Studio dei transitori con il metodo delle trasformate di Laplace

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Studio dei transitori con il metodo delle trasformate di Laplace"

Transcript

1 Studio di traitori co il mtodo dll traformat di Laplac Apputi a cura dll Igg. Baoccu Gia Piro Marra Luca Tutor dl coro di ELETTROTECNICA pr mccaici chimici A. A 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari (ultimo aggioramto //8 Apputi a cura dgli Igg. Gia Piro Baoccu Luca Marra, tutor dl coro di ELETTROTECNICA pr mccaici chimici Facoltà di Iggria dll Uivrità dgli Studi di Cagliari

2 STUDIO DEL TRANSITORIO CON IL METODO DELLE TRASFORMATE DI LAPLACE INTRODUZIONE Lo tudio di traitori i circuiti di corrt comporta la rioluzio di quazioi itgro-diffrziali l domiio dl tmpo di difficil rioluzio. Nlla ipoti di circuiti liari (pr i quali i paramtri ch carattrizzao il circuito, pooo r coidrati cotati il mtodo dll traformat di Laplac cot di mplificar otvolmt la rioluzio di tali circuiti. L fuzioi f(t itgro-diffrziali, dfiit l domiio dl tmpo t, vgoo traformat l domiio (variabil di Laplac i fuzioi F( algbrich: domiio t domiio f(t F(. La traformata di Laplac cot di calcolar la ripota di u circuito a (quai ogi tipo di ccitazio, prmttdo, di calcolar la ripota libra la ripota forzata, a partir da qualivoglia codizio iizial. Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari

3 La traformata di Laplac prmtt di tudiar fuzioi f(t dfiit pr t. Pr l gradzz lttrich i aum ch l itat t coicida co l itat i cui ha iizio il fomo fiico ch i itd tudiar. L codizioi ufficiti affiché ita la traformata di Laplac dlla fuzio f(t oo: a f(t pr t < f(t pr t, l'ipoti ch f(t pr t < ' caria pr garatir la uicità dlla L-Traformata b f(t prti u umro fiito di dicotiuità di prima pci (drivata iitra drivata dtra i u puto, oia ia cotiua tratto pr tratto, σt c f ( t dt ia u itgral covrgt. S tali codizioi oo vrificat pr la f(t, it la traformata di Laplac F(. Prl applicazio dlla traformata di Laplac ai circuiti, i upporrà: σ Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari 3

4 Pr l fuzioi di uo comu (traformat otvoli i valori dll F( oo riportati i tabll. La traformata di Laplac è dfiita attravro l oprator di itgrazio, pr mzzo dl qual l itgral la drivata l domiio dl tmpo divtao ripttivamt ua moltiplicazio ua diviio l domiio di Laplac. I matmatica i particolar ll'aalii fuzioal la Traformata di Laplac di ua fuzio f (t, dfiita pr tutti i umri rali t, è la fuzio F ( coì dfiita: Sia f(t : R C, f(t pr t La L traformata di f(t ': F( f(t L [ ] L f(t La ati traformata di F( ': [ F( ] f(t π dt F( F( ' fuzio di σ ϖ σ σ t ϖ ϖ t d Empio: f(t u(t δ (t U( [ ] L u(t u(t t dt t dt t Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari 4

5 Proprità dll traformat: Liarità La traformata di Laplac è u oprazio liar,cioè: Similitudi F K ( αf( αf ( t f K ( t S i otituic a co R F ( f ( t dt i ffttua il cambiamto di variabil tτ F( da cui: τ f τ F( τ f dτ Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari 5

6 Tralazio dll origi S F( è la traformata di f(t, la traformata f(t- co f(t- pr t> è: f ( t F( 3 Drivazio S F( è l traformata di f(t, la traformata dlla drivata di ordi di f(t è data da: f ( t F( f ( f' (... f ( oia: d f ( t dt F( i i f i (. S f(t è ua ri f ( t f( t F( F ( co f ( t F ( N oia la traformata di Laplac i otti facdo la traformata di ciacu trmi dllo viluppo i ri dlla fuzio origial. Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari 6

7 4 Itgrazio S F( è la traformata di f(t, la traformata dll itgral di f(t è dato da: f ( t dt F( f ( Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari 7

8 5 Torma dl valor iizial: f ( lim { F( } Il valor iizial dlla fuzio f(t l domiio dl tmpo, oia f(, è ugual al limit pr dlla corripodt traformata F( moltiplicata pr. Torma dl valor fial: f ( lim { F( } Il valor fial dlla fuzio f(t l domiio dl tmpo, oia f(, è ugual al limit pr dlla corripodt traformata F( moltiplicata pr. (Quta rlazio può r applicata oltato quado tutt l radici dl domiator di F( hao part ral gativa. Quta limitazio clud dall applicazio dl torma l fuzioi applicat iuoidali, poiché la fuzio iuoidal ha limit ifiito idtrmiato. Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari 8

9 Traformat di Laplac f(t t 3 at - 4 at 5 i t 6 co t 7 i ( t θ 8 co ( t θ 9 - at - at Tablla di covrio F( Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari 9 a a t - ( it cot ih t coh t iθ coθ coθ - iθ ( a a ( a - -

10 t df ( ( F - f dt f -i i- d ( ( - F - Σ f dt i f ( τ dτ F( f(t - t -t F ( c t f( t c f ( t c F ( cf ( f( τ f ( t τ dτ ( F ( F Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari

11 Mtodi baati ulla dcompoizio S la fuzio traformata è ua fuzio razioal: F( N( D( b a m b a m b a m b a m dov N( D( poliomi lla variabil b i a i umri rali. Si dv comporr D( pr trovar l radici dl poliomio: r r rm D( ( α ( α...( α m co r, r,,r m ordi di moltplicità di igoli fattori m i r grado di D(. i L oluzioi di N( oo gli zri l oluzioi di D( oo i poli. Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari

12 La fuzio razioal può r pra com: F( mplici: N( ( i p i l cao di poli F( ( i N( p i A p B p... K p riducdo a domiator comu i otti u poliomio a umrator i fuzio di paramtri A,B, K,ch dv r ugual a N(, dal cofroto i dtrmiao l rlazioi pr dtrmiar i paramtri A, B,,K, oppur i moltiplica pr (-p i l uguagliaza: ( - pi F( A( - pi p B( - pi p K i... K( - pi p K i lim p i ( - pi F( Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari

13 S i poli oo multipli: D( ( p ( p... ( p r co r i grado dl poliomio F( ( - p ( - p ( - p r r ( - p ( ( r r - p r r - p r r pr dtrmiar,,., i moltiplica F( pr il trmi di potza più alto: ( - p F( ( - p ( - p, - ( - p ( - p r r i ( p i... i gu quidi il calcolo dll drivat di F( io all ordi -: F (, F (,., F - ( Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari 3

14 Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari 4 pr p i il trmi ch coti la ommatoria i i aulla. Si ottrrà: ( ( [ ] ( ( [ ] ( ( [ ] -r, -,, ' p -! lim... ' p - lim ' p - lim d F d d F d F p p p d S i poli oo compli coiugati: ( [ ] ( ( [ ] ( ( * ( * φ α φ α α α α α F F La traformata ivra arà dl tipo: [ ] ( [ ] ( * co R R * φ α α φ t t t t t t

15 Traformazioi dll rlazioi cotitutiv di compoti loro circuiti quivalti l domiio di Laplac Si coidrio i divri compoti dititi i tr catgori: gratori idipdti, compoti za mmoria, compoti co mmoria. Gratori idipdti Pooo r gratori di corrt o di tio carattrizzati dall avr la gradzza impra, ripttivamt corrt tio, coicidt co ua fuzio agata f(t. S la f(t è traformabil i ha ripttivamt: u(t U( i(t I( Dov l dimioi di u(t di i(t oo ripttivamt volt ampr, mtr, i ba all oprator traformata, l dimioi di U( I( oo ripttivamt volt codo ampr codo. Ifatti riulta ch ua traformata ha l dimioi dlla t [ ] F( L f(t f(t dt gradzza origiaria moltiplicata pr il tmpo. Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari 5

16 Compoti za mmoria L rlazioi cotitutiv di tali compoti o cotgoo lgami di tipo itgro-diffrzial l domiio dl tmpo. Soo compoti za mmoria il ritor, i gratori cotrollati, il ullor il traformator idal. Tutt l loro rlazioi cotitutiv pooo r trafrit l domiio dlla variabil za alcua modifica, otto l ipoti di liarità prmaza. I paramtri rlativi matgoo l dimioi origiari. Pr mpio RU(/I( ha l dimioi di Ω. Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari 6

17 Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari 7

18 Compoti co mmoria Tali compoti oo carattrizzati da rlazioi cotitutiv di tipo itgro-diffrzial. La traformata di Laplac prmtt di ridurr tali rlazioi a mplici rlazioi algbrich. Soo lmti co mmoria il codator, l iduttor gli iduttori mutuamt accoppiati. Codator: v(o - rapprta il valor iizial dlla tio ai capi dl codator. Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari 8

19 Iduttor i(o - rapprta il valor iizial dlla corrt ch prcorr l iduttor all itat iizial. Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari 9

20 Iduttori mutuamt accoppiati dov i (o - i (o - rapprtao l corrti iiziali ll iduttor L L ripttivamt. Pr i compoti co mmoria l rlazioi cotitutiv traformat oo di tipo algbrico ma o oo omog pr la prza di trmii oti rlativi all codizioi iiziali. L traformat dll rlazioi cotitutiv di compoti co mmoria covrtoo l oprazio di drivazio itgrazio i oprazioi di moltiplicazio diviio ripttivamt, prciò i compoti fittizi l domiio di i comportao com foro za mmoria. Apputi a cura dll Igg Baoccu Gia Piro Marra Luca, tutori dl coro di ELETTROTECNICA pr mccaici chimici pr A.A. 3/4 4/5 Facoltà di Iggria dll Uivrità dgli Studi di Cagliari

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Coro di Fodamti di lcomuicazioi 5 - SEGNALI DIGIALI E A IMULSI IN BANDA BASE rof. Mario Barra [part 3] Fodamti di LC - rof. G. Schmra Liramt tratto da Fodamti di LC - rof. G. Schmra ada a [part 3] Codici

Dettagli

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1.

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1. Caitolo III VALORI MEDI. SAZIONARIEÀ ED ERGODICIÀ III. - Mdi tatitich dl rimo ordi. Sia f( ) ua fuzio cotiua i aoci al gal alatorio (, t ζ ) la uatità dfiita dalla y f[(, t ζ )]. Ea idividua, a ua volta,

Dettagli

f = B / N, si può dire in prima approssimazione f = 1 / T s, sono ortogonali sull intervallo di tempo T s,

f = B / N, si può dire in prima approssimazione f = 1 / T s, sono ortogonali sull intervallo di tempo T s, OFDM - apputi Modulazio u più portati OFDM (Orthogoal Frqucy Diviio Multiplx) L ida fodamtal dl itma di modulazio OFDM coit llo comporr il fluo di dati da tramttr (R bit/) i flui i paralllo da tramttr

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A SEDE DISTACCATA DI LATINA a.a. / Prova sritta di Aalisi Matmatia I - fbbraio Proff. B. CIFRA F. ILARI Compito A COGNOME...... NOME. Matr... Corso di Laura o o o Ambit Trritorio Risors Iformazio Maia firma

Dettagli

Capitolo. Il comportamento dei sistemi in regime transitorio. 5.8 Esercizi - Risposta al gradino dei sistemi del 2 ordine reazionati e non reazionati

Capitolo. Il comportamento dei sistemi in regime transitorio. 5.8 Esercizi - Risposta al gradino dei sistemi del 2 ordine reazionati e non reazionati Capitolo 5 Il comportameto dei itemi i regime traitorio 5.1 Geeralità ulla ripota dei itemi el domiio del tempo 5. Ripota al gradio di u itema del primo ordie. 5.3 Eercizi - Ripota al gradio dei itemi

Dettagli

SOMMARIO. I Motori in Corrente Continua

SOMMARIO. I Motori in Corrente Continua SOMMARIO Gralità sull Macchi i Corrt Cotiua...2 quazio dlla forza lttromotric...2 Circuito quivalt...2 Carattristica di ccitazio...3 quazio dlla vlocità...3 quazio dlla Coppia rsa all'albro motor:...3

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA RASFORMAA DI LAPLACE Pr dcrivr l voluzion di un itma in rgim tranitorio, oia durant il paaggio dll ucit da un rgim tazionario ad un altro, è ncario ricorrr ad un modllo più gnral riptto al modllo tatico,

Dettagli

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe

Dettagli

Introduzione ai segnali (causali, regolari, di ordine esponenziale)... 2 Il segnale di Heavyside... 3 Definizione di trasformata di Laplace...

Introduzione ai segnali (causali, regolari, di ordine esponenziale)... 2 Il segnale di Heavyside... 3 Definizione di trasformata di Laplace... Appunti di Controlli Automatici Capitolo - part I Traformata di aplac Introduzion ai gnali (cauali, rgolari, di ordin ponnzial)... Il gnal di Havyid... 3 Dfinizion di traformata di aplac... 3 PROPRIETÀ

Dettagli

2 PRINCIPIO DELLA TERMODINAMICA CICLO DI CARNOT

2 PRINCIPIO DELLA TERMODINAMICA CICLO DI CARNOT 2 PRINCIPIO DELLA TERMODINAMICA CICLO DI CARNOT Mntr il 1 principio rapprnta la conrazion dll nrgia, il 2 principio riguarda la maima quantità di calor ch può r conrtita in laoro. Alcun dfinizioni: Proco

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

Risposta in Frequenza

Risposta in Frequenza Risposta i Frquza Ipdza L ipdza di u bipolo è il uro coplsso dato dal rapporto tra il fasor tsio il fasor corrt: jφ V V V V j( ΦV ΦI ) Z = = I I jφ L attza è il uro coplsso: Z Y soo i gral fuzioi dlla

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

Studio 24 scan control scan control. professional light desk user s manual rel. 1.41

Studio 24 scan control scan control. professional light desk user s manual rel. 1.41 Studio ca cotrol ca cotrol profioal light dk ur maual rl.. Avvrtz Grali Lggr atttamt l avvrtz cotut l prt librtto, i quato foricoo importati idicazioi riguardati la icurzza di itallazio, d uo mautzio.

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

ESERCIZI SUI MOTORI ALTERNATIVI A COMBUSTIONE INTERNA

ESERCIZI SUI MOTORI ALTERNATIVI A COMBUSTIONE INTERNA ESERCIZI SUI MOTORI ALTERNATII A COMBUSTIONE INTERNA U oor alraivo co cilidri a ua cilidraa oal di 0,999 d, u rapporo cora diaro di 0,9 fuzioa a ri a 000 iri/i. riar la CORSA la ELOCITÀ MEIA EL PISTONE

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

Minicorso Controllo Statistico di Processo

Minicorso Controllo Statistico di Processo MIICORSO: Cotrollo Statistico di Procsso art 4/5 di Adra Saviao Part 4 Miicorso Cotrollo Statistico di Procsso di Adra Saviao L fruz cumulativ, rmssa L distribuzioi discrt L distribuzioi cotiu Distribuzioi

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

MACCHINE ELETTRICHE. Macchine Sincrone. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. Macchine Sincrone. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCHINE ELETTRICHE Macchin Sincron Stfano Pator Dipartimnto di Inggnria Architttura Coro di Elttrotcnica (IN 04) a.a. 2012-1 Introduzion I gnratori i motori incroni ono formati da du parti: Induttor (part

Dettagli

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

La conversione A/D. Segnali digitali A differenza del segnale analogico quello digitale è costituito da una funzione "tempo discreta" e "quantizzata :

La conversione A/D. Segnali digitali A differenza del segnale analogico quello digitale è costituito da una funzione tempo discreta e quantizzata : La overioe A/D Segali aalogii U egale aalogio può eere rappreetato mediate ua fuzioe del tempo he gode delle egueti aratteritihe: 1) la fuzioe è defiita per ogi valore del tempo (è ioè otiua el domiio)

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

3. Catene di Misura e Funzioni di Trasferimento

3. Catene di Misura e Funzioni di Trasferimento 3.. Generalità 3. Catene di Miura e Funzioni di Traferimento 3.. Generalità Il egnale che rappreenta la grandezza da miurare viene trattato in modo da poter eprimere quet ultima con uno o più valori numerici

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

CARTOGRAFIA. rappresentare il territorio sul piano

CARTOGRAFIA. rappresentare il territorio sul piano CARTOGRAFIA V 2 P V 3 V 1 π rappresentare il territorio sul piano LA TRRA UA SUPRFICI COMPLSSA COMUQU O RAPPRSTABIL MDIAT UA FORMULA MATMATICA Superficie topografica (P) llissoide (P ) Rappresentazione

Dettagli

1 Metodo della massima verosimiglianza

1 Metodo della massima verosimiglianza Metodo della massima verosimigliaza Estraedo u campioe costituito da variabili casuali X i i.i.d. da ua popolazioe X co fuzioe di probabilità/desità f(x, θ), si costruisce la fuzioe di verosimigliaza che

Dettagli

2.1 Il motore elettrico: considerazioni iniziali. Un motore è una macchina elettrica in cui la potenza di

2.1 Il motore elettrico: considerazioni iniziali. Un motore è una macchina elettrica in cui la potenza di Cpitolo Il motor lttrico. Il motor lttrico: cosidrzioi iizili U motor è u mcchi lttric i cui l potz di igrsso si di tipo lttrico qull di uscit si di tipo mccico [6]. I motori lttrici i corrt cotiu ho u

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Univrità di apoli arthnop Facoltà di Inggnria Coro di Tramiioni umrich docnt: rof. Vito acazio 6 a Lzion: // Sommario Calcolo dlla proailità di rror nlla tramiion numrica in prnza di AWG AM inario M inario

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia per maager. Prima versioe, marzo 2013; versioe aggiorata, marzo 2014) Massimo A. De Fracesco Uiversità di Siea March 14, 2014 1 Prezzo

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia) Massimo A. De Fracesco Uiversità di Siea December 18, 2013 1 ichiami su utilità attesa e avversioe al rischio Prima di cosiderare il

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

Modelli multiperiodali discreti. Strategie di investimento

Modelli multiperiodali discreti. Strategie di investimento Modelli multiperiodali discreti Cosideriamo ora modelli discreti cioè co u umero fiito di stati del modo multiperiodali, cioè apputo co più periodi. Il prototipo di questa classe di modelli è il modello

Dettagli

SCHEDA RIEPILOGATIVA DELL INTERVENTO. Interventi di adeguamento Palazzetto dello sport di Campoloniano Palasojourner. Intervento.

SCHEDA RIEPILOGATIVA DELL INTERVENTO. Interventi di adeguamento Palazzetto dello sport di Campoloniano Palasojourner. Intervento. SCHEDA RIEPILOGATIVA DELL INTERVENTO Itrvto Ubicaio dll itrvto Itrvti di aduamto Palatto dllo sport di Campoloiao Palasojourr Comu di Riti Ultriori lmti di Via Orst di Faio localiio Importo dl fiaiamto

Dettagli

Lezione 22. Fattorizzazione di ideali.

Lezione 22. Fattorizzazione di ideali. Lezioe Peequisiti: Lezioi 0, Fattoizzazioe di ideali Teoema Sia A u domiio di Dedekid, e sia I u suo ideale popio o ullo Alloa esistoo uici ideali pimi o ulli P,, P a due a due distiti ed uici umei itei

Dettagli

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007 ispns orso ostr Zon ismica 2 mod _Prof amillo Nuti_ AA 2006 2007 AZIONI IMIHE RAMIE PERO I RIPOA- LA NUOVA NORMA 2007 AZIONI IMIHE L azioni sismich di protto con l quali valutar il risptto di divrsi stati

Dettagli

Appunti su rendite e ammortamenti

Appunti su rendite e ammortamenti Corso di Matematica I Facoltà di Ecoomia Dipartimeto di Matematica Applicata Uiversità Ca Foscari di Veezia Fuari Stefaia, fuari@uive.it Apputi su redite e ammortameti 1. Redite Per redita si itede u isieme

Dettagli

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE Traformata di Laplace ESEMPI DI MODELLIZZAZIONE Introduzione La traformata di Laplace i utilizza nel momento in cui è tata individuata la funzione di traferimento La F.d.T è una equazione differenziale

Dettagli

Slide del corso di. Controllo digitale

Slide del corso di. Controllo digitale Slide del coro di Controllo digitale Coro di Laurea in Ingegneria Informatica e dell Informazione Univerità di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte III Sitemi a dati campionati Gianni

Dettagli

Momenti angolari e rotazioni

Momenti angolari e rotazioni Moeti agoari e rotazioi Defiizioe di rotazioe coe traforazioe di 3 Ua rotazioe i può defiire coe ua traforazioe R deo pazio fiico tridieioae i e, co e egueti proprietà : a) acia ivariate e ditaze b) o

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

L ammortamento dei prestiti. S. Corsaro Matematica Finanziaria a.a. 2007/08

L ammortamento dei prestiti. S. Corsaro Matematica Finanziaria a.a. 2007/08 L ammortameto dei prestiti. Corsaro Matematica Fiaziaria a.a. 27/8 Prestiti idivisi Operazioi fiaziarie co due cotraeti mutuate o creditore: presta u capitale mutuatario o debitore: si impega a restituire

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie umeriche e serie di poteze Sommare u umero fiito di umeri reali è seza dubbio u operazioe che o può riservare molte sorprese Cosa succede però se e sommiamo u umero ifiito? Prima di dare delle defiizioi

Dettagli

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT 1 Prima Stsura Data: 14-08-2014 Rdattori: Gasbarri, Rizzo SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT Indic 1 SCOPO... 2 2 CAMPO D APPLICAZIONE... 2 3 DOCUMENTI DI RIFERIMENTO... 2 4

Dettagli

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi CONFRONTO TRA DUE MEDIE U problema! La letteratura riporta che i pazieti affetti da cacro hao ua sopravviveza media di 38.3 mesi e deviazioe stadard di 43.3 mesi: µ 38.3mesi σ 43.3mesi (la distribuzioe

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

1. Considerazioni generali

1. Considerazioni generali . osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

3.4 Tecniche per valutare uno stimatore

3.4 Tecniche per valutare uno stimatore 3.4 Teciche per valutare uo stimatore 3.4. Il liguaggio delle decisioi statistiche, stimatori corretti e stimatori cosisteti La teoria delle decisioi forisce u liguaggio appropriato per discutere sulla

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Università degli Studi di Bologna. Appunti del corso di Analisi Matematica Anno Accademico 2013 2014. prof. Daniele Ritelli

Università degli Studi di Bologna. Appunti del corso di Analisi Matematica Anno Accademico 2013 2014. prof. Daniele Ritelli Uiversità degli Studi di Bologa Scuola di Ecoomia Maagemet e Statistica Corso di Laurea i Scieze Statistiche Apputi del corso di Aalisi Matematica Ao Accademico 03 04 f b y prof. Daiele Ritelli f a a b

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Si presentano qui alcune nozioni sugli anelli, sia come modello di. strutture con due operazioni binarie, sia per l importanza di queste strutture in

Si presentano qui alcune nozioni sugli anelli, sia come modello di. strutture con due operazioni binarie, sia per l importanza di queste strutture in NOZIONI ELEMENTARI SUGLI ANELLI Si presetao qui alcue ozioi sugli aelli, sia come modello di strutture co due operazioi biarie, sia per l importaza di queste strutture i tutte le sezioi della Matematica

Dettagli

La matematica finanziaria

La matematica finanziaria La matematica fiaziaria La matematica fiaziaria forisce gli strumeti ecessari per cofrotare fatti fiaziari che avvegoo i mometi diversi Esempio: Come posso cofrotare i ricavi e i costi legati all acquisto

Dettagli

Approfondimenti di statistica e geostatistica

Approfondimenti di statistica e geostatistica Approfodimeti di statistica e geostatistica APAT Agezia per la Protezioe dell Ambiete e per i Servizi Tecici Cos è la geostatistica? Applicazioe dell aalisi di Rischio ai siti Cotamiati Geostatistica La

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Relè allo Stato Solido per il controllo Motori Trifase Modello REC2R

Relè allo Stato Solido per il controllo Motori Trifase Modello REC2R Rlè allo Stato Solido pr il cotrollo Motori Trifas Modllo REC2R Cotrollo lttroico pr motori i CA Commutazio istataa Tr poli co du o tr fasi slzioabili dicazio a ED Du rag di cotrollo: 15-32 VCC, 90-253

Dettagli

Lezione 12. Regolatori PID

Lezione 12. Regolatori PID Lezione 1 Regolatori PD Legge di controllo PD Conideriamo un regolatore che eercita un azione di controllo dipendente dall errore attravero la eguente legge: t ut = K et K e d K de t P + τ τ+ D. dt La

Dettagli

Università degli Studi La Sapienza. Facoltà di Economia. Anno accademico 2012-13. Matematica Finanziaria Canale D - K

Università degli Studi La Sapienza. Facoltà di Economia. Anno accademico 2012-13. Matematica Finanziaria Canale D - K 1 Matematica Fiaziaria Uiversità degli Studi La Sapieza Facoltà di Ecoomia Ao accademico 212-13 Matematica Fiaziaria Caale D - K Capitolo 3 Ammortameto di prestiti idivisi Atoio Aibali Atoio Aibali a.a.

Dettagli

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni Statistica I, Laurea trieale i Ig. Gestioale, a.a. 2011/12 Registro delle lezioi Lezioe 1 (28/9, ore 11:30). Vedere la registrazioe di Barsati, dispoibile alla pagia http://users.dma.uipi.it/barsati/statistica_2011/idex.html.

Dettagli

CAPITOLO 5 TEORIA DELLA SIMILITUDINE

CAPITOLO 5 TEORIA DELLA SIMILITUDINE CAPITOLO 5 TEORIA DELLA SIMILITUDINE 5.. Itroduzioe La Teoria della Similitudie ha pricipalmete due utilizzi: Estedere i risultati otteuti testado ua sigola macchia ad altre codizioi operative o a ua famiglia

Dettagli

ARGOMENTI Scopi e caratteristiche dello strumento Tipologie di mutui Il mercato secondario e il ruolo svolto nella crisi finanziaria

ARGOMENTI Scopi e caratteristiche dello strumento Tipologie di mutui Il mercato secondario e il ruolo svolto nella crisi finanziaria MERCATO DEI MUTUI A.A. 2015/2016 Prof. Alberto Dreassi adreassi@uits.it DEAMS Uiversità di Trieste ARGOMENTI Scopi e caratteristiche dello strumeto Tipologie di mutui Il mercato secodario e il ruolo svolto

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

Appunti sulle SERIE NUMERICHE

Appunti sulle SERIE NUMERICHE Apputi sulle SERIE NUMERICHE Michele Bricchi I queste ote iformali parleremo di serie umeriche, foredo i criteri stadard di covergeza che si è soliti itrodurre i ua trattazioe elemetare della materia.

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000 Diesioeto di ssi di otore correte cotiu Si idividuio i pretri pricipli di u cchi correte cotiu eccitzioe idipedete i rdo di uovere u tr veloce ote che sio le seueti specifiche: Tesioe di lietzioe dell

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

Facoltà di Ingegneria CdL Ingegneria Informatica. Prova scritta di Analisi Matematica I COMPITO A. Lecce, 11.12.2006

Facoltà di Ingegneria CdL Ingegneria Informatica. Prova scritta di Analisi Matematica I COMPITO A. Lecce, 11.12.2006 Prova scritta di Aalisi Matematica I COMPITO A Lecce, 11.1.006 1. Dopo aver determiato il domiio aturale della fuzioe defiita dalla seguete espressioe aalitica: f(x) = 1 x x 9 calcolare la derivata e descrivere

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità 1 Elemeti di calcolo delle probabilità 5 1. Itroduzioe La statistica è ua scieza, strumetale ad altre, cocerete la determiazioe dei metodi scietifici da seguire per raccogliere, elaborare e valutare i

Dettagli

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa?

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa? Verifica d Iotesi Se ivece che chiederci quale è il valore ua mea i ua oolazioe (stima utuale Se ivece e itervallo che chiederci cofideza) quale è il avessimo valore u idea ua mea su quello i ua che oolazioe

Dettagli

N (>0 compr.) 6. SOLLECITAZIONI RESISTENTI NEI CAMPI DI ROTTURA

N (>0 compr.) 6. SOLLECITAZIONI RESISTENTI NEI CAMPI DI ROTTURA 6. SLLEITZINI RESISTENTI NEI PI DI RTTUR Dfiniti i campi i rottura è util, prima i affrontar i prolmi i progtto vrifica ll zioni, trminar pr l rtt i rottura in cian campo l riultanti i momnti riultanti

Dettagli

Coordinamento tra le protezioni della rete MT del Distributore e la protezione generale. degli Utenti MT.

Coordinamento tra le protezioni della rete MT del Distributore e la protezione generale. degli Utenti MT. Coordinamnto tra l protzioni dlla rt MT dl Distributor la protzion gnral 1. PREMESSA. dgli Utnti MT. ll rti di distribuzion a mdia tnsion (MT), l unico organo di manovra automatico è l intrruttor di lina

Dettagli

All Albo dell Istituto Tutte le sedi Al sito www.iisdirocco.org

All Albo dell Istituto Tutte le sedi Al sito www.iisdirocco.org ISTITUTO DI ISTRUZIONE SUPERIORE Sn. Anglo Di Rocco Ist. Tcnico Agrario Sn. A. Di Rocco - Caltanisstta Ist. Prof.l di Stato pr i Srvizi Albrghiri di Ristorazion - Caltanisstta Ist. Prof.l di Stato pr l

Dettagli

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30)

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30) Copyright 2005 Esselibri S.p.A. Via F. Russo, 33/D 8023 Napoli Azieda co sistema qualità certificato ISO 400: 2003 Tutti i diritti riservati. È vietata la riproduzioe ache parziale e co qualsiasi mezzo

Dettagli

Interesse e formule relative.

Interesse e formule relative. Elisa Battistoi, Adrea Frozetti Collado Iteresse e formule relative Esercizio Determiare quale somma sarà dispoibile fra 7 ai ivestedo oggi 0000 ad u tasso auale semplice del 5% Soluzioe Il diagramma del

Dettagli

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag.

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag. SERIE NUMERICHE (Cosimo De Mitri. Defiizioe, esempi e primi risultati... pag.. Criteri per serie a termii positivi... pag. 4 3. Covergeza assoluta e criteri per serie a termii di sego qualsiasi... pag.

Dettagli

Il Dirigente Scolastico

Il Dirigente Scolastico Prot. N. 1176 Bari, 15 fbbraio 2014 PROGRAMMA OPERATIVO NAZIONALE 2007-2013 COMPETENZE PER LO SVILUPPO Union Europa - Fondo Social Europo Con l Europa, invstiamo nl vostro futuro Il Dirignt Scolastico

Dettagli

2.1. CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA

2.1. CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA Politecico di Torio Sistemi di Produzioe... CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA... Equazioe di govero Negli ultimi ai il metodo

Dettagli

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno PROGETTO PONTE TRA ORDINI DI SCUOLA Pr favorir la continuità ducativo didattica nl momnto dl passaggio da un ordin di scuola ad un altro, si labora un pont, sul modllo di qullo sottolncato. TEMPI SOGGETTI

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

Parte 2. Problemi con macchine parallele

Parte 2. Problemi con macchine parallele Parte 2 Problemi co macchie arallele Esemio job 1 2 3 4 5 j 2 3 5 1 4 2macchie Assegado{2,3,5}aM1e{1,4}aM2 M2 M1 4 1 1 3 3 2 5 5 8 12 Assegado{1,4,5}aM1e{2,3}aM2 M2 3 2 M1 4 1 5 1 3 5 7 8 R m //C Algoritmo

Dettagli

Serie di Fourier: proprietà e applicazioni. Claudio Magno. Revisione set. 2015. www.cm-physmath.net. CM_Portable MATH Notebook Series

Serie di Fourier: proprietà e applicazioni. Claudio Magno. Revisione set. 2015. www.cm-physmath.net. CM_Portable MATH Notebook Series Serie di Fourier: rorietà e alicazioi - Revisioe set 5 Serie di Fourier: rorietà e alicazioi Claudio ago wwwcm-hysmathet C_Portable ATH Notebook Series Serie di Fourier: rorietà e alicazioi - Jea Batiste

Dettagli

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT La gestioe, il cotrollo ed il migliorameto della qualità di u prodotto/servizio soo temi di grade iteresse per l azieda. Il problema della qualità

Dettagli