Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia"

Transcript

1 Serie di Fourier Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 1 / 37

2 Polinomi trigonometrici Definizione Si dice polinomio trigonometrico di ordine n la funzione n S n (x) = α k cos(kx) + β k sin(kx), k=0 con opportuni coefficienti α k, β k R Notiamo che S n è una funzione 2π periodica, cioè si ha S n (x + 2π) = S n (x) x R. Passando formalmente al limite n si ottiene una serie trigonometrica α k cos(kx) + β k sin(kx) k=0 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 2 / 37

3 Domanda: data una funzione f : R R, 2π periodica, è possibile svilupparla un una serie trigonometrica convergente? In altri termini, ci chiediamo se esistono i coefficienti {α k } k N e {β k } k N tali che f α k cos(kx) + β k sin(kx) k=0 dove il significato del simbolo è da precisare. Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 3 / 37

4 Coefficienti di Fourier Definizione Data una funzione f : R R, 2π periodica e integrabile su [0, 2π], chiamiamo a k = 1 π 2π 0 f (x) cos(kx) dx, k 0, k N; b k = 1 π 2π 0 i coefficienti di Fourier di f. f (x) sin(kx) dx, k 1, k N Notiamo che a 0 = 1 π 2π 0 f (x) dx Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 4 / 37

5 Polinomio trigonometrico di Fourier Definizione Data una funzione f : R R, 2π periodica e integrabile su [0, 2π] e dati i coefficienti di Fourier di f ; a k e b k, chiamiamo P n (x) = a n a k cos(kx) + b k sin(kx), n N, il polinomio trigonometrico di Fourier di f. Il polinomio trigonometrico di Fourier P n fornisce la migliore approssimazione della funzione f in media quadratica : Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 5 / 37

6 Teorema Sia f : R R, 2π periodica e integrabile su [0, 2π]. Sia S n un polinomio trigonometrico di ordine n; Allora 2π 0 S n (x) = n α k cos(kx) + β k sin(kx). k=0 f (x) P n (x) 2 dx 2π dove P n (x) è Il polinomio trigonometrico di Fourier di f. 0 f (x) S n (x) 2 dx, (1) Inoltre vale 2π lim f (x) P n (x) 2 dx = 0. n + 0 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 6 / 37

7 Chiamiamo a 0 la serie di Fourier di f. 2 + a k cos(kx) + b k sin(kx) Diciamo che ogni funzione f : R R, 2π periodica e integrabile su [0, 2π] è sviluppabile in serie di Fourier e scriviamo f a a k cos(kx) + b k sin(kx) (2) Attenzione: in generale l equazione (2) non è un uguaglianza puntuale! Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 7 / 37

8 Esempi - Onda quadra: f data da 1 π x < 0, f (x) = 1 0 x < π per x [ π, π[ e prolungata per periodicità a tutto R. - Onda a dente di sega: f (x) = x per x [ π, π[, prolungata per periodicità a tutto R. - Onda triangolare: f (x) = x con x [ π, π[, prolungata per periodicità a tutto R. Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 8 / 37

9 Applicazioni 1. Compressione di segnali acustici: segnale acustico originale a a k cos(kx) + b k sin(kx) tronco la serie di Fourier ad esempio a partire da k = a a k cos(kx) + b k sin(kx) segnale acustico compresso -formato MP3, etc. 2. Compressione dell immagine: JPEG. 3. Riduzione del rumore Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 9 / 37

10 Teorema (Uguaglianza di Parseval) Sia f : R R periodica di periodo 2π, integrabile su [0, 2π]. Allora 1 2π f (x) 2 dx = a2 + 0 π ( ) ak 2 + b2 k. L uguaglianza di Parseval ci permette di calcolare le somme di alcune serie numeriche. Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 10 / 37

11 Esempio Sia f (x) = x con x [ π, π[, prolungata per periodicità a tutto R Calcoliamo i coefficienti di Fourier di f : a k = 1 π π π π b k = 1 x sin(kx) dx = 2 π π π = 2 ( π x cos(kx) ) x=π k + 2 x=0 kπ = 2 kπ π( 1)k + 2 kπ x cos(kx) dx = 0; sin(kx) k π 0 π 0 x=π x sin(kx) dx = cos(kx) dx = x=0 = 2 k ( 1)k. Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 11 / 37

12 Quindi la serie di Fourier di f è + 2 ( 1) k k sin(kx). Dall uguaglianza di Parseval si ottiene 1 2π f (x) 2 dx = 1 π π 0 π π = 2 π = π 0 + f (x) 2 dx = 1 π x 2 dx = 2 3 π2 π π ( 2 ( 1)k ) 2= + 4 k x 2 dx 1 k 2. Ne segue che + 1 k 2 = π2 6. Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 12 / 37

13 nel calcolo precedente abbiamo usato il seguente risultato: Lemma Sia f : R R periodica con periodo T e integrabile su [0, T ]. Allora T 0 f (x) dx = a+t a f (x) dx, a R. Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 13 / 37

