna: la colonna della frequenza relativa. Tale parametro si calcola nel seguente modo: frequenza variabile 100 frequenza relativa totale osservazioni 24 12

13 Esempio: frequenza relativa della variabile battiti cardiaci 25 Battiti cardiaci Frequenza assoluta Frequenza relativa [%] , , , , , ,33 totale ,00 Frequenza assoluta e frequenza relativa Riassumendo: La frequenza assoluta (f A ) è il numero di volte che si manifesta la modalità di una variabile. La frequenza relativa (f R ) consiste nel numero di volte in cui una osservazione si ritrova all interno della classificazione stessa, rappresenta come una porzione del numero totale di osservazioni

14 Gli indici Gli indici sono degli elementi che ci permettono di riassumere le informazioni raccolte tramite le tabelle. In particolare vedremo i seguenti indici statistici: La media aritmetica La moda La mediana 27 La media aritmetica La media aritmetica costituisce la miglior stima possibile per la grandezza in esame. Tale indice si applica a dati che si possono considerare equivalenti. Si calcola secondo la seguente formula: x x1 x2 x3... x N N i 1 N N x i 28 14

15 La media aritmetica: esempio Calcoliamo la media aritmetica dei seguenti campioni: 3, 5, 6, 2, 1, 0, 7, 4, 2 x 9 x i i ,33 29 La moda La moda è il valore più probabile che una variabile può assumere. È il valore più comune del campione che stiamo studiando. Ad esempio la moda del mezzo di trasporto utilizzato è il mezzo che presenta la frequenza relativa più alta, quindi nel nostro caso è 30 15

16 La mediana La mediana è quel valore corrispondente al quale i valori letti sono divisi in due gruppi costituiti dallo stesso numero di campioni. In pratica, il numero di dati che sta alla destra della mediana (quelli maggiori) è uguale al numero di dati alla sinistra della mediana (quelli minori). 31 La mediana: esempio Consideriamo l insieme dei dati, per esempio, dell ora in cui i compagni vanno a letto. Il valore che divide in due la tabella è quello delle 23:20. Tale valore rappresenta la mediana

17 ESERCIZIO 1 33 ESERCIZIO

18 I GRAFICI L indagine statistica ha come ultime fasi la presentazione grafica e l interpretazione dei dati: La presentazione è l esposizione dei dati statistici in forma chiara e compatta con tabelle e grafici L interpretazione è lo studio dei dati attraverso gli indici statistici. 35 Tipologie di Grafici I grafici più utilizzati sono i seguenti: 1. Areogramma 2. Diagramma a punti 3. Diagramma a barre 4. Istogramma 36 18

19 Tipologie di Grafici: AREOGRAMMA Un areogramma è un diagramma a torta e rappresenta i dati sotto forma di fette o sezioni di un cerchio. Ogni fetta rappresenta una categoria e la dimensione della fetta è proporzionale alla frequenza relativa della categoria 37 Tipologie di Grafici: AREOGRAMMA 38 19

20 Tipologie di Grafici: AREOGRAMMA 39 Tipologie di Grafici: Diagramma a punti Un diagramma a punti è un grafico usato per piccole quantità di dati in cui ogni osservazione è indicata da un punto su un singolo asse orizzontale. L asse del grafico è suddiviso in modo tale che ogni punto, rappresentante i dati, occupi un posto univoco sull asse. Quando più d una osservazione presenta lo stesso valore, i punti vengono impilati l uno sopra l altro

21 Tipologie di Grafici: Diagramma a punti 41 Tipologie di Grafici: Diagramma a barre Un diagramma a barre rappresenta la frequenza o la frequenza relativa di una tabella sotto forma di un rettangolo, oppure barra o colonna. Si usa per le distribuzioni di frequenza semplici

22 Tipologie di Grafici: Diagramma a barre 43 Tipologie di Grafici: Istogramma 44 Un istogramma, anche se ha l aspetto molto simile ad un diagramma a barre, è molto diverso in quanto è un metodo areale: si utilizza un poligono chiuso che mantiene nell informazione grafica, cioè nella superficie della barra, i dati relativi all estensione. L istogramma può essere considerato il grafico più rappresentativo della statistica. L istogramma è una figura geometrica piana formata da rettangoli accostati aventi come base i singoli intervalli e come altezza la densità di frequenza. 22

23 Tipologie di Grafici: Istogramma 45 Tipologie di Grafici: Istogramma 46 23

24 ESERCIZIO 1 47 ESERCIZIO

25 ESERCIZIO 3 49 Il calcolo delle probabilità:termini di base La probabilità studia i fenomeni casuali che prendono il nome di fenomeni aleatori. Il calcolo delle probabilità tratta di esperimenti aleatori, cioè esperimenti, che possono essere anche solo concettuali, il cui esito è imprevedibile. Lo scopo del calcolo delle probabilità è di attribuire un grado di aspettativa (un numero, quindi) ad un evento. La probabilità di un evento è un numero reale, positivo o nullo compreso tra 0 e 1 ( 0 p 1). Se un evento è impossibile la sua probabilità è zero: p=

26 La probabilità teorica e la probabilità empirica 51 Si dice probabilità teorica di un evento il valore dato dal rapporto tra il numero di esiti positivi che realizzano l evento stesso (k) e il numero degli elementi che rappresenta l insieme degli esiti possibili (n): k p n Esempio: consideriamo l esperimento del lancio di un dado. Qual è la probabilità di ottenere 5? Gli eventi possibili (n) sono 6, e solo uno è l evento positivo (k). La probabilità richiesta è quindi: 1 p 6 La probabilità teorica e la probabilità empirica Si assume come probabilità empirica di un evento, che si ripete nel tempo, la sua frequenza relativa osservata. Esempio: qual è la probabilità empirica di subire un furto d auto per due proprietari di automobili che vivono, rispettivamente, in Toscana e in Trentino? Rubate Circolanti Rub./Circ. Toscana ,17% Trentino A. A ,07% 52 Considerando la tabella, la probabilità che un auto venga rubata in Toscana è pari a p=0,17%. 26

27 La legge dei grandi numeri La legge dei grandi numeri o legge empirica del caso dice che, in una serie di prove ripetute un numero abbastanza grande di volte, un evento si manifesta con una frequenza relativa che tende, al crescere del numero delle prove, a coincidere col valore teorico della sua probabilità. 53 Metodi risolutivi per il calcolo delle probabilità Spesso uno stesso problema relativo a questioni di calcolo delle probabilità può essere affrontato con più metodi. METODO DELL EVENTO COTRARIO: l evento almeno una pallina estratta è gialla può essere considerato come l evento contrario nessuna pallina estratta è gialla. Esempio: se la probabilità di estrarre una pallina gialla è p=0,4, la probabilità di estrarre una pallina non gialla sarà p=1-0,4=0,6. METODO DELLA SOMMA: estraggo due palline. Se p 1 è la probabilità di estrarre una sola pallina gialla e p 2 è la probabilità di estrarre entrambe le palline gialle allora, la probabilità di estrarre una pallina gialla è: p= p 1 + p

28 Esercizi Calcolare la probabilità che lanciando due volte una moneta esca: croce entrambe le volte; la prima volta croce e la seconda testa; almeno una volta testa. [ 1/4; 1/4; 3/4 ] 55 Da un sacchetto che contiene 20 palline colorate si effettuano 500 estrazioni casuali, sempre con reinserimento. Si registra 119 volte pallina rossa. Quante sono, presumibilmente, le palline rosse nell urna? [5] Esercizi A una cena tra medici partecipano 3 chirurghi, 2 pediatri e 4 internisti. Il cameriere sceglie a caso uno dei medici e ipotizza sia un chirurgo. Qual è la probabilità che si sbagli? [ 2/3 ] Uno scaffale contiene libri di 5 diverse case editrici: 20 della De Agostini, 15 della Mondadori, 10 della Rizzoli, 8 della Zanichelli e 5 della Garzanti. Si prende a caso un libro, senza guardare. Qual è la probabilità che il libro non sia né della Mondadori né della Garzanti? [ 19/29 ] 56 28

29 Esercizi La probabilità di estrarre uno dei quattro assi da un mazzo di carte è 1/13. Quante carte ha quel mazzo? [ 52 ] Si estrae una pallina da un urna che ne contiene 20 bianche, 15 verdi, 10 rosse e 30 di altri colori. Calcola la probabilità che essa: sia o bianca o rossa; non sia né bianca né rossa; non sia verde [ 2/5, 3/5, 4,5 ] 57 Esercizi Se lanci contemporaneamente due dadi, qual è la probabilità che la somma dei due numeri che sortiscono sia pari o di valore tre? [ 5/9 ] Calcola la probabilità che lanciando due dadi si abbiano due facce con numeri consecutivi. [ 5/18 ] 58 29

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Probabilità e statistica

Probabilità e statistica Indice generale.probabilità ed eventi aleatori....come si può definire una probabilità....eventi equiprobabili....eventi indipendenti, eventi dipendenti....eventi incompatibili....eventi compatibili....probabilità

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

matematica probabilmente

matematica probabilmente IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice Altezze e

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Elementi di statistica Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Statistica La statistica si può definire come: l insieme dei metodi

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Introduzione alla statistica descrittiva

Introduzione alla statistica descrittiva Dipartimento di Statistica Regione Toscana Comune di Firenze Progetto di diffusione della cultura Statistica Introduzione alla statistica descrittiva Carla Rampichini Dipartimento di Statistica G. Parenti

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Esercizi di Calcolo delle Probabilità (calcolo combinatorio)

Esercizi di Calcolo delle Probabilità (calcolo combinatorio) Esercizi di Calcolo delle Probabilità (calcolo combinatorio 1. Lanciamo due dadi regolari. Qual è la probabilità che la somma delle facce rivolte verso l alto sia pari a 7? 1/6 2. Due palline vengono estratte

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Conoscenza. Metodo scientifico

Conoscenza. Metodo scientifico Conoscenza La conoscenza è la consapevolezza e la comprensione di fatti, verità o informazioni ottenuti attraverso l'esperienza o l'apprendimento (a posteriori), ovvero tramite l'introspezione (a priori).

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

(concetto classico di probabilità)

(concetto classico di probabilità) Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

PROBABILITA' E VARIABILI CASUALI

PROBABILITA' E VARIABILI CASUALI PROBABILITA' E VARIABILI CASUALI ESERCIZIO 1 Due giocatori estraggono due carte a caso da un mazzo di carte napoletane. Calcolare: 1) la probabilità che la prima carta sia una figura oppure una carta di

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria aria@unina.it Standardizzazione di una variabile Standardizzare una variabile statistica

Dettagli

Elementi di statistica descrittiva I 31 Marzo 2009

Elementi di statistica descrittiva I 31 Marzo 2009 Il Concetti generali di Statistica) Corso Esperto in Logistica e Trasporti Elementi di Statistica applicata Elementi di statistica descrittiva I Marzo 009 Concetti Generali di Statistica F. Caliò franca.calio@polimi.it

Dettagli

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro Pivot è bello Livello scolare: 1 biennio Abilità Conoscenze interessate Predisporre la struttura della Distribuzioni delle matrice dei dati grezzi con frequenze a seconda del riguardo a una rilevazione

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

metodi matematici per l ingegneria prove scritte d esame 1 Indice

metodi matematici per l ingegneria prove scritte d esame 1 Indice metodi matematici per l ingegneria prove scritte d esame Indice. Novembre 4 - Prova in itinere. Luglio 5.. Febbraio 6 4 4. Giugno 6. 5 5. Luglio 6 6 . Novembre 4 - Prova in itinere Esercizio. Una scatola

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di Area Tecnica. Corso di Statistica e Biometria. Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale di Area Tecnica. Corso di Statistica e Biometria. Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale di Area Tecnica Corso di Statistica e Biometria Statistica descrittiva 1 Statistica Funzioni Descrittiva Induttiva (inferenziale) Statistica

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Un breve riepilogo: caratteri, unità statistiche e collettivo UNITA STATISTICA: oggetto dell osservazione

Dettagli

Esercizi di Calcolo delle Probabilita (I)

Esercizi di Calcolo delle Probabilita (I) Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il calcolo delle probabilità ha avuto origine nel Seicento in riferimento a questioni legate al gioco d azzardo e alle scommesse. Oggi trova tante applicazioni in ambiti anche

Dettagli

Test sul calcolo della probabilità

Test sul calcolo della probabilità Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Statistica descrittiva univariata

Statistica descrittiva univariata Statistica descrittiva univariata Elementi di statistica 2 1 Tavola di dati Una tavola (o tabella) di dati è l insieme dei caratteri osservati nel corso di un esperimento o di un rilievo. Solitamente si

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico. Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Probabilità Ines Campa e Marco Longhi Probabilità e Statistica - Esercitazioni

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Incompatibilità ed indipendenza stocastica. Probabilità condizionate, legge della probabilità totale, Teorema

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 1 RAPPRESENTARE I DATI: TABELLE E GRAFICI Un insieme di misure è detto serie statistica o serie dei dati 1) Una sua prima elementare elaborazione può

Dettagli

Grafici delle distribuzioni di frequenza

Grafici delle distribuzioni di frequenza Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

1. L analisi statistica

1. L analisi statistica 1. L analisi statistica Di cosa parleremo La statistica è una scienza, strumentale ad altre, concernente la determinazione dei metodi scientifici da seguire per raccogliere, elaborare e valutare i dati

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 006 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

La probabilità frequentista e la legge dei grandi numeri

La probabilità frequentista e la legge dei grandi numeri La probabilità frequentista e la legge dei grandi numeri La definizione di probabilità che abbiamo finora considerato è anche nota come probabilità a priori poiché permette di prevedere l'esito di un evento

Dettagli

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 39 Introduzione Come si è detto,

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

Analisi dei Dati e Statistica a.a. 2011/2012. Prof. Giuseppe Espa. giuseppe.espa@economia.unitn.it 0461/282157. Statistica descrittiva (prima parte)

Analisi dei Dati e Statistica a.a. 2011/2012. Prof. Giuseppe Espa. giuseppe.espa@economia.unitn.it 0461/282157. Statistica descrittiva (prima parte) a.a. 2011/2012 giuseppe.espa@economia.unitn.it 0461/282157 Statistica descrittiva (prima parte) D.J. Sweeney, T.A. Williams, D.R. Anderson (2009) Fundamentals of Business Statistics (5th edition International

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

Come costruire una distribuzione di frequenze per caratteri quantitativi continui

Come costruire una distribuzione di frequenze per caratteri quantitativi continui Come costruire una distribuzione di frequenze per caratteri quantitativi continui Consideriamo i dati contenuti nel primo foglio di lavoro (quello denominato dati) del file esempio2.xls. I dati si riferiscono

Dettagli

Criteri di Valutazione della scheda - Solo a carattere indicativo -

Criteri di Valutazione della scheda - Solo a carattere indicativo - Criteri di Valutazione della scheda - Solo a carattere indicativo - Previsioni Sono state fatte le previsioni e discussi i valori attesi con il ragionamento con cui sono stati calcolati E stata usata la

Dettagli

Brugnaro Luca Boscaro Gianni (2009) 1

Brugnaro Luca Boscaro Gianni (2009) 1 STATISTICA PER LE PROFESSIONI SANITARIE - LIVELLO BASE Brugnaro Luca Boscaro Gianni (2009) 1 Perché la statistica Prendere decisioni Bibliografia non soddisfacente Richieste nuove conoscenze Raccolta delle

Dettagli

Appunti di complementi di matematica

Appunti di complementi di matematica Appunti di complementi di matematica UITA STATISTICA: è l unità su cui si raccolgono le informazioni oggetto dell indagine e possono essere individui, famiglie, oggetti. UIVERSO STATISTICO O POLAZIOE STATISTICA

Dettagli

Un gioco con tre dadi

Un gioco con tre dadi Un gioco con tre dadi Livello scolare: biennio Abilità interessate Costruire lo spazio degli eventi in casi semplici e determinarne la cardinalità. Valutare la probabilità in diversi contesti problematici.

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica Università del Piemonte Orientale Corsi di Laurea Triennale di area tecnica Corso di Statistica Medica Campionamento e distribuzione campionaria della media Corsi di laurea triennale di area tecnica -

Dettagli

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1 Analisi dei residui Il test statistico ed il suo p-valore riassumono la

Dettagli

15. Antico gioco russo

15. Antico gioco russo 15. Antico gioco russo In un antico gioco russo, attraverso i risultati casuali ottenuti dall allacciamento di cordicelle, i giovani cercavano una previsione sul tipo di legame che si sarebbe instaurata

Dettagli

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che: Esercizi Esercizio 4. Un urna contiene inizialmente 2 palline bianche e 4 palline rosse. Si effettuano due estrazioni con la seguente modalità: se alla prima estrazione esce una pallina bianca, la si rimette

Dettagli

Lezione 1- Introduzione. Statistica medica e Biometria. Statistica medica-biostatistica. Prof. Enzo Ballone

Lezione 1- Introduzione. Statistica medica e Biometria. Statistica medica-biostatistica. Prof. Enzo Ballone Lezione 1- Introduzione Cattedra di Biostatistica Dipartimento di Scienze sperimentali e cliniche, Università degli Studi G. d Annunzio di Chieti Pescara Prof. Enzo Ballone Statistica medica e Biometria

Dettagli

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520: Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del

Dettagli

Esercizi sul calcolo delle probabilità

Esercizi sul calcolo delle probabilità Esercizi sul calcolo delle probabilità Svolti e da svolgere (per MAR 13 marzo) Dati due eventi A e B dello spazio campionario Ω. Si sappia che P(A c )=0,3 P(B)=0,4 e P(A B c )=0,5 si determinino le probabilità

Dettagli

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL 1 RAPPRESENTAZIONE GRAFICA Per l analisi dati con Excel si fa riferimento alla versione 2007 di Office, le versioni successive non differiscono

Dettagli

Il software Epi Info

Il software Epi Info Il software Epi Info Descrizione e analisi dei dati dello studio sulla compliance: Modulo Analizza i dati I tipi di variabili (aleatorie) (1) Variabile: fenomeno misurato Aleatorio: il risultato di questa

Dettagli

COMPITO n. 1. 3. Siano X, Y due variabili aleatorie tali che il vettore (X, Y ) sia distribuito uniformemente

COMPITO n. 1. 3. Siano X, Y due variabili aleatorie tali che il vettore (X, Y ) sia distribuito uniformemente COMPITO n. 1 a) Nel gioco del poker ad ogni giocatore vengono distribuite cinque carte da un normale mazzo di 52. Quant è la probabilità che un giocatore riceva una scala di re (ovvero 9, 10, J, Q, K anche

Dettagli

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }.

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }. ESERCIZI ELEMENTARI DI CALCOLO DELLE PROBABILITÀ Teorema della somma 1) Giocando alla roulette, calcolare la probabilità che su una estrazione esca: a) Un numero compreso tra 6 e 12 (compresi) oppure maggiore

Dettagli

Probabilità II Variabili casuali discrete

Probabilità II Variabili casuali discrete Probabilità II Variabili casuali discrete Definizioni principali. Valore atteso e Varianza. Teorema di Bienaymé - Čebičev. V.C. Notevoli: Bernoulli e Binomiale. Concetto di variabile casuale Cos'è una

Dettagli

INDAGINE SULLE VACANZE

INDAGINE SULLE VACANZE Livello scolare: 5 a classe INDAGINE SULLE VACANZE Competenze interessate Contenuti Nuclei coinvolti Collegamenti esterni -Rappresentare relazioni e dati e, in situazioni significative, utilizzare le rappresentazioni

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

E LE M E N T I D I P R O B A B I L I T A

E LE M E N T I D I P R O B A B I L I T A L M T I D I P R O B A B I L I T A CI STORICI Il calcolo delle probabilità si è andato sviluppando piuttosto di recente, intorno al 500 e per lungo tempo solo come una branca della matematica Solo dal secolo

Dettagli

Indici (Statistiche) che esprimono le caratteristiche di simmetria e

Indici (Statistiche) che esprimono le caratteristiche di simmetria e Indici di sintesi Indici (Statistiche) Gran parte della analisi statistica consiste nel condensare complessi pattern di osservazioni in un indicatore che sia capace di riassumere una specifica caratteristica

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

FREQUENZA TEORICA E FREQUENZA PERCENTUALE Lezione n. 13

FREQUENZA TEORICA E FREQUENZA PERCENTUALE Lezione n. 13 FREQUENZA TEORICA E FREQUENZA PERCENTUALE Lezione n. 13 Finalità: Enunciare le definizioni maturate attraverso l esercitazione pratica. Sistematizzare concetti e definizioni Metodo: Sperimentazione pratica

Dettagli