CORSO DI MISURE ANALISI DEI SEGNALI NEL DOMINIO DEL TEMPO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CORSO DI MISURE ANALISI DEI SEGNALI NEL DOMINIO DEL TEMPO"

Transcript

1 CORSO DI MISURE ANALISI DEI SEGNALI NEL DOMINIO DEL EMPO ing Emanuele Zappa SEGNALI: grandezze di base nel dominio del tempo: Ampiezza picco-picco (pk.pk) Ampiezza massima positiva empo Ampiezza massima negativa

2 Valore medio µ ( t) empo [s] Valore medio se il segnale e simmetrico rispetto allo zero µ ( t) empo [s]

3 Valore quadratico medio Y e valore RMS RMS? ( t)? ( t) A Ψ sia associa il significato di potenza media del segnale empo [s] 5 Deviazione standard s e varianza s s X ( ( t) µ ) s s s RMS µ? µ σ fornisce la stima della dispersione intorno al valore medio. Se il valore medio è nullo, σ coincide con il valore RMS empo [s] 6

4 Crest Factor Massimo picco (positivo o negativo) normalizzato con il valore RMS. Basta un solo picco in un lungo segnale per modificare il crest factor. CF ma ( µ RMS X X ) 7 Momenti centrali e non centrali Momenti NON centrali di ordine r La media è un momento non centrale di ordine. Momenti centrali di ordine r m r m La varianza è un momento centrale di ordine. r r ( t) r ( ( t) µ ) 8

5 Esempio: segnale armonico e armonico con picco Momenti non centrali Ordine : EU (media) Ordine :.98 EU Momenti centrali Ordine : EU Ordine :.98 EU RMS:.759 EU Crest factor:.66 Momenti non centrali Ordine :.665 EU (media) Ordine :.59 EU Momenti centrali Ordine : EU Ordine :.589 EU RMS:.75 EU Crest factor:.7 9 Distribuzione di probabilità La densità di probabilità p() ad un livello, è definita come la probabilità che il valore istantaneo del segnale si compreso fra ed +, divisa per l ampiezza dell intervallo. p ( )? P ( +?) P( )? Dove P() è la funzione di probabilità cumulata: P - ( ) p( ) d.

6 P ( +?) P( ) dove ciascun t n rappresenta uno degli intervalli di tempo, compresi in, in cui il segnale si trova fra ed +.?t n Distribuzione di probabilità e valore atteso Dalla sola conoscenza della densità di probabilità di un segnale, è possibile calcolare il valore di molte grandezze statistiche in precedenza definite. Il valore medio di una variabile (t), la cui funzione di densità di probabilità vale p(), può essere calcolato come valore atteso E[(t)] attraverso la relazione (momento non centrale del primo ordine): con (t) esteso tra e +. + E[(t)] p ( ) d µ

7 Distribuzione di probabilità e varianza Valore quadratico medio di (t) data p() (momento non centrale del secondo ordine): con (t) esteso tra e +. + ( ) d? E[ (t)] p Varianza di (t) data p() (momento centrale del secondo ordine): + E[((t) µ ) ] ( µ ) p( ) d? µ s Esempio: distribuzione di probabilità di segnale armonico empo [s]

8 Esempio: distribuzione di probabilità di segnale a banda larga empo [s] 5 Esempio: distribuzione di probabilità di segnale a banda stretta empo [s] 6

9 a COEFFICIENE DI SKEWNESS (fattore di asimmetria) m ( m ) â N N ( i µˆ ) i ŝ Il coefficiente di skewness caratterizza l asimmetria di una distribuzione intorno alla media campionaria. Skewness negativo indica che i dati sono sparsi più a sinistra che a destra rispetto alla media. Skewness positivo indica che i dati sono sparsi più a destra rispetto alla media. Lo skewness di una distribuzione normale (o di qualsiasi distribuzione perfettamente simmetrica) è zero. 7 Esempio di Skewness e distribuzione di probabilità.5 Skewness: -. Mediana:.8 Media:.9 Moda:. p() X 8

10 Esempio di Skewness e distribuzione di probabilità.5 Skewness:.8 Mediana: 7.8 Media:.85 Moda:.7 p() X 9 m a ( m ) COEFFICIENE DI KUROSIS (fattore di appiattimento) N N ( i µˆ ) i â Il coefficiente di kurtosis caratterizza l ampiezza relativa di una distribuzione; se comparata con la gaussiana (a ): Kurtosis negativo indica una distribuzione più piatta rispetto a quella normale. Kurtosis positivo indica una distribuzione più alta rispetto a quella normale. A, a causa dalla quarta potenza, è sensibile ai valori di grande ampiezza e quindi è un buon indicatore della presenza di picchi nel segnale; dato che viene considerato l intero record, generalmente fornisce un valore più stabile del fattore di cresta. ŝ

11 Esempio: segnale armonico e armonico con picco Momenti centrali Ordine : EU Ordine :.98 EU RMS:.759 EU Crest factor:.66 Skewnes: Kurtosis:.55 Momenti centrali Ordine : EU Ordine :.589 EU RMS:.75 EU Crest factor:.7 Skewnes:.668 Kurtosis:.6 Esempio: segnale armonico con rumore Momenti centrali Ordine : (media) Ordine :.567 (varianza) RMS:.766 Kurtosis:.9 Skewnes:.85 Crest factor:.685

Statistica descrittiva

Statistica descrittiva Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di indicatori sintetici che individuano, con un singolo valore, proprieta` statistiche di un campione/popolazione rispetto

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Grafici delle distribuzioni di frequenza

Grafici delle distribuzioni di frequenza Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Nozioni di statistica

Nozioni di statistica Nozioni di statistica Distribuzione di Frequenza Una distribuzione di frequenza è un insieme di dati raccolti in un campione (Es. occorrenze di errori in seconda elementare). Una distribuzione può essere

Dettagli

Dai dati al modello teorico

Dai dati al modello teorico Dai dati al modello teorico Analisi descrittiva univariata in R 1 Un po di terminologia Popolazione: (insieme dei dispositivi che verranno messi in produzione) finito o infinito sul quale si desidera avere

Dettagli

CENNI DI METODI STATISTICI

CENNI DI METODI STATISTICI Corso di Laurea in Ingegneria Aerospaziale CENNI DI METODI STATISTICI Docente: Page 1 Page 2 Page 3 Due eventi si dicono indipendenti quando il verificarsi di uno non influisce sulla probabilità di accadimento

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA Seconda Lezione DISTRIBUZIONE DI FREQUENZA Frequenza assoluta: è il numero puro di casi per quella modalità Frequenze relative: sono il rapporto tra la frequenza assoluta con cui si manifesta una modalità

Dettagli

[ ] [ ] 5.2. Statistiche descrittive

[ ] [ ] 5.2. Statistiche descrittive traffico nei tratti stradali limitrofi (deficienza non trascurabile data la fitta tessitura che caratterizza la rete stradale mestrina). I dati ottenuti, però, possono fornire una stima del fenomeno ed

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Metodi Matematici e Informatici per la Biologia----31 Maggio 2010

Metodi Matematici e Informatici per la Biologia----31 Maggio 2010 Metodi Matematici e Informatici per la Biologia----31 Maggio 2010 COMPITO 4 (3 CREDITI) Nome: Cognome: Matricola: ISTRUZIONI Gli esercizi che seguono sono di tre tipi: Domande Vero/Falso: cerchiate V o

Dettagli

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria aria@unina.it Standardizzazione di una variabile Standardizzare una variabile statistica

Dettagli

STATISTICA DESCRITTIVA. Le misure di tendenza centrale

STATISTICA DESCRITTIVA. Le misure di tendenza centrale STATISTICA DESCRITTIVA Le misure di tendenza centrale 1 OBIETTIVO Individuare un indice che rappresenti significativamente un insieme di dati statistici. 2 Esempio Nella tabella seguente sono riportati

Dettagli

Abbiamo costruito il grafico delle sst in funzione del tempo (dal 1880 al 1995).

Abbiamo costruito il grafico delle sst in funzione del tempo (dal 1880 al 1995). ANALISI DI UNA SERIE TEMPORALE Analisi statistica elementare Abbiamo costruito il grafico delle sst in funzione del tempo (dal 1880 al 1995). Si puo' osservare una media di circa 26 C e una deviazione

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

l insieme delle misure effettuate costituisce il campione statistico

l insieme delle misure effettuate costituisce il campione statistico Statistica negli esperimenti reali si effettuano sempre un numero finito di misure, ( spesso molto limitato ) l insieme delle misure effettuate costituisce il campione statistico Statistica descrittiva

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

Politecnico di Milano - Scuola di Ingegneria Industriale. I Prova in Itinere di Statistica per Ingegneria Energetica 9 maggio 2013

Politecnico di Milano - Scuola di Ingegneria Industriale. I Prova in Itinere di Statistica per Ingegneria Energetica 9 maggio 2013 Politecnico di Milano - Scuola di Ineneria Industriale I Prova in Itinere di Statistica per Ineneria Eneretica 9 maio 013 c I diritti d autore sono riservati. Oni sfruttamento commerciale non autorizzato

Dettagli

Esercitazione di riepilogo 23 Aprile 2013

Esercitazione di riepilogo 23 Aprile 2013 Esercitazione di riepilogo 23 Aprile 2013 Grafici Grafico a barre Servono principalmente per rappresentare variabili (caratteri) qualitative, quantitative e discrete. Grafico a settori circolari (torta)

Dettagli

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST 1 Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: analisi

Dettagli

Brugnaro Luca Boscaro Gianni (2009) 1

Brugnaro Luca Boscaro Gianni (2009) 1 STATISTICA PER LE PROFESSIONI SANITARIE - LIVELLO BASE Brugnaro Luca Boscaro Gianni (2009) 1 Perché la statistica Prendere decisioni Bibliografia non soddisfacente Richieste nuove conoscenze Raccolta delle

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

ELEMENTI DI STATISTICA DESCRITTIVA

ELEMENTI DI STATISTICA DESCRITTIVA Metodi Statistici e Probabilistici per l Ingegneria ELEMENTI DI STATISTICA DESCRITTIVA Corso di Laurea in Ingegneria Civile Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain E-mail:

Dettagli

Università del Piemonte Orientale. Corso di dottorato in medicina molecolare. a.a. 2002 2003. Corso di Statistica Medica. Inferenza sulle medie

Università del Piemonte Orientale. Corso di dottorato in medicina molecolare. a.a. 2002 2003. Corso di Statistica Medica. Inferenza sulle medie Università del Piemonte Orientale Corso di dottorato in medicina molecolare aa 2002 2003 Corso di Statistica Medica Inferenza sulle medie Statistica U Test z Test t campioni indipendenti con uguale varianza

Dettagli

Valori medi e misure della tendenza centrale

Valori medi e misure della tendenza centrale TERZA UNITA Valori medi e misure della tendenza centrale Una delle maggiori cause di confusione presso l uomo della strada nonché di diffidenza verso la statistica, considerata più un arte che una scienza,

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 04-Grafici delle distribuzioni vers. 1.0 (17 ottobre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

La Distribuzione Normale (Curva di Gauss)

La Distribuzione Normale (Curva di Gauss) 1 DISTRIBUZIONE NORMALE o CURVA DI GAUSS 1. E la più importante distribuzione statistica continua e trova numerose applicazioni nello studio dei fenomeni biologici. 2. Fu proposta da Gauss (1809) nell'ambito

Dettagli

Esercitazioni per il corso di Microonde 2005/2006: CENNI DI TEORIA DELL ERRORE. Ing. Ricci Andrea Simone

Esercitazioni per il corso di Microonde 2005/2006: CENNI DI TEORIA DELL ERRORE. Ing. Ricci Andrea Simone Esercitazioni per il corso di Microonde 2005/2006: CENNI DI TEORIA DELL ERRORE Ing. Ricci Andrea Simone INCERTEZZA DI MISURA - Introduzione X SISTEMA Y Misura > complesso di attività volte alla valutazione

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Indici di dispersione

Indici di dispersione Indici di dispersione 1 Supponiamo di disporre di un insieme di misure e di cercare un solo valore che, meglio di ciascun altro, sia in grado di catturare le caratteristiche della distribuzione nel suo

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Esercitazione 5 Soluzioni

Esercitazione 5 Soluzioni Esercitazione 5 Soluzioni. (Esercizio 5. del Ross) Sia X una variabile aleatoria la cui densità è c( 2 ) < < 0 altrimenti. (a) Qual è il valore di c? (b) Scrivere la funzione di ripartizione di X. 2. (Esercizio

Dettagli

Statistica. Alfonso Iodice D Enza iodicede@unina.it

Statistica. Alfonso Iodice D Enza iodicede@unina.it Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 16 Outline 1 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16

Dettagli

le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi:

le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi: DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano paola.magnano@unikore.it si basano su tre elementi: le scale di misura sistema empirico: un insieme di entità non numeriche (es. insieme di persone; insieme

Dettagli

Statistica descrittiva

Statistica descrittiva Corso di Laurea in Ingegneria per l Ambiente ed il Territorio Corso di Costruzioni Idrauliche A.A. 2004-05 www.dica.unict.it/users/costruzioni Statistica descrittiva Ing. Antonino Cancelliere Dipartimento

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA. Programma del modulo di STATISTICA I (6 crediti)

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA. Programma del modulo di STATISTICA I (6 crediti) UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA Programma del modulo di STATISTICA I (6 crediti) ECOCOM (lettere A-Lh): ECOCOM (lettere Li-Z): ECOBAN: ECOAMM (Lettere A-Lh):

Dettagli

Esplorazione dei dati

Esplorazione dei dati Esplorazione dei dati Introduzione L analisi esplorativa dei dati evidenzia, tramite grafici ed indicatori sintetici, le caratteristiche di ciascun attributo presente in un dataset. Il processo di esplorazione

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli

L analisi statistica

L analisi statistica Statistica medica per IMS / 1 L analisi statistica Statistica medica per IMS / 2 Esempio (de Gans et al. NEJM 2002, 347: 1549-56) Esito Desametazone Trattamento Placebo Totale Sfavorevole Favorevole Totale

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA Elementi di statistica medica STATISTICA DESCRITTIVA È quella branca della statistica che ha il fine di descrivere un fenomeno. Deve quindi sintetizzare tramite pochi valori(indici

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA 1 Distribuzione di frequenza Punto vendita e numero di addetti PUNTO VENDITA 1 2 3

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 3.1 Introduzione all inferenza statistica Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Ricerca di outlier. Ricerca di Anomalie/Outlier

Ricerca di outlier. Ricerca di Anomalie/Outlier Ricerca di outlier Prof. Matteo Golfarelli Alma Mater Studiorum - Università di Bologna Ricerca di Anomalie/Outlier Cosa sono gli outlier? L insieme di dati che sono considerevolmente differenti dalla

Dettagli

Indici (Statistiche) che esprimono le caratteristiche di simmetria e

Indici (Statistiche) che esprimono le caratteristiche di simmetria e Indici di sintesi Indici (Statistiche) Gran parte della analisi statistica consiste nel condensare complessi pattern di osservazioni in un indicatore che sia capace di riassumere una specifica caratteristica

Dettagli

ALLEGATO D ANALISI STATISTICA DEI DATI METEOROLOGICI

ALLEGATO D ANALISI STATISTICA DEI DATI METEOROLOGICI PROVINCIA AUTONOMA DI TRENTO AGENZIA PROVINCIALE PER LA PROTEZIONE DELL'AMBIENTE U.O. Tutela dell aria ed agenti fisici PIANO PROVINCIALE DI TUTELA DELLA QUALITÀ DELL ARIA ALLEGATO D ANALISI STATISTICA

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 3 A. Sia una variabile casuale che si distribuisce secondo

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

STATISTICA DESCRITTIVA (variabili quantitative)

STATISTICA DESCRITTIVA (variabili quantitative) STATISTICA DESCRITTIVA (variabili quantitative) PRIMO ESEMPIO: Concentrazione di un elemento chimico in una roccia. File di lavoro di STATVIEW Cliccando sul tasto del pane control si ottiene il cosiddetto

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

Analisi dei rischi in un investimento immobiliare. (aumento/diminuzione di prezzi/canoni/rendimenti, velocità di

Analisi dei rischi in un investimento immobiliare. (aumento/diminuzione di prezzi/canoni/rendimenti, velocità di dott. ing. arch. Alberto M. Lunghini, i FRICS, AICI, FIABCI Reddy s Group SRL ANALISI DEI RISCHI IN UN INVESTIMENTO IMMOBILIARE Camera di Commercio RISCHIO è la possibilità che un evento atteso (aumento/diminuzione

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

STATISTICA GIUSEPPE DE NICOLAO. Dipartimento di Informatica e Sistemistica Università di Pavia

STATISTICA GIUSEPPE DE NICOLAO. Dipartimento di Informatica e Sistemistica Università di Pavia STATISTICA GIUSEPPE DE NICOLAO Dipartimento di Informatica e Sistemistica Università di Pavia SOMMARIO V.C. vettoriali Media e varianza campionarie Proprietà degli stimatori Intervalli di confidenza Statistica

Dettagli

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Laurea in Ingegneria Meccatronica A.A. 2010 2011 n-dimensionali Riepilogo. Gli esiti di un esperimento aleatorio

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

PROBABILITA GIUSEPPE DE NICOLAO. Dipartimento di Informatica e Sistemistica Università di Pavia

PROBABILITA GIUSEPPE DE NICOLAO. Dipartimento di Informatica e Sistemistica Università di Pavia PROBABILITA GIUSEPPE DE NICOLAO Dipartimento di Informatica e Sistemistica Università di Pavia SOMMARIO Probabilità Variabili casuali: distribuzioni, densità, istogrammi Media, varianza, momenti Distribuzione

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

PROGRAMMA FT-Graph-2

PROGRAMMA FT-Graph-2 PROGRAMMA FT-Graph-2 PROGRAMMA DI SVILUPPO GRAFICO CON STAMPA Elaborazione grafica con selezione dei dati. Si possono graficare e stampare tutti i file relativi alle apparecchiature della ECONORMA S.a.s.

Dettagli

Rumore Elettronico. Sorgenti di rumore in Diodi, BJTs, MOSFETs Rumore equivalente all ingresso di amplificatori Rumore nel dominio del tempo

Rumore Elettronico. Sorgenti di rumore in Diodi, BJTs, MOSFETs Rumore equivalente all ingresso di amplificatori Rumore nel dominio del tempo umore Elettronico Sorgenti di rumore in Diodi, Js, MOSFEs umore equivalente all ingresso di amplificatori umore nel dominio del tempo 1 umore della Giunzione PN: Shot Noise La corrente che fluisce attraverso

Dettagli

Capitolo 5 RESTAURO E RICOSTRUZIONE DI IMMAGINI

Capitolo 5 RESTAURO E RICOSTRUZIONE DI IMMAGINI Capitolo 5 RESTAURO E RICOSTRUZIONE DI IMMAGINI La differenza tra il restauro e il miglioramento (enhancement) delle immagini è che il miglioramento è un processo soggettivo, mentre il restauro è un processo

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

Statistica. L. Freddi. L. Freddi Statistica

Statistica. L. Freddi. L. Freddi Statistica Statistica L. Freddi Statistica La statistica è un insieme di metodi e tecniche per: raccogliere informazioni su un fenomeno sintetizzare l informazione (elaborare i dati) generalizzare i risultati ottenuti

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Solitamente si fa riferimento ad intorni simmetrici =, + + Definizione: dato

Dettagli

Cenni di statistica descrittiva

Cenni di statistica descrittiva Cenni di statistica descrittiva La statistica descrittiva è la disciplina nella quale si studiano le metodologie di cui si serve uno sperimentatore per raccogliere, rappresentare ed elaborare dei dati

Dettagli

In questa dispensa cercheremo di approfondire le più comuni tecniche statistiche per l analisi dei dati raccolti nell ambito di ricerca clinica e di

In questa dispensa cercheremo di approfondire le più comuni tecniche statistiche per l analisi dei dati raccolti nell ambito di ricerca clinica e di In questa dispensa cercheremo di approfondire le più comuni tecniche statistiche per l analisi dei dati raccolti nell ambito di ricerca clinica e di base. Verranno inoltre forniti i concetti fondamentali

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA ANNO ACCADEMICO 2013-2014 UNIVERSITA DEGLI STUDI DI TERAMO FACOLTA DI MEDICINA VETERINARIA CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA CFU 5 DURATA DEL CORSO : ORE 35 DOCENTE PROF. DOMENICO DI DONATO

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale

SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale ESERCIZIO nr. 1 I Presidi delle scuole medie superiori di una certa cittá italiana hanno indetto tra gli studenti dell ultimo anno una

Dettagli

INDICE PREFAZIONE VII

INDICE PREFAZIONE VII INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Analisi dei dati. Statistica descrittiva

Analisi dei dati. Statistica descrittiva Analisi dei dati DATI GREZZI SINTESI DELLE OSSERVAZIONI ELABORAZIONE DATI Statistica descrittiva Si occupa dell analisi di un certo fenomeno relativo a un certo gruppo di soggetti (popolazione) sulla base

Dettagli

Introduzione all Inferenza Statistica

Introduzione all Inferenza Statistica Introduzione all Inferenza Statistica Fabrizio Cipollini Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) G. Parenti Università di Firenze Firenze, 3 Febbraio 2015 Introduzione Casi di studio

Dettagli