14 Lemma (Riemann-Lebesgue) Sia f : R R periodica di periodo 2π, integrabile su [0, 2π]. Allora lim 2π k + 0 2π lim k + 0 f (x) cos(kx) dx = 0 f (x) sin(kx) dx = 0. Dimostrazione: Dall uguaglianza di Parseval si ha che da cui segue che + ( a 2 k + bk 2 ) < +, lim a k = 0 e lim b k = 0. k + k + Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 14 / 37

15 Si ha Infatti, Quindi k=0 k=0 k=0 1 (2k + 1) (2k + 1) 2 = π2 8 1 (2k) 2 = 1 k 2 = π (2k + 1) π = π2 6 1 (2k + 1) 2 = π2 8 k=0 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 15 / 37

16 Esempio Sia f (x) = x con x [ π, π[, prolungata per periodicità a tutto R. Calcoliamo i coefficienti di Fourier di f : b k = 1 π π π x sin(kx) dx = 0, k 1 a 0 = π a k = 2 π π 0 x cos(kx) dx = 2 ( ) π k 2 ( 1) k 1 k 1 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 16 / 37

17 Dall uguaglianza di Parseval si ottiene 1 2π f (x) 2 dx = 2π2 π 0 3 = π π 2 (2k + 1) 4 e quindi Ne segue che + 16 π 2 (2k + 1) 4 = π k 4 = π4 90. Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 17 / 37

18 Funzioni pari e dispari 1 Se f : R R è periodica di periodo 2π e pari, allora I coefficienti di Fourier valgono a k = 2 π b k = 1 π π 0 π π f (x) cos(kx)dx, k = 0, 1,... ; f (x) sin(kx) dx = 0 k = 1, 2,... 2 Se f : R R è periodica di periodo 2π e dispari, allora a k = 1 π π b k = 2 π π π f (x) cos(kx) dx = 0 k = 0, 1,... ; 0 f (x) sin(kx) dx k = 1, 2... Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 18 / 37

19 Convergenza puntuale della serie di Fourier Cerchiamo le condizioni sulla funzione f sotto le quali 1 La serie di Fourier di f converge puntualmente, cioè esiste il limite S(x) := lim P n (x) = a 0 n 2 + a k cos(kx) + b k sin(kx) 2 S(x) = f (x) per ogni x R. Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 19 / 37

20 Definizione Siano a, b R con a < b. La funzione f : [a, b] R si dice continua a tratti in [a, b] se è continua eccetto al più un numero finito di punti x i di discontinuità di tipo salto, cioè punti dove esistono finiti (e diversi tra loro) lim x x + i f (x) = f (x + i ), lim x x i f (x) = f (x i ). Continuità a tratti in [a, b] implica l integrabilità in [a, b]. L onda quadra e l onda a dente di sega sono continue a tratti. Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 20 / 37

21 Teorema (Convergenza puntuale della serie di Fourier) Sia f : R R 2π-periodica e continua a tratti in [0, 2π]. Sia x 0 R tale che i) f è derivabile in x 0 oppure ii) f è continua in x 0 ed esistono (finite) le derivate destra e sinistra f +(x 0 ) e f (x 0 ) oppure iii) f ha una discontinuità di tipo salto in x 0 ed esistono finiti lim x x + 0 f (x) f (x + 0 ) x x 0 e lim x x 0 f (x) f (x 0 ) x x 0 (detti pseudo-derivata destra e sinistra, rispettivamente) Allora la serie di Fourier di f (x) converge in x 0 con somma S(x 0 ) = f (x + 0 ) + f (x 0 ). 2 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 21 / 37

22 Osservazioni 1 Notiamo che la continuità di f in x 0 non è sufficiente ne necessaria per la convergenza della serie di Fourier per x = x 0. Infatti, la condizione iii) non richiede che f sia continua in x 0. 2 Se f soddisfa la condizione i) oppure ii), allora S(x 0 ) = f (x 0 ). 3 i) implica ii) Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 22 / 37

23 Esempio Consideriamo f (x) = x π per x [0, 2π[, prolungata per periodicità a tutto R. Allora, la serie di Fourier di f (x) è + S(x) = 2 sin(kx). k La serie converge a f (x) = x π per ogni x ]0, 2π[, dove f è derivabile. Ad esempio in x = π si ha 2 ( π ) + S = 2 2 = 2 ( sin k π ) 2 k + n=0 + = 2 n=0 ( 1) n 2n + 1 = π 2 π = π 2. ( sin (2n + 1) π ) 2 = 2n + 1 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 23 / 37

24 Dunque + n=0 ( 1) n 2n + 1 = π 4. Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 24 / 37

25 Teorema (di Dirichlet) Sia f : R R limitata, 2π-periodica. Supponiamo che [0, 2π] sia scomponibile in un numero finito di sottointervalli su ognuno dei quali f è monotona (cioè f è monotona a tratti). Allora la serie di Fourier converge in ogni punto x a f (x + ) + f (x ). 2 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 25 / 37

