ELEMENTI TRIANGOLARI E TETRAEDRICI A LATI DIRITTI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ELEMENTI TRIANGOLARI E TETRAEDRICI A LATI DIRITTI"

Transcript

1 EEMENTI TRIANGOARI E TETRAEDRICI A ATI DIRITTI Nella ricerca di unificazione delle problematiche in vista di una generalizzazione delle procedure di sviluppo di elementi finiti, gioca un ruolo importante l'individuazione di opportuni sistemi di riferimento. Estendendo il concetto di trasformazione è possibile anche individuare opportune coordinate che definendo una mappatura del dominio fisico in un dominio equivalente permettono di semplificare la formulazione: è questo il caso delle coordinate naturali o adimensionali. Esse costituiscono un primo passo di quella generalizzazione completa che è invece rappresentata dalla formulazione parametrica, di cui si discuterà successivamente. a definizione di coordinate naturali assume significato solo in relazione all'elemento che si sta trattando. In generale, un sistema di riferimento di dimensione n è tale se una n-pla di valori delle coordinate consente di identificare in maniera univoca un punto del dominio. a relazione di trasformazione tra il sistema di riferimento dell elemento e quello delle coordinate del modello globale, nelle quali l'elemento viene definito, deve mantenere questa capacità e quindi deve essere tale da individuare una corrispondenza biunivoca dei due domini. I passaggi necessari per la formulazione dell'elemento in queste coordinate risulterà essere notevolmente lo semplificata. Ci limitiamo, per ora, all'esame di elementi con i lati diritti introducendo questo tipo di metodologia; successivamente provvederemo a rimuovere questa limitazione con una formulazione completamente generale. Coordinate naturali nel caso mono-dimensionale: COORDINATE DI INEA Il caso più semplice che possiamo analizzare è quello delle coordinate naturali di un segmento. u Consideriamo su detto segmento, i cui estremi hanno coordinate ed, un punto generico di coordinata : questi divide il segmento in due parti di lunghezza rispettivamente ed ; definiamo queste lunghezze come differenza tra la dimensione del campo e la distanza dall'estremo cui sono riferite e il punto : = ( ) = ( ) ( ) = = ( ) = ( ) ( ) = si ottiene quindi: = = rapportando alla lunghezza dell'elemento questi due termini otteniamo due parametri adimensionali = = tra i quali vale evidentemente la relazione + = che deriva dal fatto che la somma di ed è pari ad. I parametri i prendono il nome di Coordinate di linea, in quanto una coppia di loro valori consente l individuazione univoca di un punto nel dominio monifimensionale. Inoltre è immediato osservare che le due funzioni che le rappresentano mostrano le seguenti caratteristiche: hanno valore unitario in corrispondenza dell estremo di pertinenza

2 hanno valore nullo in corrispondenza dell'altro estremo esibiscono un andamento lineare nel tratto intermedio. Poiché, nota la dimensione del campo, una delle due coordinate è ridondante, dovendo sussistere la relazione di normalizzazione, consideriamo solo la coordinata i. Se sua espressione si mette in evidenza la coordinata si ottiene dapprima = = e quindi con semplici passaggi = = ( ) = + ( ) = + e riconoscendo nel termine (-) la seconda coordinata naturale, grazie alla relazione di normalizzazione, otteniamo: = = ( ) = + ( ) = + Questa espressione rappresenta la trasformazione tra le coordinate naturali i e la coordinata cartesiana. Essa mette in corrispondenza, mediante una operazione di mappatura, il dominio cartesiano, descritto dalla variabile, con quello naturale. Introducendo la coordinata omogenea, i legami diretto ed inverso sono esprimibili in forma matriciale come: = = avendo utilizzato, oltre alle relazioni di mappatura, anche il legame di normalizzazione tra le due coordinate naturali. Possiamo notare altresì le coordinate d area pesano le coordinate fisiche dei due estremi del dominio. Appare allora evidente in questa relazione la struttura di una forma di interpolazione: le coordinate naturali possono qindi essere utilizzate per definire una forma interpolatoria: u = [N()]{d} = [ () ()]{d} Infatti elaborando questa espressione otteniamo, con semplici passaggi, le note formule dell'interpolazione lineare dei parametri nodali: u u u u = [ ]{d} = ( ) u = + u e espressioni delle derivate delle funzioni di forma possono essere determinate ricorrendo alla concatenazione delle derivate. Infatti poiché la coordinata diventa funzione delle coordinate naturali avremo che u ( u+u ) = = u e u = u

3 mentre differenziando le espressione di definizione delle coordinate di linea si ricavano le seguenti relazioni: ( )/ = = ( )/ = = Sostituendo le relazioni appena ricavate si ottiene la seguente espressione del legame deformazione spostamento: u u u u u = + = u + u = = u u Si può notare come pur non avendo utilizzato un sistema di riferimento locale dell elemento la determinazione dell espressione delle funzioni di interpolazione sia risultata particolarmente semplice. 'impiego delle coordinate naturali consente di semplificare anche l'integrazione sul dominio corrispondente; nel caso mono-dimensionale vale la seguente formula: k j k! j! d = ( + k + j)! applicazione di questa formula è particolarmente semplice: si sostituisce alla variabile la sua espressione in funzione delle coordinate naturali, dopodiché si applica la formula di integrazione ai singoli termini così determinati. Come esempio proviamo ad integrare due polinomi, lineare e quadratico. 0 d = + d = d + d = d + 0 d = d = 0 0 d!0! = ( + + 0)! 0!! = ( )! + + d = = che ovviamente coincide con l'integrale esatto della funzione nel dominio,. 0 0 d = + + d = d + d + d 0!0! d = = ( + + 0)! 0 0!! d = = ( )!!! d = = ( + + )! d = ( + + ) = ( )( + + ) che anche in questo caso coincide con l'integrale esatto: d = = ( ) = ( )( + + )

4 Coordinate naturali in dominio bidimensionale: COORDINATE D'AREA In maniera del tutto analoga a quanto visto per il segmento, colleghiamo un punto P, arbitrariamente posizionato all'interno di un triangolo con i tre vertici. y ato A ato P A A ato In questo modo vengono individuate tre sotto-aree triangolari, A,A,A che, una volta normalizzate con l'area del triangolo originale A, costituiscono le Coordinate d'area del triangolo. A A A = = = A A A Come nel caso mono-dimensionale esse permettono di individuare con univocità un punto qualsiasi del triangolo. Anche in questo caso esiste una equazione di vincolo che permette di determinare la terza coordinata note le altre due: + + = che, come estensione del caso monodimensionale, deriva dal fatto che l'area totale del triangolo è data dalla somma di quelle dei tre sotto-triangoli individuati dal punto P. Anche in questo caso definiamo le relazioni diretta ed inversa che legano i due riferimenti: = y y y y y y y y y y y y = A y y y y y e dove il determinante della matrice di trasformazione [X] ha valore pari al doppio dell'area del triangolo ed è dato da det[ A] = ( )( y y) ( )( y y) = A a matrice appena definita coincide con quella utilizzata per la costruzione dell elemento di triangolo a deformazione/sforzo costante con il metodo in Base a. Anche in questo caso, possiamo dire che due qualsiasi delle coordinate d'area, così come una coppia di coordinate cartesiane,y, permettono di individuare univocamente un punto all'interno del triangolo. e formule di interpolazione sul dominio sono ottenute generalizzando quelle del caso monodimensionale: s = [N]{d} = [ ]{d} Dovendo integrare dei termini derivativi ([B]) e trattandosi di un dominio bidimensionale occorrerà tenere conto della variazione di metrica tra i due riferimenti con la nota regola di differenziazione: 4

5 s s s s = + + s s s s = + + i termini rappresentanti la variazione delle coordinate d'area rispetto a quelle fisiche possono essere calcolati derivando la relazione inversa ( ) che permette di determinare le seguenti due matrici riga: y y y y y y = = = A A A = = = A A A infatti = {} [ A] {} ([ A] {} {} ) = = [ A] Quindi le derivate delle coordinate d area rispetto alle coordinate fisiche,y sono date dalle ultime due colonne dell inversa di [A]. Gli sviluppi più frequentemente utilizzati per la formulazione di elementi finiti sono quello lineare e quello parabolico. Sviluppo lineare: s= a + a + a Sviluppo quadratico: s= a + a + a + a4 + a5 + a6 Si può notare che, a differenza di quanto avviene per le funzioni di forma polinomiali, in questo caso gli sviluppi di ordine superiore non sono delle espansioni di quello di ordine inferiore ma sono caratterizzati da espressioni completamente differenti. Anche per il dominio triangolare disponiamo di una formula di integrazione specifica: k j m k! j!m! d = A ( + k + j + m)! Coordinate naturali in dominio tridimensionale: COORDINATE DI VOUME Assegnato un tetraedro definito da vertivci, il generico punto P, arbitrariamente posizionato al suo interno, diivide il volume in quattro tetraedri aventi come base una delle facce del tetraedro stesso e come vertice il punto rimanente. 5

6 4 V y P ato In questo modo vengono individuate quattro sotto-volumi tetraedrici, V,V,V e V4 che, una volta normalizzati con il volume del tetraedro orginale V, costituiscono le Coordinate di volume del tetraedro : V V V V4 = = = 4 = V V V V che permettono di individuare con univocità un punto qualsiasi del tetraedro. Anche in questo caso esiste una equazione di vincolo che permette di determinare una coordinata note le altre tre: = che ovviamente deriva dal fatto che il volume del tetraedro è dato dalla somma di quelli dei quattro sottotetraedri individuati dal punto P. Anche in questo caso definiamo le relazioni diretta ed inversa che legano i due riferimenti: = 4 y y y y y4 z z z z z 4 4 e formule di interpolazione sul dominio sono ottenute generalizzando quelle del caso monodimensionale: s = [N]{d} = [ 4]{d} Dovendo integrare dei termini derivativi ([B]) e trattandosi di un dominio tridimensionale occorrerà tenere conto della variazione di metrica tra i due riferimenti con la nota regola di differenziazione: s s 4 s s/ s/ / / / 4/ s 4 s/ = s/y = /y /y /y 4 /y s s s/ /z s 4 /z /z /z 4/z s / 4 z z z z z s 4 i termini rappresentanti la variazione delle coordinate d'area rispetto a quelle fisiche possono essere calcolati derivando la relazione inversa ( ). Gli sviluppi più frequentemente utilizzati per la formulazione di elementi finiti sono quello lineare e quello parabolico. Sviluppo lineare: 6

7 s= a + a + a + a4 4 Sviluppo quadratico: s= a + a + a + a + a + a + a + a + a + a Anche per il dominio tetraedrico disponiamo di una formula di integrazione specifica: k j m n k! j!m!n! 4 d = 6V ( + k + j + m + n)! EEMENTI DI TRIANGOO E' abbastanza evidente che in termini di generalizzazione delle possibilità operative, un elemento triangolare è superiore ad un elemento rettangolare: non avendo a disposizione, per ora, una tecnica per la realizzazione di elementi quadrangolari di forma generica e possibilmente anche curva (nel senso di elementi rettangolari curvati), risulta più pratico avere a disposizione elementi triangolari. Con questi elementi la corretta approssimazione di una forma qualsiasi è normalmente ottenibile con elementi di dimensioni più grandi e senza tutti i problemi legati alla necessita' di realizzare forme il più possibile rettangolari e piani. Esaminiamo la procedura, basata sulle coordinate d'area, per la generazione di elementi triangolari a lati diritti. Consideriamo la famiglia di elementi triangolari a lati diritti di ordine crescente di cui sono rappresentati in figura i primi tre esponenti (si noti che è estremamente difficile reperire in letteratura elementi di ordine superiore al cubico). Fig. 7.5 Zien Triangolo a deformazione costante in coordinate d'area Svilupiamo la formulazione dell'elemento triangolare a deformazione costante. Si tratta della riformulazione dello stesso elemento precedentemente sviluppato con altra tecnica. elemento è rappresentato nella figura seguente, dove sono stati individuati anche gli elementi per la definizione delle coordinate d area. y ato A ato A A ato Assumiamo le sei componenti di spostamento dei tre nodi come incognite dell'elemento e organizziamole nel vettore di incognite nodali: T {d} = [u v u v u v ] 7

8 In base a questa scelta è possibile ipotizzare una variabilità lineare delle componenti di spostamento u,v nel volume dell'elemento: s= a + a + a a definizione dei coefficienti della forma di interpolazione avviene utilizzando l'interpolazione dei valori nodali: u {s} = = [N]{d} = {d} v a funzione di forma così ricavata relativa al generico nodo è caratterizzata dall'andamento riportato in figura. Funzione interpolante in coordinate d'area inee a costante e ricordando la definizione dell'operatore differenziale [D]: / 0 [D] = 0 / y /y / di pervenire all'espressione della matrice [B] / 0 / 0 / 0 [B] = [D][N] = 0 / y 0 / y 0 / y /y / /y / /y / e ricordando le espressioni ricavate per questi termini: y y y y y y = = = A A A = = = A A A abbiamo infine y y 0 y y 0 y y 0 [B] = A y y y y y y diviso A Questi termini possono essere determinati anche utilizzando la regola di derivazione; consideriamo, a titolo d esempio, le derivate della funzione N: N N N N = + + N N N N = + + e derivate delle funzioni di interpolazione rispetto alle coordinate d'area sono banali: essendo N = 8

9 abbiamo N N N = ; = 0; = 0 per cui otteniamo: N = = N = = Si può quindi ottenere lo stesso risultato partendo direttamente dalla definizione tradizionale della matrice [B]. Dall'esame della matrice, contenente solo termini costanti, risulta evidente che l'elemento è in grado di descrivere uno stato di deformazione/sforzo costante. Infine, poiché l'elemento è a spessore t costante, considerando il materiale uniforme nel volume e tenendo conto dell'invarianza della matrice [B] rispetto alla posizione, per la matrice di rigidezza avremo: T T [k] = t [B] [E][B]ddy= At[B] [E][B] dove è stata indicata A l'area dell'elemento. Essa può venire calcolata come mediante il determinante della matrice di definizione della mappatura. Questo risultato non è però indifferente alla sequenza di numerazione dei nodi del triangolo, in particolare una sequenza oraria determina un valore negativo dell'area. a modalità di lavoro dell'elemento, se in stato piano di sforzo o di deformazione, viene definita mediante la struttura dei coefficienti della matrice elastica del materiale [E]. Si può verificare che la matrice così ottenuta coincide con quella precedentemente determinate con il metodo di Ritz (o in Base a). Triangolo a deformazione lineare in coordinate d'area 'elemento triangolare a deformazione lineare è descritto in figura dove, in particolare appare la sequenza di numerazione dei nodi.. y ato 6 A 5 ato A A 4 ato Assumiamo le nove componenti di spostamento dei sei nodi come incognite dell'elemento e organizziamole nel vettore di incognite nodali: T {d} = [u u u u 4 u5 u6 v v v v4 v5 v 6] In base a questa scelta è possibile ipotizzare una variabilità quadratica delle componenti di spostamento u,v nel volume dell'elemento: s= a + a + a + a4 + a5 + a6 a definizione dei coefficienti della forma di interpolazione avviene al solito imponendo i valori nodali dello spostamento con lo schema operativo precedentemente esaminato del metodo in base α; ciò permette di arrivare alla seguente espressione: 9

10 u N 0 {s} = = [N]{d} = {d} i v 0 N i cioè una matrice di dimensioni nella quale ogni sottomatrice [N i] è una matrice riga contenente le 6 funzioni di forma, da valutare nel generico punto, aventi le seguenti espressioni: N =( ) N4 = 4 N =( ) N5 = 4 N =( ) N6 = 4 Tenendo conto che le derivate di queste funzioni nel riferimento locale sono: N = 4 / / / N = 4 4/ 5/ N = 4 6/ / N = 4 / / N = 4 4/ N = 4 5/ 6/ / / N = 4 / 4/ N = 4 5/ N = 4 6/ e ricordando infine la definizione il legame tra le due metriche e dell'operatore differenziale [D] nel caso piano: / 0 [D] = 0 / y /y / si perviene all'espressione della matrice [B]; in particolare i termini non nulli della prima riga sono dati da: N N / = = (4 )(y y ) A i N / = = + i A + N / = = + + i A N4 4/ = = + i A A + N5 5/ = = + + i A A N6 6/ = = + + i A A N 0 (4 )(y y ) 0 N 0 0 (4 )(y y ) N 4 (y y ) 4 (y y ) 0 N 0 4 (y y ) 4 (y y ) N 4 (y y ) 0 4 (y y ) 'organizzazione della matrice [B] sarà: Ni/ 0 [B] = 0 Ni/y Ni/y N i/ cioè una matrice di dimensioni nella quale ogni sotto-matrice le 6 funzioni di forma derivate rispetto alla direzione specificata. [N i/... ] è una matrice riga contenente 0

11 Infine assumendo, come tipicamente succede, che l'elemento sia a spessore t costante, per la matrice di rigidezza avremo: T [k] t [B] [E][B]ddy = Anche in questo caso la modalità di lavoro dell'elemento, se in stato piano di sforzo o di deformazione, viene definita mediante la struttura dei coefficienti della matrice elastica. Esempio COOK h B ν=.5 P A h 4h Tipo Elemento N. Elementi N. G.d.. Freccia /FV Sforzo/SV CST CST ST

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE")

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC DERIVE) F U N Z I O N I E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE") I N D I C E Funzioni...pag. 2 Funzioni del tipo = Kx... 4 Funzioni crescenti e decrescenti...10

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it 3 4 5 Terne pitagoriche e teorema di Pitagora, numeri e triangoli Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it Qualche osservazione preliminare sul Teorema di Pitagora e le terne

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Elaborato di Meccanica delle Strutture

Elaborato di Meccanica delle Strutture Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Elaborato di Meccanica delle Strutture Docente

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE

ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE NOTE PER IL TECNICO ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE da BRUEL & KJAER Le cosiddette «application notes» pubblicate a cura della Bruel & Kjaer, nota Fabbrica danese specializzata

Dettagli

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,

Dettagli

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = +

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = + FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO Si chiama funzione lineare (o funzione affine) una funzione del tipo = + dove m e q sono numeri reali fissati. Il grafico di tale funzione è una retta, di cui

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano PPUNTI DI SCIENZ DEE COSTRUZIONI Giulio lfano nno ccademico 004-005 ii Indice 1 TRVTURE PINE 1 1.1 Geometria, equilibrio e vincoli...................... 1 1.1.1 Piani di simmetria........................

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

MODELLO ELASTICO (Legge di Hooke)

MODELLO ELASTICO (Legge di Hooke) MODELLO ELASTICO (Legge di Hooke) σ= Eε E=modulo elastico molla applicazioni determinazione delle tensioni indotte nel terreno calcolo cedimenti MODELLO PLASTICO T N modello plastico perfetto T* non dipende

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come Numeri complessi 9 Da questi esempi si può osservare che, facendo le successive potene di un numero complesso, i punti corrispondenti girano attorno all origine. Se inoltre > allora i punti si allontanano

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

1. Scopo dell esperienza.

1. Scopo dell esperienza. 1. Scopo dell esperienza. Lo scopo di questa esperienza è ricavare la misura di tre resistenze il 4 cui ordine di grandezza varia tra i 10 e 10 Ohm utilizzando il metodo olt- Amperometrico. Tale misura

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

Metodi risolutivi per le disequazioni algebriche

Metodi risolutivi per le disequazioni algebriche Metodi risolutivi per le disequazioni algebriche v.scudero Una disequazioni algebrica si presenta in una delle quattro forme seguenti: () P( () P( (3) P( () P( essendo P( un polinomio in. Noi studieremo

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

6. Moto in due dimensioni

6. Moto in due dimensioni 6. Moto in due dimensioni 1 Vettori er descriere il moto in un piano, in analogia con quanto abbiamo fatto per il caso del moto in una dimensione, è utile usare una coppia di assi cartesiani, come illustrato

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

TIP AND TRICKS 01 DEFINIZIONE DEI PARAMETRI DI UNA LASTRA ORTOTROPA EQUIVALENTE A UNA VOLTA MURARIA

TIP AND TRICKS 01 DEFINIZIONE DEI PARAMETRI DI UNA LASTRA ORTOTROPA EQUIVALENTE A UNA VOLTA MURARIA TIP AND TRICKS 01 DEFINIZIONE DEI PARAMETRI DI UNA LASTRA ORTOTROPA EQUIVALENTE A UNA VOLTA MURARIA TECNICA DI DEFINIZIONE DELLE PROPRIETA' DI UNA LASTRA ORTOTROPA EQUIVALENTE A UNA VOLTA MURARIA Descrizione

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Appunti sull uso di matlab - I

Appunti sull uso di matlab - I Appunti sull uso di matlab - I. Inizializazione di vettori.. Inizializazione di matrici.. Usare gli indici per richiamare gli elementi di un vettore o una matrice.. Richiedere le dimensioni di una matrice

Dettagli

La dinamica delle collisioni

La dinamica delle collisioni La dinamica delle collisioni Un video: clic Un altro video: clic Analisi di un crash test (I) I filmati delle prove d impatto distruttive degli autoveicoli, dato l elevato numero dei fotogrammi al secondo,

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem)

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Raccolta di Esercizi di Matematica Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Contenuti: 8-1. L ordine Algebrico delle Operazioni 8-2. Problemi sulle Percentuali 8-3. Le Forme Standard e Point-Slope

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO

Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO IL CRITERIO DI AGGIUDICAZIONE DELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Dicembre 2011 IL CRITERIO DI AGGIUDICAZIONE

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli