SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI"

Transcript

1 PROBLEMA SESSIONE ORDINARIA 0 CORSI SPERIMENTALI Sia ( x) ln ( x) ln x sia ( x) ln ( x) ln x.. Si dtrmino i domini di di.. Si disnino, nl mdsimo sistma di assi cartsiani ortoonali Oxy, i raici di di.. Si dtrminino, s sistono, l coordinat dli vntuali punti di discontinuità o di non drivabilità di di rispttivamnt. 4. Si calcoli l ara comprsa tra ( x ) l ass x pr x. Ossrviamo prliminarmnt ch la unzion (x) si ottin dalla (x) scambiando x in x, ciò vuol dir ch il raico di (x) è, risptto a qullo di (x), simmtrico risptto all ass dll y. x 0. Dominio di (x): dinizion di radical. x 0 ln x ln x 0 ln x 0, pr la dinizion di loaritmo pr la Ma pr la proprità di loaritmi si ha ch ln x ln x è il quadrato di ln x. Abbiamo quindi ( x) ln ( x) ln x ln x ln x. Essndo il radical dato con radicando non nativo, prché quadrato, abbiamo ch il sistma di disquazion ammtt com soluzioni x > 0. Il dominio dlla unzion (x) è l intrvallo 0,. Pr simmtria, il dominio dlla unzion (x) è l intrvallo,0.. Il raico dlla unzion ( x) ln x si ottin da qullo dlla unzion y ln x pr traslazion vrso il basso (nuovo punto di intrszion con l ass dll asciss punto x = ) pr ribaltamnto dll parti di ordinata nativa. Il raico di (x) si ottin da qullo di (x) pr simmtria risptto all ass dll ordinat.

2 . Essndo il raico drivato dal raico di unzioni ondamntali not si dduc ch l unzioni non hanno punti di discontinuità. Studiamo la drivabilità nl punto di ascissa x = pr la unzion. s x ln x s x x ( x) ; '( x). ln x s 0< x s 0< x x La drivata dstra val mntr la drivata sinistra val. Quindi in x = la unzion prsnta un punto anoloso. 4. L ara comprsa tra ( x ) l ass x pr x è data da: (ln x ) dx ln x dx Il scondo intral è immdiato: dx x Il primo intral si calcola pr parti, assumndo com attor inito : ln xdx x ln x xdx x ln x x c. x

3 Prtanto ln x x ln x x ln ln ln ln (ln x ) dx x ln x x ln ln L ara comprsa tra ( x ) l ass x pr x val ln. PROBLEMA Siano l unzioni dinit, pr tutti li x rali, da ( x) 8 x ( x) sin x.. Fissato un convnint sistma di ririmnto cartsiano Oxy, si studino s n disnino i rispttivi raici G G.. Si scrivano l quazioni dll rtt r s tannti, rispttivamnt, a G ascissa x = G nl punto di. Qual è la misura, in radi primi sssasimali, dll anolo acuto individuato da r da s?. Si calcoli l ara dlla rion R racchiusa tra G 4. Si scrivano, spiandon il prché, ma snza calcolarli, li intrali diniti ch orniscono i volumi di solidi K W ottnuti dall rotazioni di R, attorno all rtt y = 0 y = - rispttivamnt.. Il raico dlla unzion si ottin dal raico dlla unzion y x (parabola cubica) G. sostitundo ad oni punto dl raico di coordinat (, ( )) x x il punto di coordinat x,8 ( x )) succssivamnt lasciando invariata la part di raico così ottnuta con punti di ordinata positiva o nulla sostitundo tutti i punti x, y di ordinata nativa con i punti di coordinata x, y. La unzion ha com dominio l insim di numri rali, intrsca li assi nll oriin, il raico è situato nl primo quadrant s x 0 nl scondo quadrant s x 0, è crscnt pr x 0 dcrscnt pr x 0 x = 0 è un punto di non drivabilità. Il raico dlla unzion si ottin dal raico dlla unzion sno ma considrando un priodo pari a. I raici G (rosso in iura) G (vrd in iura) sono rapprsntati nlla iura sunt.

4 . Pr x 0 si ha ( x) 8x 8x. 8 '( x) 4x ' Applicando la ormula dlla rtta passant pr un punto di assnato coicint anolar si ha: r : y 6 x y 6x sin '( x) cos x ' 0. Inatti x è l ascissa di uno di massimi pr la unzion. La rtta tannt in x = al raico G ha quazion s: y =. Ricordiamo ch s du rtt, rispttivamnt di coicinti anolari m d m, ormano un anolo m m' divrso da 90, allora la tannt di α si ottin dall ualianza: tan. mm' Nl nostro caso, indicato con α l anolo ormato dall du tannti, ricaviamo 6 0 tan 6 arctan 6 80, ch è il valor dll anolo sprsso in radi con unità 60 scondari dcimali. Pr ottnr, com richisto, la stssa misura con unità scondari sssasimali diitiamoli tasto DMS dlla calcolatric liamo sul display il risultato 80 5, ch arrotondiamo pr il principio dl minimo rror a 80.. Ossrviamo prliminarmnt ch i raici G G si intrscano nll oriin, pr l considrazion prcdnti, nl punto di coordinat,. Prtanto l ara dlla rion R racchiusa tra G G è data da: 4 x S sin x 8x dx sin xdx 8 cos x Il volum dl solido K ottnuto mdiant la rotazion attorno all ass dll asciss dlla rion R è dato da: sin xdx 8x dx. 0 0 Nl scondo caso poiché la rotazion avvin attorno alla rtta y =-, ttuiamo la traslazion ch porti l oriin dl sistma di ririmnto nl punto di coordinat (0,-) l cui quazioni sono X x x X l quazioni dlla trasormazion invrsa sono. Quindi: Y y y Y y sin x Y sin X y sin x y x Y X y y x. 4

5 Il volum dl solido nrato dalla rotazion di R intorno alla rtta di quazion y = - è dato dalla dirnza tra il volum dl solido nrato dalla rotazion dl tratto di R intorno al nuovo ass y il volum dl cilindro di altzza raio uual a. V 8x dx sin x dx 0 0 QUESTIONARIO QUESITO Cosa rapprsnta il sunt intral qual è il suo valor? tan h tan 6 6 lim h0 h Il limit (non l intral!) assnato rapprsnta il limit dl rapporto incrmntal dlla unzion y tan x quindi la drivata calcolata in x0. 6 y '( x) cos x ; ' y 6 = 4 cos. 6 Quindi: tan h tan lim h0 h QUESITO Si calcoli la drivata diciassttsima di ( x) cos x. '( x) sin x ''( x) cos x '''( x) sin x IV ( x) cos x ( x) Quindi dopo quattro drivat ottniamo la unzion di partnza. La drivata diciassttsima èuual alla '( x) ssndo il rsto dlla division tra 7 4. QUESITO Si lancino du dadi. Qual è la probabilità ch uno soltanto uno di du numri sia 5? L vnto composto si scind nli vnti lmntari: 5 sul primo dado un numro divrso da 5 sul scondo oppur un numro divrso da 5 sul primo dado 5 sul scondo. Pr il torma dlla probabilità composta pr qullo dlla probabilità total si ha: 5

6 QUESITO 4 Si scriva l quazion dlla rtta normal al raico di y sin x nl punto di ascissa La normal ad una curva in un punto è la normal alla tannt alla curva in qul punto. x. 4 y '( x) sin x cos x ; y ' sin cos pr la condizion di prpndicolarità il coicint anolar dlla rtta normal è -. Applichiamo l quazion dlla rtta passant pr un punto di assnato coicint anolar: y sin x y x QUESITO 5 Si mostri ch, nllo sviluppo di a b n k n k n!, il coicint dl trmin a b è uual a. k! n k! La ormula dlla potnza di un binomio: n n n n n n n n n a b a a b a b... a k b n k... b n k n k 0 k n. Il coicint di a b è n n n! k. Quindi dobbiamo dimostrar ch k. k! n k! n nn... n k Da k moltiplicando numrator dnominator pr n k! k! n n! ricordando il siniicato di attorial si ottin k. k! n k! QUESITO 6 È noto ch il lato dl dcaono rolar inscritto in un crchio è szion aura dl raio. Si utilizzi il risultato pr calcolar sin. 0 6

7 S AOC ˆ = 6, allora 0AB ˆ 7, ABC ˆ 7. Il trianolo AOC è, quindi, isoscl sulla bas AB. Dal vrtic A conduciamo la bisttric dll anolo 0AB ˆ indichiamo con D il suo punto di intrszion con il lato BO. Gli anoli dl trianolo ABD sono BAD ˆ 6, DBA ˆ 7, BDA ˆ 7. Prtanto ABD è isoscl simil al trianolo AOB. Pr la similitudin ra i du trianoli val la proporzion: DB : AB AB : AO 7

8 Ponndo il lato dl dcaono AB x (x>0) posto r il raio dlla circonrnza, la proporzion r : x x : r x da cui si ottin l quazion x rx r 0 la cui radic accttabil è: divnta: 5 x. Pr la particolar proporzion vriicata da AB da OA, con un trmin ch vin dalla tradizion rca, si dic ch il smnto AB è szion aura dl smnto OA. Tracciamo adsso la bisttric dll anolo DAB ch intrsca DB nl punto H. L anolo AHB è rtto ssndo DAB un trianolo isoscl sulla bas DB. Applicando il torma di trianoli rttanoli si ha DB 5 r r 5 HB 5 5 sin8 AB AB r QUESITO 7 È dato un ttradro rolar di spiolo l altzza h. Si dtrmini l ampizza dll anolo ormato da l da h. Il smnto AC ha pr strmi il vrtic A dl trianolo di bas il pid dlla prpndicolar C tracciata dal vrtic B. AC l pr cui, applicando i tormi dl trianolo rttanolo al trianolo ABC si ha AC sin arcsin 5 5' AB QUESITO 8 Fra l piramidi rtt a bas quadrata di assnata suprici latral S, si dtrmini qulla di volum massimo. Il qusito è uual al qusito corso di ordinamnto sssion suppltiva a.s. 984/985 8

9 Sia h l altzza dlla accia dlla piramid x la lunhzza dl lato dlla bas. hx hx S L ara di una sinola accia è quindi l ara dlla suprici latral è S 4 h. x L altzza dlla piramid, applicando il torma di Pitaora è h PIRAMIDE 4 4 S x S x S x ssndo x >0. 4x 4 4x x 4 4 S x x S x La unzion volum dlla piramid è V ( x) x. x x S x V '( x) S x x S x S x V '( x) 0 x 4 S V '( x) 0 0 x 4 S La unzion volum è strttamnt crscnt pr S x 4. S Il volum dlla piramid è massimo s x 4 il suo valor è: S S 4 S V S x 4 strttamnt dcrscnt pr QUESITO 9 Il problma di Eron (matmatico alssandrino vissuto probabilmnt nlla sconda mtà dl I scolo d. C.) consist, assnati nl piano du punti A B, situati dalla stssa part risptto ad una rtta r, nl dtrminar il cammino minimo ch coniun A con B toccando r. Si risolva il problma nl modo ch si prrisc. 9

10 Qusito dlla sssion ordinaria corso sprimntal PNI anno 006. Indichiamo con P il punto dlla rtta r tal ch il cammino APB sia minimo. Dtto A il simmtrico di A risptto ad r, si ha ch A P = AP; quindi dimostrar la tsi inizial, quival a provar ch è minimo il cammino A PB qusto accad quando i tr punti sono allinati, dato ch in un trianolo oni lato è minor dlla somma dli altri du. Dal conronto dli anoli ch compaiono nlla iura su ch: il cammino minimo richisto si trova in corrispondnza dl caso in cui AP BP ormano anoli uuali con la rtta r, cioè s il cammino è prcorso da un raio di luc, quando l anolo di incidnza è uual all anolo di rilssion. QUESITO 0 Qual dll sunti unzioni è positiva pr oni x ral? A) cos(sin( x )) B) sin(cos( x )) C) sin(ln( x )) D) Si iustiichi la risposta. La risposta corrtta è la A. cos(ln( x )) La unzion cosno è positiva quando l anolo assum valori comprsi tra. Inoltr la unzion sno assum valori smpr comprsi tra - quindi ssndo valida la disuualianza allora cos(sin( x )) assum valori positivi pr oni x ral. Nl caso B, la unzion sno assum valori positivi s l anolo assum valori comprso tra 0. Quindi la disuualianza è 0. Nl caso C D, la unzion loaritmo, aromnto dlla unzion trionomtrica, è illimitata quindi l unzioni sin(ln( x )) cos(ln( x )) assumono anch valori nativi. 0

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1.

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1. CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ Spazi di probabilità, vnti smplici d vnti composti Indichiamo con S lo spazio dgli vnti. Esso è un insim, i cui lmnti sono dtti vnti. Nl lancio di un dado, lo

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie.

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie. Rgimi di cambio In qusta lzion: Studiamo l conomia aprta nl brv nl mdio priodo. Studiamo l crisi valutari. Analizziamo brvmnt l Ar Valutari Ottimali. 279 Il mdio priodo Abbiamo visto ch gli fftti di politica

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

p(e 3 ) = 31 [R. c) e d)]

p(e 3 ) = 31 [R. c) e d)] CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ - ESERCIZI I.) Anna, Batric Carla fanno una gara di corsa. Stimo ch Anna Carla siano ugualmnt vloci ch Batric abbia probabilità doppia dll altr du di vincr la

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Univrità di apoli arthnop Facoltà di Inggnria Coro di Tramiioni umrich docnt: rof. Vito acazio 6 a Lzion: // Sommario Calcolo dlla proailità di rror nlla tramiion numrica in prnza di AWG AM inario M inario

Dettagli

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007 ispns orso ostr Zon ismica 2 mod _Prof amillo Nuti_ AA 2006 2007 AZIONI IMIHE RAMIE PERO I RIPOA- LA NUOVA NORMA 2007 AZIONI IMIHE L azioni sismich di protto con l quali valutar il risptto di divrsi stati

Dettagli

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Gnralità INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Una acchina lttrica rotant è un convrtitor di nrgia ccanica in lttrica (gnrator) o, vicvrsa, di nrgia lttrica in ccanica (otor). Il fnono

Dettagli

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE 1 -LE ASPETTATIVE: NOZIONI DI BASE - MERCATI FINANZIARI E ASPETTATIVE DUE DEFINIZIONI PER IL TASSO DI INTERESSE Il tasso di intrss in trmini di monta è chiamato tasso di intrss nominal (i). Il tasso di

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

REPORT DELLA VALUTAZIONE COLLETTIVA

REPORT DELLA VALUTAZIONE COLLETTIVA CONCORSO DI PROGETTAZIONE UNA NUOVA VIVIBILITA PER IL CENTRO DI NONANTOLA PROCESSO PARTECIPATIVO INTEGRATO CENTRO ANCH IO! REPORT DELLA VALUTAZIONE COLLETTIVA ESITO DELLE VOTAZIONI RACCOLTE DURANTE LE

Dettagli

Compact-1401. Compact-1401. Listino prezzi F6 Marzo 2013 MICRON

Compact-1401. Compact-1401. Listino prezzi F6 Marzo 2013 MICRON Listino przzi F6 Marzo 013 UNI EN 1401 act-1401 UNI EN 1401 Carbonato di calcio,5 MICRON Tubi di PVC-U pr condott fognari civili d industriali costruiti scondo UNI EN 1401 GRESINTEX DALMINE RESINE Tubi

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

Palazzina di Caccia di Stupinigi, Fondazione Ordine Mauriziano

Palazzina di Caccia di Stupinigi, Fondazione Ordine Mauriziano , Fondazion Ordin Mauriziano LE PROPOSTE PER I CENTRI ESTIVI ESTATE 2014 IN PALAZZINA: DIVERTIRSI IMPARANDO VISITE A TEMA E LABORATORI PER I CENTRI ESTIVI Dalla primavra 2014 la palazzina di caccia offr

Dettagli

Introduzione ai segnali (causali, regolari, di ordine esponenziale)... 2 Il segnale di Heavyside... 3 Definizione di trasformata di Laplace...

Introduzione ai segnali (causali, regolari, di ordine esponenziale)... 2 Il segnale di Heavyside... 3 Definizione di trasformata di Laplace... Appunti di Controlli Automatici Capitolo - part I Traformata di aplac Introduzion ai gnali (cauali, rgolari, di ordin ponnzial)... Il gnal di Havyid... 3 Dfinizion di traformata di aplac... 3 PROPRIETÀ

Dettagli

S O L U Z I O N I + 100

S O L U Z I O N I + 100 S O L U Z I O N I Nl 00 un farmaco vnva vnduto a 70 a) Nll pots ch ogn anno l przzo aumnt dl 3% rsptto all anno prcdnt quanto vrrbb a costar lo stsso farmaco nl 0? b) Supponamo ch l przzo dl farmaco nl

Dettagli

LE PROPOSTE PER I CENTRI ESTIVI Palazzina di Caccia di Stupinigi ESTATE 2015

LE PROPOSTE PER I CENTRI ESTIVI Palazzina di Caccia di Stupinigi ESTATE 2015 LE PROPOSTE PER I CENTRI ESTIVI ESTATE 2015 SPECIALE MOSTRA FRITZ. UN ELEFANTE A CORTE! 20 Maggio 13 sttmbr 2015 IN PALAZZINA: DIVERTIRSI IMPARANDO VISITE A TEMA E LABORATORI PER I CENTRI ESTIVI Anch nlla

Dettagli

Piano di lavoro a.s. 2013-2014 Insegnamento: Matematica Classe: 1B Docente: prof.ssa Sarah Baratta

Piano di lavoro a.s. 2013-2014 Insegnamento: Matematica Classe: 1B Docente: prof.ssa Sarah Baratta LICEO SCIENTIFICO AMALDI Piano di lavoro a.s. 2013-2014 Insgnamnto: Matmatica Class: 1B Docnt: prof.ssa Sarah Baratta Obittivi dlla disciplina Comptnz Utilizzar l tcnich procdur di calcolo studiat Formalizzar

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT 1 Prima Stsura Data: 14-08-2014 Rdattori: Gasbarri, Rizzo SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT Indic 1 SCOPO... 2 2 CAMPO D APPLICAZIONE... 2 3 DOCUMENTI DI RIFERIMENTO... 2 4

Dettagli

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci Consumatori in cifr Tariff dll prstazioni sanitari nll divrs rgioni italian Laura Filippucci La rcnt proposta dl Govrno di aggiornar il tariffario dll prstazioni sanitari di laboratorio ha sollvato un

Dettagli

Il prezzo del petrolio e dei carburanti tra maggio e settembre 2008

Il prezzo del petrolio e dei carburanti tra maggio e settembre 2008 Consumatori in cifr Il przzo dl ptrolio di carburanti tra maggio sttmbr 2008 Marco Bulfon Introduzion 142 Nl corso dll ultimo anno i przzi intrnazionali di molt matri prim hanno subìto un comportamnto

Dettagli

Filtraggio nel Dominio della Frequenza Parte I

Filtraggio nel Dominio della Frequenza Parte I Filtraggio nl Dominio dlla Frqunza Part I Prof. Sbastiano Battiato Introduzion Una funzion priodica può ssr sprssa com somma di sni /o cosni di diffrnti frqunz ampizz Sri di Fourir. Anch una funzion non

Dettagli

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Francesca Fiorenzi ALBERO BINARIO LIBERO. Novembre 1996 n.

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Francesca Fiorenzi ALBERO BINARIO LIBERO. Novembre 1996 n. Quadrni dl Dipartimnto di Matmatica Univrsità dgli Studi di Parma Francsca Fiornzi ALBERO BINARIO LIBERO Novmbr 1996 n. 153 1 2 Francsca Fiornzi ALBERO BINARIO LIBERO SOMMARIO Un albro binario libro è

Dettagli

APPUNTI DI MACROECONOMIA

APPUNTI DI MACROECONOMIA Brtocco G., Kalajzić A. Mourad Agha G. Univrsità dgli Studi dll Insubria Dipartimnto di Economia Anno accadmico 2014-2015 APPUNTI DI MACROECONOMIA (Sconda part pp. 175-296) Il modllo IS-LM pr una conomia

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA RASFORMAA DI LAPLACE Pr dcrivr l voluzion di un itma in rgim tranitorio, oia durant il paaggio dll ucit da un rgim tazionario ad un altro, è ncario ricorrr ad un modllo più gnral riptto al modllo tatico,

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

APPROFONDIMENTO MANAGEMENT

APPROFONDIMENTO MANAGEMENT APPROFONDIMENTO MANAGEMENT Iniziativa Comunitaria Equal II Fas IT G2 CAM - 017 Futuro Rmoto Approfondimnto LIQUIDAZIONI E VERSAMENTI IVA ORGANISMO BILATERALE PER LA FORMAZIONE IN CAMPANIA LIQUIDAZIONE

Dettagli

le Segreterie degli Organi di Coordinamento delle rr.ss.aa. FABI DIRCREDITO SINFUB

le Segreterie degli Organi di Coordinamento delle rr.ss.aa. FABI DIRCREDITO SINFUB In rlazion a quanto prvisto dall art.2120 C.C., dall norm di lgg dagli accordi collttivi vignti, convngono ch, in aggiunta alla casistica sprssamnt prvista, il dipndnt possa chidr la anticipazion dl proprio

Dettagli

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta REDATTO: APPROVATO: APPROVATO: INTERNAL AUDITOR COMITATO DI CONTROLLO INTERNO C.D.A. Luogo Data Pr ricvuta INDICE 1.0 SCOPO E AMBITO DI APPLICAZIONE 2.0 RIFERIMENTI NORMATIVI 3.0 DEFINIZIONI 4.0 RUOLI

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE STATALE G. CIGNA - G. BARUFFI - F. GARELLI

ISTITUTO ISTRUZIONE SUPERIORE STATALE G. CIGNA - G. BARUFFI - F. GARELLI ISTITUTO ISTRUZIONE SUPERIORE STATALE G. CIGNA - G. BARUFFI - F. GARELLI PROGRAMMAZIONE INDIVIDUALE PIANO DIDATTICO ANNUALE A.S. 2015/2016 Matria: Tcnologi Informatich Class (docnt) 1^ACH - Prof. Musumci

Dettagli

L'idrologia: Progettazione - Formazione - Consulenza - Ricerca. Pianificazione - Ambiente - Territorio - GIS. Studio Associato GfosServices

L'idrologia: Progettazione - Formazione - Consulenza - Ricerca. Pianificazione - Ambiente - Territorio - GIS. Studio Associato GfosServices Studio Associato GfosSrvics Via Roma, 63 05022 Amlia (Tr) Pianificazion - Ambint - Trritorio - GIS Progttazion - Formazion - Consulnza - Ricrca Tl/FAX: +390744982190 -mail:info@gfossrvics.it wb-sit: http://www.gfossrvics.it

Dettagli

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica Una Esprinza di Trattamnto ACUDETOX Antifumo in Fabbrica Rmo ANGELINO Dirttor SC Dipndnz Patologich - ASL 10 Pinrolo TO, Antonio POTOSNJAK I.P. SC Dipndnz Patologich - ASL 10 Pinrolo TO Prmssa La rlazion

Dettagli

Le politiche per l equilibrio della bilancia dei pagamenti

Le politiche per l equilibrio della bilancia dei pagamenti L politich pr l quilibrio dlla bilancia di pagamnti Politich pr ottnr l quilibrio dlla bilancia di pagamnti (BP = + MK = 0) nl lungo priodo BP 0 non è sostnibil prchè In cambi fissi S BP0 si sauriscono

Dettagli

- Radioattività - - 1 - 1 Ci = 3,7 1010 dis / s. ln 2 T 2T = e ln 2 2 = e 2ln 2 = 1 4

- Radioattività - - 1 - 1 Ci = 3,7 1010 dis / s. ln 2 T 2T = e ln 2 2 = e 2ln 2 = 1 4 Radioattività - Radioattività - - - Un prparato radioattivo ha un attività A 0 48 04 dis / s. A quanti μci (microcuri) si riduc l attività dl prparato dopo du tmpi di dimzzamnto? Sapndo ch: ch un microcuri

Dettagli

Coordinamento tra le protezioni della rete MT del Distributore e la protezione generale. degli Utenti MT.

Coordinamento tra le protezioni della rete MT del Distributore e la protezione generale. degli Utenti MT. Coordinamnto tra l protzioni dlla rt MT dl Distributor la protzion gnral 1. PREMESSA. dgli Utnti MT. ll rti di distribuzion a mdia tnsion (MT), l unico organo di manovra automatico è l intrruttor di lina

Dettagli

Grazie per aver scelto un telecomando Meliconi.

Grazie per aver scelto un telecomando Meliconi. IT I Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil 1 è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

De Rossi, profumo di primavera Sabato 23 Marzo 2013 10:49 - DANIELE GIANNINI

De Rossi, profumo di primavera Sabato 23 Marzo 2013 10:49 - DANIELE GIANNINI DANIELE GIANNINI Frsco com un fior sboccia nl primo giorno primavra Il gol Danil D Rossi al Brasil ha s gnato simbolicamnt la fin dll invrno Il risvglio dlla natura qullo dlla Nazional stava prdndo immritatamnt

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

1. Condizioni di arbitraggio internazionale delle merci e dei titoli. Le teorie de la Parità dei poteri d acquisto la Parità dei tassi d interesse

1. Condizioni di arbitraggio internazionale delle merci e dei titoli. Le teorie de la Parità dei poteri d acquisto la Parità dei tassi d interesse . Condizioni di arbitraggio intrnazional dll rci di titoli L tori d la Parità di otri d acuisto la Parità di tassi d intrss 5_Andic_G.GAROFALO L arbitraggio è un'orazion ch consist nll'acuistar un bn o

Dettagli

LG ha introdotto NeON 2 dotato di tecnologia CELLO, una cella di nuova concezione che migliora le prestazioni e l'affidabilità. Fino a 320 W 300 W

LG ha introdotto NeON 2 dotato di tecnologia CELLO, una cella di nuova concezione che migliora le prestazioni e l'affidabilità. Fino a 320 W 300 W Tcnologia CELLO IT LG ha introdotto NON 2 dotato di tcnologia CELLO, una clla di nuova conczion ch migliora l prstazioni l'affidabilità. Fino a 320 W 300 W Tcnologia CELLO Cll Connction (Connssion Clla)

Dettagli

visto il Protocollo d Intesa tra Regione Campania e Università degli Studi di Napoli

visto il Protocollo d Intesa tra Regione Campania e Università degli Studi di Napoli UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II SCUOLA DI MEDICINA E CHIRURGIA BANDO DI SELEZIONE PER L AFFIDAMENTO DI INRICHI DIDATTICI NEI CORSI DI LAUREA DELLE PROFESSIONI SANITARIE PER L ANNO ACDEMICO

Dettagli

ESAME DI STATO 2003 SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI A INDIRIZZO SPERIMENTALE (PNI E SCIENTIFICO- TECNOLOGICO «BROCCA»)

ESAME DI STATO 2003 SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI A INDIRIZZO SPERIMENTALE (PNI E SCIENTIFICO- TECNOLOGICO «BROCCA») Archimede 4 23 ESAME DI STATO 23 SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI A INDIRIZZO SPERIMENTALE (PNI E SCIENTIFICO- TECNOLOGICO «BROCCA») Il candidato risolva uno dei due problemi e 5 dei quesiti

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida.

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida. INTRODUZIONE Pr la prdisposizion dl piano, è ncssario far rifrimnto all Lin Guida. Lo schma proposto di sguito è stato sviluppato nll ambito dl progtto Miglioramnto dll prformanc dll istituzioni scolastich

Dettagli

La ricchezza delle famiglie: confronto internazionale 1. Riccardo De Bonis

La ricchezza delle famiglie: confronto internazionale 1. Riccardo De Bonis La ricchzza dll famigli: confronto intrnazional 1 Riccardo D Bonis L articolo confronta la ricchzza dll famigli italian con qulla di altri si Pasi industrializzati. L famigli italian occupano una posizion

Dettagli

"PREMIO BEST PRACTICE PATRIMONI PUBBLICI 2010" MIMUV: Monitoraggio Interventi Manutenzione Urbana Venezia

PREMIO BEST PRACTICE PATRIMONI PUBBLICI 2010 MIMUV: Monitoraggio Interventi Manutenzione Urbana Venezia "PREMIO BEST PRACTICE PATRIMOI PUBBLICI 2010" MIMUV Monitoraggio Intrvnti Manutnzion Urbana Vnzia MIMUV: Monitoraggio Intrvnti Manutnzion Urbana Vnzia Contsto patrimonial quo ant "PREMIO BEST PRACTICE

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Comunità Europea (CE) International Accounting Standards, n. 17

Comunità Europea (CE) International Accounting Standards, n. 17 Scopo contnuto dl documnto Comunità Europa (CE) Intrnational Accounting Standards, n. 17 Lasing Lasing Finalità SOMMARIO Paragrafi 1 Ambito di applicazion 2-3 Dfinizioni 4-6 Classificazion dll oprazioni

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

PIANO GESTIONE EMERGENZE INTERNE

PIANO GESTIONE EMERGENZE INTERNE CADUTA NEVE-FORMAZIONE DI GHIACCIO E ONDATE DI GRANDE FREDDO Roma, 02/2015 Rv.06/annual Pagina 1 di 6 Sd lgal Circonvallazion Gianicolns 87-00152 Roma A.Orlli. Tl. 3387 PIANO GESTIONE EMERGENZE INTERNE

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Classe di abilitazione (o classe di concorso) Reclutamento docenti e Graduatorie http://www.istruzione.it/urp/reclutamento.shtml

Classe di abilitazione (o classe di concorso) Reclutamento docenti e Graduatorie http://www.istruzione.it/urp/reclutamento.shtml Class di abilitazion (o class di concorso) La class di concorso è una sigla alfa numrica con la qual si indica l insim di matri ch possono ssr insgnat da un docnt. Indica una particolar cattdra di insgnamnto,

Dettagli

UTILIZZO TASTI E FUNZIONI

UTILIZZO TASTI E FUNZIONI wb Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil wb è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado di

Dettagli

Integrazione e Integratori delle Informazioni

Integrazione e Integratori delle Informazioni SC.S.I. A.S.O. Ordin Mauriziano Workshop intrrgional sui sistmi informativi pr la gstion la valutazion dll rti oncologich Torino 24-25 maggio 2007 Intgratori dll Andra Bo - A.S.O. Ordin Mauriziano - S.C.

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1. ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per

Dettagli

Renato Filosa e Giuseppe Marotta. Stabilità finanziaria e crisi. Il ruolo dei mercati, delle istituzioni e delle regole

Renato Filosa e Giuseppe Marotta. Stabilità finanziaria e crisi. Il ruolo dei mercati, delle istituzioni e delle regole Supplmnto analitico al tsto, dito nl 011 dalla Socità ditric Il Mulino, Bologna, di Rnato Filosa Giuspp Marotta Stabilità finanziaria crisi. Il ruolo di mrcati, dll istituzioni dll rgol Supplmnto onlin

Dettagli

Responsabilità del posteggiatore e diritti dell utente

Responsabilità del posteggiatore e diritti dell utente Rsponsabilità dl postggiator diritti dll utnt Danil Monsi Qusto articolo tratta dlla qualificazion giuridica dl contratto atipico di postggio dlla sua assimilabilità al contratto di dposito. La rsponsabilità

Dettagli

ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI

ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI STUDI DI VERONA, L UNIVERSITA IUAV DI VENEZIA, L UNIVERSITA CA FOSCARI E L AZIENDA REGIONALE PER

Dettagli

Nazionale Regionale Provinciale. Nazionale Regionale Provinciale

Nazionale Regionale Provinciale. Nazionale Regionale Provinciale Progtto dll Provinc (PSU-00003) maggio 203, abstract Istruzion formazion/ istruzion comptnz TEMA Rl Con il Comptnz + Livllo di comptnza numrica dgli studnti Nom indicator Formula Livllo Trritorial disponibil

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

I quesiti dal 2008 al 2012 a cura di Daniela Valenti

I quesiti dal 2008 al 2012 a cura di Daniela Valenti I quesiti dal 2008 al 2012 a cura di Daniela Valenti Geometria del piano e dello spazio, trigonometria [2008, ORD] Si consideri la seguente proposizione: Se due solidi hanno uguale volume, allora, tagliati

Dettagli

2.1 Proprietà fondamentali dei numeri reali. 1. Elenchiamo separatamente le proprietà dell addizione, moltiplicazione e relazione d ordine.

2.1 Proprietà fondamentali dei numeri reali. 1. Elenchiamo separatamente le proprietà dell addizione, moltiplicazione e relazione d ordine. Capitolo 2 Numri rali In qusto capitolo ci occuprmo dll insim di numri rali ch indichrmo con il simbolo R: lfunzionidfinitsutaliinsimiavaloriralisonol oggttodistudiodll analisi matmatica in una variabil.

Dettagli

Documento tratto da La banca dati del Commercialista

Documento tratto da La banca dati del Commercialista Documnto tratto da La banca dati dl Commrcialista Intrnational Accounting Standards Board Intrnational Accounting Standards, n. 17 SCOPO E CONTENUTO DEL DOCUMENTO Lasing Il prsnt Principio sostituisc lo

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Anna Soru e Cristina Zanni

Anna Soru e Cristina Zanni Consumatori in cifr L prospttiv occupazionali di laurati in Lombardia Anna Soru Cristina Zanni La CCIAA di Milano Unioncamr Lombardia, attravrso Formapr con il coinvolgimnto dll dodici univrsità dlla Lombardia,

Dettagli

Il costo di cittadinanza

Il costo di cittadinanza Il costo di cittadinanza Brnardo Pizztti La rinnovata attnzion di opinion pubblica Parlamnto al sttor di srvizi pubblici locali non può ssr limitata ai soli asptti di organizzazion di srvizi, ma dv ssr

Dettagli

Nuove tendenze di consumo. Vanni Codeluppi

Nuove tendenze di consumo. Vanni Codeluppi Nuov tndnz di consumo Vanni Codluppi La crisi conomica ha dtrminato di cambiamnti ni comportamnti di consumatori, ch si sono maggiormnt spostati vrso i bni ssnziali. In Occidnt in Italia l andamnto di

Dettagli

Quanto (non) sanno gli italiani di Rc auto

Quanto (non) sanno gli italiani di Rc auto Quanto (non) sanno gli italiani di Rc auto Barbara Baggi Lornzo Zucchi La conoscnza dll assicurazion pr la rsponsabilità civil dgli autovicoli prsnta luci ombr. Grazi a un inchista statistica di Altroconsumo

Dettagli

Esame di Stato - Matematica (1998-2008)

Esame di Stato - Matematica (1998-2008) Esame di Stato - Matematica (1998-2008) 17 settembre 2008 2 1. (Sessione Ordinaria, 1998) - Corso di Ordinamento (a) In un piano, riferito a un sistema di assi cartesiani ortogonali Oxy, sono assegnate

Dettagli

per tutti i visitatori disponibile tutti i giorni gratuito con il biglietto della mostra Contiene un album una matita una gomma questo manuale

per tutti i visitatori disponibile tutti i giorni gratuito con il biglietto della mostra Contiene un album una matita una gomma questo manuale pr tutti i visitatori disponibil tutti i giorni gratuito con il biglitto dlla mostra Contin un album una matita una gomma qusto manual Un manual pr visitar la mostra ossrvar 1 chi è già un po sprto chi

Dettagli

La politica degli incentivi al consumo: dimensioni, caratteristiche, valutazione, problemi 1. Augusto Ninni

La politica degli incentivi al consumo: dimensioni, caratteristiche, valutazione, problemi 1. Augusto Ninni La politica dgli incntivi al consumo: dimnsioni, carattristich, valutazion, problmi 1 Augusto Ninni Nll articolo si discut la politica dgli incntivi al consumo, insriti nl Dcrto lgg n. 40 dl 25 marzo 2010.

Dettagli

11. L integrazione. 11.2 Integrazione definita. Prerequisiti

11. L integrazione. 11.2 Integrazione definita. Prerequisiti . L integrazione. Integrazione definita Prerequisiti Concetto di limite Continuità di una funzione Calcolo differenziale Calcolo integrale Concetto di volume Metodo degli indivisibili di Cavalieri Obiettivi

Dettagli

Politiche fiscali per la famiglia

Politiche fiscali per la famiglia Politich fiscali pr la famiglia Tatiana Onta Lo Stato social fonda l su radici nlla Costituzion: infatti, compito dllo Stato è il sostgno alla famiglia alla matrnità, 1 utilizzando l ntrat gnrat da un

Dettagli

Lrk - Lrk Nt. Lrk - Lrk nt: LA SOLUZIOnE In COnDEnSAZIOnE PEr LE GrOSSE POtEnZE

Lrk - Lrk Nt. Lrk - Lrk nt: LA SOLUZIOnE In COnDEnSAZIOnE PEr LE GrOSSE POtEnZE Lrk - Lrk nt: LA SOLUZIOnE In COnEnSAZIOnE PEr LE GrOSSE POtEnZE Marilla Progttista Lrk - Lrk Nt Caldaia in acciaio con in acciaio inox 316 Ti, lato a tr giri di fuo, tpratura costant, da quipaggiar di

Dettagli

Esercizi su dominio limiti continuità - prof. B.Bacchelli. Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.1, 3.2.

Esercizi su dominio limiti continuità - prof. B.Bacchelli. Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.1, 3.2. Esercizi su dominio iti continuità - prof. B.Bacchelli Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2. ESERCIZI * Determinare e disegnare il dominio delle seguenti

Dettagli

La dichiarazione annuale IVA e l ottimizzazione della gestione dei crediti

La dichiarazione annuale IVA e l ottimizzazione della gestione dei crediti La chiarazion annual IVA l ottimizzazion dlla gstion di crti L, 13 Marzo 2006 - Assdustria Gnova ASSINDUSTRIA GENOVA Cssion pro soluto di crti Iva Crt Suiss Crt Suiss è lita prsntar a soluzion novativa

Dettagli

b) promuovere e diffondere la cultura della legalità e della cittadinanza responsabile fra i giovani;

b) promuovere e diffondere la cultura della legalità e della cittadinanza responsabile fra i giovani; CONVENZIONE FRA IL COMUNE DI CASTEL MAGGIORE, L UNIONE RENO GALLIERA E I COMUNI DI ARGELATO, BENTIVOGLIO, SAN GIORGIO DI PIANO, SAN PIETRO IN CASALE, CASTELLO D ARGILE, PIEVE DI CENTO, GALLIERA, PER LA

Dettagli

Simulazione di prova d Esame di Stato

Simulazione di prova d Esame di Stato 1 Simulazione di prova d Esame di Stato Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario Nome Cognome Classe Data / / Problema 1 Sia y = f(x) una funzione reale di variabile

Dettagli

VIRUS PATOGENI PER L UOMO: il rischio da zanzare Aedes

VIRUS PATOGENI PER L UOMO: il rischio da zanzare Aedes Tutla AmbintalE Vrd PROTEZIONE CIVILE VIRUS PATOGENI PER L UOMO: il rischio da zanzar Ads Rita Di Domnicantonio. Tutla Ambintal vrd Protzion Civil Tutla AmbintalE Vrd PROTEZIONE CIVILE Com è arrivata si

Dettagli

Politica dei consumi e federalismo in Germania 1. Cornelia Tausch

Politica dei consumi e federalismo in Germania 1. Cornelia Tausch Politica di consumi fdralismo in Grmania 1 Cornlia Tausch La Grmania è un smpio di Stato fdral in cui si è riusciti a conciliar l signz di 16 diffrnti Ländr. Tal organizzazion fa sì ch ci siano divrsi

Dettagli

Moduli e-learning ABB Istruzioni per la frequenza ai corsi. Sommario

Moduli e-learning ABB Istruzioni per la frequenza ai corsi. Sommario Moduli -larning ABB Istruzioni pr la frqunza ai corsi Il prsnt documnto ha lo scopo di dscrivr l principali carattristich di corsi -larning: com rgistrarsi d accdr al sistma, iscrivrsi ad un corso, frquntarlo

Dettagli

2. L ambiente celeste

2. L ambiente celeste unità 2. L ambint clst L EVOLUZIONE DI UNA STELLA nana Bruna s la massa inizial è poco infrior a qulla dl Sol nana Bianca Nbulosa Protostlla fusion nuclar stlla dlla squnza principal dl diagramma HR gigant

Dettagli