26 Funzioni discontinue: il fenomeno di Gibbs Il polinomio di Fourier mostra le sovraelongazioni del valore della funzione ricostruita nell intorno del punto di discontinuità : all aumentare del numero delle componenti della serie il valore di picco di detta sovraelongazione rimane costante, mentre le oscillazioni alle quali tali sovraelongazioni si riferiscono si avvicinano al punto di discontinuità. Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 26 / 37

27 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 27 / 37

28 Jean Baptiste Joseph Fourier ( ) Rischiò di essere ghigliottinato durante la rivoluzione francese Introdusse le serie trigonometriche in Teoria analitica del calore (1822). Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 28 / 37

29 Convergenza uniforme della serie di Fourier Lemma Sia f : R R periodica di periodo 2π, integrabile su [0, 2π] e siano a k e b k i coefficienti di Fourier di f. Supponiamo che ( a k + b k ) < +. Allora la serie di Fourier di f converge uniformemente in R. Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 29 / 37

30 Dimostrazione: siccome cos(kx) 1 e sin(kx) 1 per ogni x R e ogni k N, si ha a k cos(kx) + b k sin(kx) a k + b k x R, k N. Dunque la serie a k cos(kx) + b k sin(kx) converge totalmente e quindi anche uniformemente in R Notiamo che ( a k + b k ) < + (ak 2 + b2 k ) < +. ma non vale il viceversa. Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 30 / 37

31 Decadimento di coefficienti di Fourier Teorema Sia f : R R periodica di periodo 2π e di classe C 2 (R). Allora a k M k 2, b k M k 2, dove M = 2 sup f (x) π x π Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 31 / 37

32 Dimostrazione: integrando per parti si ottiene a k = 1 π π = 1 kπ π π f (x) cos(kx) dx = π f (x) sin(kx) dx [ f (x) sin(kx) ] π 1 π f (x) sin(kx) dx kπ π kπ π Siccome f è 2π periodica e di classe C 2 (R), ne segue che anche f è 2π periodica. Quindi possiamo integrare un altra volta per parti: [ a k = f (x) cos(kx) ] π k 2 1 π π k 2 f (x) cos(kx) dx π π π = 1 π k 2 f (x) cos(kx) dx π π Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 32 / 37

33 Quindi a k 2 sup f (x) 1 π x π k 2 e analogamente per b k Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 33 / 37

34 Corollario Sia f : R R periodica di periodo 2π e di classe C 2 (R). Allora la serie di Fourier di f converge a f uniformemente in R. Dimostrazione: siano a k, b k i coefficienti di Fourier di f. Siccome f C 2 (R), si ha Quindi a k M k 2, b k M k 2 ( a k + b k ) < + e la tesi segue dal Lemma precedente Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 34 / 37

35 Teorema Sia f : [0, 2π] R di classe C 1 a tratti, ossia f è continua su tutto [0, 2π] ed è derivabile con la derivata continua, tranne al più un numero finito di punti x i in [0, 2π] in cui esistono f +(x i ) e f (x i ). Allora la serie di Fourier converge uniformemente a f in ogni intervallo [a, b] ]0, 2π[. Se f (0) = f (2π), la serie converge uniformemente a f in [0, 2π]. Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 35 / 37

36 Funzioni periodiche con periodi diversi da 2π Se per la funzione f : R R il periodo è T, le funzioni trigonometriche da considerare sono: 1, cos 2π T x, 2π sin T x,... Si ripete il procedimento (polinomi trigonometrici, approssimazione in media quadratica,...). La serie di Fourier associata ad f è { ( ) a 2πk 0 + a k cos T x +b k sin con a k = 2 T b k = 2 T T 0 T 0 ( )} 2πk T x, ( 2πk ) f (x) cos T x dx, k = 0, 1, 2,... ; ( 2πk ) f (x) sin T x dx, k = 1, 2,.... Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 36 / 37

37 L uguaglianza di Parseval ha la forma 2 T T 0 f (x) 2 dx = a ( n=1 a 2 n + b 2 n ). Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 37 / 37

Serie di Fourier Richiami di teoria. Funzioni periodiche. Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R

Serie di Fourier Richiami di teoria. Funzioni periodiche. Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R Serie di Fourier Richiami di teoria Funzioni periodiche Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R 2π-periodiche. Esempio 1. Consideriamo il prolungamento 2π-periodico

Dettagli

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx ANALISI DI FOURIER Sia >. Una funzione f, definita per x R, si dice periodica di periodo, se f(x + = f(x, x R. ( Se una funzione è periodica di periodo, essa è anche periodica di periodo, 3,..., k,....

Dettagli

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N:

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: S N (x) = N n=0 (a n cos (nx) + b n sin (nx)), a n, b n R (periodiche

Dettagli

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx Serie di Fourier Indichiamo con V l insieme delle funzioni f : R R che siano periodiche di periodo π, si abbia cioè f ( + π) = f (), e che risultino integrabili nell intervallo [, π]. Tra queste funzioni

Dettagli

Serie e Trasformata di Fourier

Serie e Trasformata di Fourier Serie e Trasformata di Fourier Corso di Analisi Funzionale Prof. Paolo Nistri Cancelli, D Angelo, Giannetti Polinomio di Fourier Si consideri la successione costituita dalle restrizioni delle funzioni

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

Spazi di Hilbert: Proiezioni e Serie di Fourier

Spazi di Hilbert: Proiezioni e Serie di Fourier Spazi di Hilbert: Proiezioni e Serie di Fourier Docente:Alessandra Cutrì Spazi di Hilbert Uno spazio vettoriale dotato di prodotto scalare che è completo rispetto alla norma indotta dal prodotto scalare

Dettagli

Serie di Fourier - Esercizi svolti

Serie di Fourier - Esercizi svolti Serie di Fourier - Esercizi svolti Esercizio 1 È data la funzione f con domf) = R, periodica di periodo, tale che onda quadra) 1 se < x < fx) = se x = e x = 1 se < x < 1) 1 Calcolare i coefficienti di

Dettagli

Analisi Matematica III modulo

Analisi Matematica III modulo Università del Salento Dipartimento di Matematica Ennio de Giorgi Michele Carriero Lucia De Luca Appunti di Analisi Matematica III modulo Corso di Laurea in Matematica Indice Introduzione 1 Capitolo 1.

Dettagli

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma Serie di Fourier L idea che sta alla base degli sviluppi in serie di Fourier è quella di approssimare, in qualche senso, le funzioni (integrabili periodiche per mezzo di funzioni più regolari e/o più facilmente

Dettagli

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Limiti e continuità Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Cenni di topologia La nozione di intorno Sia x 0 R e r > 0.

Dettagli

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2 Analisi Matematica II 6 aprile 07 Cognome: Nome: Matricola:. (0 punti) Si consideri la seguente corrispondenza tra R ed R f(x, y) = Determinare l insieme di definizione A R di f e sin[π(x + y /5)] x +

Dettagli

Analisi di Fourier e alcune equazioni della fisica matematica 1. TERZA LEZIONE Serie di funzioni Serie di potenze

Analisi di Fourier e alcune equazioni della fisica matematica 1. TERZA LEZIONE Serie di funzioni Serie di potenze Analisi di Fourier e alcune equazioni della fisica matematica 1 TERZA LEZIONE Serie di funzioni Serie di potenze 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email:

Dettagli

Convergenza puntuale ed uniforme delle serie di Fourier

Convergenza puntuale ed uniforme delle serie di Fourier Convergenza puntuale ed uniforme delle serie di Fourier 8 aprile 009 In questi appunti prendiamo in considerazione funzioni di variabile reale che possono assumere però valori complessi. Una funzione F

Dettagli

Calcolo differenziale I

Calcolo differenziale I Calcolo differenziale I Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Derivate Analisi Matematica 1 1 / 25 Definizione: rapporto incrementale Sia f : A

Dettagli

Serie di Fourier. prof. Sergio Zoccante 27 gennaio 2011

Serie di Fourier. prof. Sergio Zoccante 27 gennaio 2011 Serie di Fourier prof. Sergio Zoccante 27 gennaio 2011 1 Le serie di Fourier Gli sviluppi in serie di Taylor hanno applicazioni numerosissime. Tuttavia, le condizioni alle quali una funzione deve soddisfare

Dettagli

Note sulle serie di Fourier

Note sulle serie di Fourier Note sulle serie di Fourier Rodica oader, a.a. 3/4 versione provvisoria (aggiornata al 3//7 Convergenza uniforme Data una funzione f : R R, periodica di periodo >, supponiamo di poter definire i coefficienti

Dettagli

Serie di Fourier. 1. Introduzione Le funzioni somme di funzioni trigonometriche

Serie di Fourier. 1. Introduzione Le funzioni somme di funzioni trigonometriche Serie di Fourier. Introduzione Le funzioni somme di funzioni trigonometriche, sin(x), cos(x), sin(2x), cos(2x),...ecc. P (x) = 2 a + a cos(x) + b sin(x) +... + b n sin(x) si dicono polinomi trigonometrici:

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Polinomi di Taylor. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Polinomi di Taylor. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Polinomi di Taylor Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi Matematica 1 1 / 18 Introduzione Sia f : I R e sia x 0 I. Problemi:

Dettagli

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Derivate Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Definizione: rapporto incrementale Sia f : domf R R. Dati x 1, x 2 domf con x 1 x

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Analisi Matematica 2 Successioni di funzioni CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 6 SERIE DI POTENZE Supponiamo di associare ad ogni n N (rispettivamente ad ogni n p, per qualche

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Prof. Attampato Daniele DispensediMatematica prof.attampatodaniele SVILUPPO IN SERIE DI UNA FUNZIONE Uno dei problemi più frequenti in matematica è legato alla necessità di

Dettagli

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Umberto Massari Anno accademico 3-4 SUCCESSIONI E SERIE DI FUNZIONI. Successioni di funzioni: convergenza puntuale ed uniforme Sia

Dettagli

Esercitazione di riepilogo su serie di funzioni, e in particolare serie di Fourier

Esercitazione di riepilogo su serie di funzioni, e in particolare serie di Fourier Esercitazione di riepilogo su serie di funzioni, e in particolare serie di Fourier Serie di funzioni e convergenza totale Tenere presente: De nizione di convergenza puntuale e convergenza totale per una

Dettagli

Analisi Matematica. Calcolo integrale

Analisi Matematica. Calcolo integrale a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Calcolo integrale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti. Parte

Dettagli

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T ANALISI MATEMATICA I, Compito scritto del 5/7/6 Corso di Laurea in Matematica COGNOME e NOME... MATR... 3 4 T Nelle risposte devono essere riportati anche i conti principali e le motivazioni principali.

Dettagli

ANALISI MATEMATICA L-C, B-S

ANALISI MATEMATICA L-C, B-S ANALISI MAEMAICA L-C, B-S 25-6 SERIE DI FOURIER MASSIMO CICOGNANI Per la pubblicazione in rete di queste dispense si deve ringraziare Marco Frison che le ha trascritte interamente in Latex 1 Lo spazio

Dettagli

Successioni numeriche

Successioni numeriche Successioni numeriche Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Successioni Analisi Matematica 1 1 / 48 Definizione Una successione a valori reali è

Dettagli

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI SERIE NUMERICHE Si consideri una successione di elementi. Si definisce serie associata ad la somma Per ogni indice della successione, si definisce successione delle somme parziali associata a la somma

Dettagli

Serie di Fourier. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009

Serie di Fourier. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009 Serie di Fourier (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 8/9 Serie di Fourier 1 / 48 Jean Baptiste Joseph Fourier (1768 183) Serie di Fourier

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti su misura e integrale di Lebesgue, spazi L p, operatori lineari continui

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti su misura e integrale di Lebesgue, spazi L p, operatori lineari continui Corso di Metodi Matematici per l Ingegneria A.A. 26/27 Esercizi svolti su misura e integrale di Lebesgue, spazi L p, operatori lineari continui Marco Bramanti Politecnico di Milano December 4, 26 Esercizi

Dettagli

Successioni numeriche

Successioni numeriche Successioni numeriche Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Successioni Analisi A 1 / 35 Definizione Una successione a valori reali è una funzione f : N R

Dettagli

Registro delle lezioni

Registro delle lezioni Complementi di Analisi Matematica - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Registro delle lezioni Laura Poggiolini e Gianna Stefani 2 ottobre 2006, 2 ore, LP Il campo dei

Dettagli

f(n)r n e inx lim Se f(x) C(T) allora f S (r) f(x) = lim e inx

f(n)r n e inx lim Se f(x) C(T) allora f S (r) f(x) = lim e inx 17.1. Analisi di Fourier III. 17.1.1. Teorema di approssimazione di Weierstrass. Un polinomio trigonometrico è una qualunque funzione della forma n

Dettagli

Successioni numeriche (II)

Successioni numeriche (II) Successioni numeriche (II) Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Successioni (II) Analisi A 1 / 52 Forme indeterminate associate a funzioni razionali fratte:

Dettagli

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono PROPRIEA ELEMENARI Se x( t) è un segnale periodico di periodo 0 di classe C 1 -tratti e normalizzato, le equazioni di analisi e di sintesi stabiliscono una corrispondenza fra x( t) e la sequenza dei suoi

Dettagli

Analisi a più variabili: Integrale di Lebesgue

Analisi a più variabili: Integrale di Lebesgue Analisi a più variabili: Integrale di Lebesgue 1 Ripasso delle definizioni di Algebre, σ-algebre, misure additive, misure σ-additive, Proprietà della misura astratta, misura esterna. Definizione (Insieme

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013 ANALISI VETTORIALE COMPITO IN CLASSE DEL 8//3 Premessa (Cfr. gli Appunti di Analisi Vettoriale / del Prof. Troianiello) Nello studio degli integrali impropri il primo approccio all utilizzo del criterio

Dettagli

3.2 Funzioni periodiche e sviluppi in Serie di Fourier

3.2 Funzioni periodiche e sviluppi in Serie di Fourier 3. Funzioni periodiche e sviluppi in Serie di Fourier Una prima classe di funzioni per cui si può effettuare l analisi armonica (3.5 contiene le funzioni periodiche (di periodo, tali cioè che f(t + = f(t,

Dettagli

E, la successione di numeri {f n (x 0. n f n(x) (15.1)

E, la successione di numeri {f n (x 0. n f n(x) (15.1) Capitolo 15 15.1 Successioni e serie di funzioni Sia {f n } una successione di funzioni, tutte definite in un certo insieme E dello spazio R n ; si dice che essa è convergente nell insieme E se, comunque

Dettagli

Serie di funzioni: esercizi svolti

Serie di funzioni: esercizi svolti Serie di funzioni: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. seguenti serie di funzioni: Studiare la convergenza normale, uniforme,

Dettagli

f n (x) 3 1. x Essendo g(x) = 3 1

f n (x) 3 1. x Essendo g(x) = 3 1 Secondo esonero di Analisi eale 6//9 a.a. 8-9 ) Studiare la convergenza in L p ((, )), p +, della successione di funzioni cos(nx) e nx f n (x) = 3. x Si vede facilmente che la successione f n converge

Dettagli

Analisi di Fourier e alcune equazioni della fisica matematica 1. SESTA e SETTIMA Lezione Serie di Fourier

Analisi di Fourier e alcune equazioni della fisica matematica 1. SESTA e SETTIMA Lezione Serie di Fourier Analisi di Fourier e alcune equazioni della fisica matematica 1 SESTA e SETTIMA Lezione Serie di Fourier 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it

Dettagli

Complementi di Analisi per Informatica *** Capitolo 3. Serie di Fourier. e Analisi Armonica

Complementi di Analisi per Informatica *** Capitolo 3. Serie di Fourier. e Analisi Armonica Complementi di Analisi per Informatica *** Capitolo 3 Serie di Fourier e Analisi Armonica Sergio Benenti Prima versione settembre 013. Revisione settembre 017. Jean Baptiste Joseph Fourier (Auxerre, 1768

Dettagli

Limiti di funzioni. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Limiti di funzioni. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Limiti di funzioni Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi Matematica 1 1 / 38 Cenni di topologia La nozione di intorno

Dettagli

[a n cos(nx) + b n sin(nx)] (35) n=1

[a n cos(nx) + b n sin(nx)] (35) n=1 5 Serie di Fourier Sia f : R R una funzione periodica di periodo π, cioè f(x + π) = f(x) x R. Vogliamo rappresentare la funzione f tramite funzioni trigonometriche elementari aventi la stessa proprietà

Dettagli

La serie di Fourier in Mathematica

La serie di Fourier in Mathematica Matematica Open Source http://www.extrabte.info Quaderni di Mathematica 09 La serie di Fourier in Mathematica Marcello Colozzo 3Π Π Π Π Π 3Π x INDICE Indice Le istruzioni Which e Piecewise L istruzione

Dettagli

Richiami di topologia di R n e di calcolo differenziale in più variabili

Richiami di topologia di R n e di calcolo differenziale in più variabili Anno accademico: 2016-2017 Corso di laurea in Ingegneria Aerospaziale e Ingegneria dell Autoveicolo Programma di Analisi Matematica II (6 CFU) (codice: 22ACILZ e 22ACILN) Docente: Lancelotti Sergio Richiami

Dettagli

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012 Analisi 2 Roberto Monti Appunti del Corso - Versione 5 Ottobre 212 Indice Capitolo 1. Programma 5 Capitolo 2. Convergenza uniforme 7 1. Convergenza uniforme e continuità 7 2. Criterio di Abel Dirichlet

Dettagli

Calcolo differenziale per funzioni di più variabili

Calcolo differenziale per funzioni di più variabili Calcolo differenziale per funzioni di più variabili Riccarda Rossi Università di Brescia Analisi Matematica B Derivate direzionali e parziali Consideriamo un insieme aperto Ω R n e un campo scalare f :

Dettagli

Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati siano stati dimostrati a lezione.

Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati siano stati dimostrati a lezione. Programma di Analisi Matematica 1 (Canale ICM) svolto per lezioni - A. Languasco - C. Vagnoni 1 Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati

Dettagli

Polinomi di Taylor. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 1 / 27

Polinomi di Taylor. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 1 / 27 Polinomi di Taylor Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 1 / 27 Introduzione Sia f : I R e sia x 0 I. Problemi: come approssimare

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014 Prova scritta del 2 gennaio 214 Studiare la convergenza puntuale e uniforme della serie di potenze n=1 n x 2n 2n + e n. Valutare poi la misurabilità e l integrabilità secondo Lebesgue della funzione somma

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Soluzione dei problemi assegnati

Soluzione dei problemi assegnati ANALISI MATEMATICA 3 Soluzione dei problemi assegnati anno accademico 2018/19 prof. Antonio Greco http://people.unica.it/antoniogreco Dipartimento di Matematica e Informatica Università di Cagliari 23-5-2019

Dettagli

APPELLO B AM1C 14 LUGLIO f(x) = xe 1

APPELLO B AM1C 14 LUGLIO f(x) = xe 1 Cognome e nome APPELLO B AM1C 14 LUGLIO 2009 Esercizio 1. Sia data la funzione f(x) = xe 1 log x. (a) Determinarne: insieme di esistenza e di derivabilità, limiti ed eventuali asintoti, eventuali massimi,

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2016/17)

Diario del corso di Analisi Matematica 1 (a.a. 2016/17) Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2017/18)

Diario del corso di Analisi Matematica 1 (a.a. 2017/18) Diario del corso di Analisi Matematica 1 (a.a. 2017/18) 22 settembre 2017 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 25 settembre

Dettagli

Integrali (M.S. Bernabei & H. Thaler)

Integrali (M.S. Bernabei & H. Thaler) Integrali (M.S. Bernabei & H. Thaler) Integrali. Motivazione Che cos é un integrale? Sia f 0 e limitata b a f ( x) dx area f ( x, y) dxdy volume Definizione di integrale: b a dove f ( x) dx lim n n k b

Dettagli

Breviario sulle serie di Fourier

Breviario sulle serie di Fourier Breviario sulle serie di Fourier Franco Rampazzo November 6, 2008 1 Approssimazione quadratica 1.1 Spazi finito-dimensionali R N è uno spazio munito di un prodotto scalare: < f, g >. = f n g n, dove f

Dettagli

Curve. Hynek Kovarik. Analisi Matematica 2. Università di Brescia. Hynek Kovarik (Università di Brescia) Curve Analisi Matematica 2 1 / 28

Curve. Hynek Kovarik. Analisi Matematica 2. Università di Brescia. Hynek Kovarik (Università di Brescia) Curve Analisi Matematica 2 1 / 28 Curve Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Curve Analisi Matematica 2 1 / 28 Curve Definizione (Curva in R n ) Chiamiamo curva a valori in R n

Dettagli

Esercitazione sulle serie di Fourier

Esercitazione sulle serie di Fourier Esercitazione sulle serie di Fourier 3 novembre. Calcolo dei coefficienti di Fourier e di somme di serie speciali Esercizio. Si consideri il segnale u : R R, -periodico, definito nell intervallo, π, da

Dettagli

Metodi Matematici per l Economia anno 2017/2018 Gruppo B

Metodi Matematici per l Economia anno 2017/2018 Gruppo B Metodi Matematici per l Economia anno 2017/2018 Gruppo B Docente: Giacomo Dimarco Dipartimento di Matematica e Informatica Università di Ferrara https://sites.google.com/a/unife.it/giacomo-dimarco-home-page/

Dettagli

PROGRAMMA di Analisi Matematica 1 A.A , canale 3, prof. Monica Motta Ingegneria gestionale, meccanica e meccatronica, Vicenza

PROGRAMMA di Analisi Matematica 1 A.A , canale 3, prof. Monica Motta Ingegneria gestionale, meccanica e meccatronica, Vicenza PROGRAMMA di Analisi Matematica 1 A.A. 2012-2013, canale 3, prof. Monica Motta Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica 1, M. Bramanti, C. D. Pagani

Dettagli

La convergenza uniforme

La convergenza uniforme La convergenza uniforme 1. Il tubo Sia {f n (x)} una successione convergente a f(x) per x E: disegniamo il grafico della funzione limite f(x) assegnato ε > 0 disegniamo la striscia - il tubo - intorno

Dettagli

Corso di laurea in STM Analisi di Fourier

Corso di laurea in STM Analisi di Fourier Corso di laurea in STM Analisi di Fourier 2016-17 Dettaglio delle lezioni svolte e programma del corso 07/03 Ortogonalità in L 2 del sistema trigonometrico. Sviluppo di Fourier in forma reale e complessa.

Dettagli

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di. Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche C.7 Serie Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche Teorema 5.29 (Criterio del confronto) Siano e due serie numeriche a termini positivi e si abbia 0, per ogni

Dettagli

Istituzioni di Matematiche quarta parte

Istituzioni di Matematiche quarta parte Istituzioni di Matematiche quarta parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 22 index Derivate 1 Derivate 2 Teoremi

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Complementi di Analisi Matematica ed Elementi di Calcolo delle probabilità per il corso di Laurea in Ingegneria per la parte di Elementi

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Analisi Matematica per i corsi di Laurea in Ingegneria Energetica e Meccanica N-Z dell Università di Bologna. Anno Accademico 2003/2004.

Dettagli

Insiemi numerici: numeri reali

Insiemi numerici: numeri reali Insiemi numerici: numeri reali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) I numeri reali Analisi Matematica 1 1 / 29 R è un CAMPO R è dotato delle operazioni

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì e Metodi Matematici per l ingegneria Ing. Gestionale

Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì e Metodi Matematici per l ingegneria Ing. Gestionale Spazi di Funzioni Docente:Alessandra Cutrì Spazi vettoriali normati Uno spazio Vettoriale V si dice NORMATO se è definita su V una norma, cioè una funzione che verifica: v 0 e v = 0 v = 0 λv = λ v λ R(o

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 1 1 / 30 Formulazione del problema In generale

Dettagli

Lezione 13 (7 dicembre) Polinomio di Taylor Integrale definito: significato geometrico Primitiva di una funzione

Lezione 13 (7 dicembre) Polinomio di Taylor Integrale definito: significato geometrico Primitiva di una funzione Lezione 13 (7 dicembre) Polinomio di Taylor Integrale definito: significato geometrico Primitiva di una funzione Polinomio di Taylor e approssimazioni Approssimazione di una funzione nell intorno di un

Dettagli

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Numeri complessi Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) I numeri complessi Analisi Matematica 1 1 / 34 Introduzione L introduzione dei numeri complessi

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 30 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@poi.it Limiti di derivate. Punti angolosi e di cuspide. Ottobre 2012 Indice 1 Limiti della derivata e punti di non

Dettagli

Alcuni complementi di teoria dell integrazione.

Alcuni complementi di teoria dell integrazione. Alcuni complementi di teoria dell integrazione. In ciò che segue si suppone di avere uno spazio di misura (,, µ) 1 Sia f una funzione misurabile su un insieme di misura positiva tale che f 0. Se fdµ =

Dettagli

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A.2015-2016 22 SETTEMBRE 2015 3 ore 14-17 Insiemi e operazioni tra insiemi. Numeri reali. Assiomi dei numeri

Dettagli

ANALISI MATEMATICA 1 ESERCIZI ASSEGNATI IN AULA O A CASA Corso di Laurea in Matematica aa 2003/04 01/03/04

ANALISI MATEMATICA 1 ESERCIZI ASSEGNATI IN AULA O A CASA Corso di Laurea in Matematica aa 2003/04 01/03/04 ANALISI MATEMATICA ESERCIZI ASSEGNATI IN AULA O A CASA Corso di Laurea in Matematica aa 2003/04 0/03/04 Esercizio. Calcolare la somma della serie ( 2 k ). 3 k 2 k Esercizio 2. Scrivere sotto forma di frazione

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. La convergenza delle serie di Fourier: proprietà classiche e moderne. Luca Brandolini

UNIVERSITÀ DEGLI STUDI DI BERGAMO. La convergenza delle serie di Fourier: proprietà classiche e moderne. Luca Brandolini UNIVERSITÀ DEGLI STUDI DI BERGAMO La convergenza delle serie di Fourier: proprietà classiche e moderne Luca Brandolini Analisi di Fourier Le serie (e più in generale) l analisi di Fourier sono uno strumento

Dettagli

Esercizi di riepilogo 2 ( Verifica di analisi funzionale e serie di Fourier)

Esercizi di riepilogo 2 ( Verifica di analisi funzionale e serie di Fourier) Esercizi di riepilogo 2 ( Verifica di analisi funzionale e serie di Fourier) Spazi Vettoriali e Funzionali 1. Determinare quali sei seguenti insiemi è uno spazio vettoriale rispetto alle usuali operazioni

Dettagli

1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto

1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto Lezione del 22 ottobre. 1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto ad un punto. Data una funzione f definita su un intervallo [a, b], derivabile

Dettagli

Secondo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2015/2016. Prof. M. Bramanti.

Secondo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2015/2016. Prof. M. Bramanti. Secondo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 01/01. Prof. M. Bramanti 1 Tema n 1 4 7 Tot. Cognome e nome in stampatello) codice persona o n di matricola)

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Successioni di Esercizio.. Studiare la convergenza puntuale ed uniforme della seguente successione di (.) f n (x) = n x Osserviamo che fissato x R f n(x) = + n x x R. x ( n + x ) = pertanto la successione

Dettagli

Derivazione. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Derivazione. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Derivazione Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Jean Baptiste Joseph Fourier ( ) La Trasformata di Fourier. Costruzione della trasformata di Fourier (1/4) Outline. cke i kπt.

Jean Baptiste Joseph Fourier ( ) La Trasformata di Fourier. Costruzione della trasformata di Fourier (1/4) Outline. cke i kπt. Jean Baptiste Joseph Fourier (1768 1830) La Trasformata di Fourier (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 2007/2008 http://www-groups.dcs.st-and.ac.uk/

Dettagli

ESERCIZI DI ANALISI MATEMATICA 1

ESERCIZI DI ANALISI MATEMATICA 1 ESERCIZI DI ANALISI MATEMATICA 1 GRAZIANO CRASTA 1. SPAZI METRICI Esercizio 1.1. ([2, Ex. 2.11]) Stabilire quali fra le seguenti funzioni sono metriche in R. d 1 (x, y) = (x y) 2, d 2 (x, y) = x y, d 3

Dettagli

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) = Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica 1 La retta tangente al grafico di f nel punto ( 0, f( 0 ha equazione y = f( 0 + f ( 0 ( 0. a y = 2; b y = log 2 (e( 1; c y = 1 2 + 1 4

Dettagli

SUCCESSIONI E SERIE DI FUNZIONI

SUCCESSIONI E SERIE DI FUNZIONI SUCCESSIONI E SERIE DI FUNZIONI. Successioni di funzioni Sia {f n } una successione di funzioni in C ([, ]; R), ovvero tale che f n è una funzione continua per ogni n in N. Supponiamo di sapere che, per

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. D Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli