ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003"

Transcript

1 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 003 Il candidato riolva uno dei due problemi e 5 dei 0 queiti in cui i articola il quetionario. PROLEMA Si conideri un tetraedro regolare T di vertici A,, C, D. a) Indicati ripettivamente con V ed S il volume e l area totale di T e con r il raggio della fera incritta in T, trovare una relazione che leghi V, S ed r. b) Coniderato il tetraedro regolare T avente per vertici i centri delle facce di T, calcolare il rapporto fra le lunghezze degli pigoli di T e T e il rapporto fra i volumi di T e T. c) Condotto il piano, contenente la retta A e perpendicolare alla retta CD nel punto E, e poto che uno pigolo di T ia lungo, calcolare la ditanza di E dalla retta A. d) Coniderata nel piano la parabola p avente l ae perpendicolare alla retta A e paante per i punti A, ed E, riferire queto piano ad un conveniente itema di ai carteiani ortogonali e trovare l equazione di p. e) Determinare per quale valore di la regione piana delimitata dalla parabola p e dalla retta EA ha area cm. 3 PROLEMA È aegnata la funzione f (), dove m è un parametro reale. m m a) Determinare il uo dominio di derivabilità. b) Calcolare per quale valore di m la funzione ammette una derivata che riulti nulla per. c) Studiare la funzione f () corripondente al valore di m coì trovato e diegnarne il grafico in un piano riferito ad un itema di ai carteiani ortogonali (Oy), dopo aver tabilito quanti ono eattamente i flei di ed aver fornito una piegazione eauriente di ciò. d) Calcolare l area della regione finita di piano delimitata dal grafico, dall ae e dalla retta di equazione. QUESTIONARIO Dopo aver fornito la definizione di rette ghembe, i conideri la eguente propoizione: «Comunque i prendano nello pazio tre rette, y, z, due a due ditinte, e ed y ono ghembe e, coì pure, e ono ghembe y e z allora anche e z ono ghembe». Dire e è vera o fala e fornire un eauriente piegazione della ripota. Zanichelli Editore, 00

2 Un piano intereca tutti gli pigoli laterali di una piramide quadrangolare regolare: decrivere le caratteritiche dei poibili quadrilateri ezione a econda della poizione del piano ripetto alla piramide. Dal punto A, al quale è poibile accedere, è viibile il punto, al quale però non i può accedere in alcun modo, coì da impedire una miura diretta della ditanza A. Dal punto A i può però accedere al punto P, dal quale, oltre ad A, è viibile in modo che, pur rimanendo impoibile miurare direttamente la ditanza P, è tuttavia poibile miurare la ditanza AP. Diponendo degli trumenti di miura neceari e apendo che P non è allineato con A e, piegare come i può utilizzare il teorema dei eni per calcolare la ditanza A. Il dominio della funzione f () ln{ ( )} è l inieme degli reali tali che: A) 3; ) 3; C) 0 3; D) 0 3. Una ola ripota è corretta: individuarla e fornire una eauriente piegazione della celta effettuata. La funzione 3 3 ha un olo zero reale, vale a dire che il uo grafico intereca una ola volta l ae delle acie. Fornire un eauriente dimotrazione di queto fatto e tabilire e lo zero della funzione è poitivo o negativo. La derivata della funzione f () e t dt è la funzione f () e 4. Eeguire tutti i paaggi neceari a 0 giutificare l affermazione. Coniderati i primi n numeri naturali a partire da :,, 3,, n, n, moltiplicarli combinandoli due a due in tutti i modi poibili. La omma dei prodotti ottenuti riulta uguale a: A) 4 n (n ) ; ) 3 n(n ); C) 4 n(n )(n )(3n ); D) 4 n(n )(3n ). Una ola ripota è corretta: individuarla e fornire una eauriente piegazione della celta operata. ed y ono due numeri naturali dipari tali che y. Il numero 3 y 3 : A) è diviibile per e per 3. ) è diviibile per ma non per 3. C) è diviibile per 3 ma non per. D) non è diviibile né per né per 3. Una ola ripota è corretta: individuarla e fornire una piegazione eauriente della celta operata. Si conideri una data etrazione in una determinata Ruota del Lotto. Calcolare quante ono le poibili cinquine che contengono i numeri e 90. Il valore dell epreione log 3 log 3 è. Dire e queta affermazione è vera o fala e fornire una eauriente piegazione della ripota. Durata maima della prova: ore È conentito oltanto l uo di calcolatrici non programmabili. Non è conentito laciare l Itituto prima che iano tracore 3 ore dalla dettatura del tema. Zanichelli Editore, 00

3 SOLUZIONE DELLA PROVA D ESAME CORSO DI ORDINAMENTO 003 PROLEMA a) Detto lo pigolo del tetraedro T, i ha che AK e DK ono le altezze di due facce di T (figura ) e miurano 3. Le altezze D AK e DK ono anche biettrici e mediane. L altezza DH cade nel baricentro del triangolo AC, quindi HK 3 AK 3. L altezza DH i può calcolare con il teorema di Pitagora applicato al triangolo DHK (figura ): riulta DH 3. Figura. A O H P K C Le altezze del tetraedro i incontrano nel punto O, centro della fera incritta in T, D che ha raggio OH OP r. I triangoli rettangoli KOH e KOP ono congruenti, allora KO è la biettrice di HKˆP. Coniderando il triangolo OHK, i può crivere: rhktg 3 tg, ma tg D H, da cui, attravero le formule di biezione i giunge a: P H K tg O. In definitiva riulta: r. La uperficie del tetraedro è: S r γ 43. H K Il volume riulta: V r 3 83, da cui egue: V 3 S r. Figura. b) HP è uno pigolo del tetraedro T, con riferimento al triangolo HPK, nel quale i nota che KĤP KPˆH, i ha: H P HK HP HK en en. Dal valore di tg i ricava co en. Allora HP 3, da cui i ha: V V. D c) Con riferimento alla figura 3, detto F il punto medio di A, allora DF e CF ono le mediane delle facce AD e AC ripettivamente, il triangolo DFC è quindi iocele e l altezza EF è anche mediana: il piano intereca CD nel punto medio E. AE è la mediana della faccia CAD, E è la mediana della faccia CD, quindi AE è iocele e la mediana EF è anche altezza. Dal teorema di Pitagora per AEF : 3 EF AE AF. Figura 3. A F E C 3 Zanichelli Editore, 00

4 d) Scelto il itema di riferimento con origine nel punto F, ae delle acie coincidente con la retta orientata A, ae delle ordinate coincidente con la retta orientata FE (figura 4), i crive l equazione della. parabola y a b c, paante per i punti A ;0, ;0, E 0; Riulta: 0 a b c 0 a b c c a b 0 c y. y E A F Figura 4. e) L area del egmento parabolico AE è A 3 A EF, l area del triangolo AE riulta A A EF. L area delimitata dalla parabola e dalla retta EA è quindi: A (A A ) A EF, che riulta pari a cm quando cm Zanichelli Editore, 00

5 PROLEMA a) La funzione f (), dove m è un parametro reale i può crivere come: m m, per m 0 m R, per m 0 f (), f () è derivabile. R {0}, per m 0, per m 0 b) Per m 0 riulta: f () ( ) f () ( m) ( ) 4( m ) Per m > 0 riulta: f () f () 0 m. ( ( m) m) c) La funzione da tudiare è: f (). La funzione è definita u tutto R. Le interezioni con gli ai con l ae delle ordinate. ono: A ; 0 con l ae delle acie, 0; Si ha inoltre: lim f () 0 e lim f () 0. Il grafico ha l aintoto orizzontale y 0. La derivata prima riulta: f () ( ( ) ( ) ) ( ) ( )( ) (, ( ) ) f () 0, quindi (vedi anche figura 5) i ha un minimo nel punto m ; maimo nel punto M (; ). ed un + ma min Figura 5. Studiando la derivata econda i ottiene: ( )( ) ( ) ( 3 3 ) f (), ( ) 3 ( ) 3 f () , l equazione non i compone con la regola di Ruffini, ma i oerva che, per il teorema fondamentale dell algebra, ha al maimo tre radici, quindi tre flei. I riultati ottenuti in precedenza per i limiti negli etremi del dominio ed i valori dei punti di maimo e di minimo permettono di determinare che i flei devono eere almeno tre. In definitiva i flei ono proprio tre. In concluione i può tracciare il grafico della funzione (figura ). y M(; ) A( ; 0) m( ; ) (0; ) O Figura. 5 Zanichelli Editore, 00

6 d) L area richieta (figura 7) i ottiene dall integrale: A A 0 d d 0 d 0 d 0 d d 0 0 ma d d, allora A ln( ) arctg ln d, arctg arctg 4 0,9393. y O Figura 7. QUESTIONARIO Due rette i dicono ghembe e non giacciono u uno teo piano. La propoizione è fala. Coniderando infatti le rette r,, e t u cui giacciono gli pigoli di un parallelepipedo (figura 8), i verifica facilmente che r e ono ghembe, e t ono ghembe, ma r e t non lo ono, in quanto incidenti in un vertice del parallelepipedo. t r Figura 8. In generale i ottiene un quadrilatero ezione conveo, con i eguenti cai particolari: a) e il piano è parallelo alla bae, il quadrilatero ezione è un quadrato; b) e il piano è parallelo ad un lato del quadrato di bae, il quadrilatero ezione ha due lati paralleli e due no, i ottiene un trapezio iocele; c) e il piano è parallelo ad una diagonale del quadrato di bae, i ottiene un romboide. Zanichelli Editore, 00

7 3 Con riferimento alla figura 9 i miura direttamente la ditanza AP, quindi i miurano con un goniometro gli angoli e, poti nei vertici A e P ai quali è poibile accedere e dai quali è viibile anche. Si ricava indirettamente l angolo poto nel vertice :. A A P Per il teorema dei eni: A AP en. e n e n en β A α γ P Figura 9. 4 Il dominio della funzione f () ln{ ( )} i ottiene ponendo l argomento del logaritmo maggiore di zero, quindi ( ) 0 ( ). La diequazione è verificata per: quindi le oluzioni ono: 3 3, ovvero la ripota è eatta. 5 La funzione f () 3 3 è una cubica, quindi ha al più tre interezioni con l ae delle acie. La derivata prima riulta: f () 0 per 0 e. Lo chema di figura 0 motra che per 0 i ha un maimo e per i ha un minimo ma min Figura 0. y (0; ) Riulta poi f (0) e f (), quindi le coordinate dei punti di maimo e di minimo ono, ripettivamente: M (0; ) e m(; ). Coniderato che la funzione è continua in tutto R e che lim f(), e ne deduce che la funzione intereca l ae delle in un olo punto, di acia negativa, come riulta anche dal grafico di figura. Figura. (; ) Poto g () la funzione f () è una funzione compota e riulta: f () (g ()) g() e t dt. La derivata riulta: f () (g()) g (). 0 Si ha: g (), mentre, per il teorema fondamentale del calcolo integrale i ottiene: (g ()) e (g()), quindi f () e (g()) f () e 4. 7 Zanichelli Editore, 00

8 In generale riulta: ( n) n ( 3 n 3 n (n ) n) n k k n k k 0 kh hk n kh hk n k k n k k. Valgono le eguenti relazioni, che i dimotrano facilmente per induzione: n k n (n ) e k n Si ha infine: 0 quella eatta. k k n (n )(n ). kh hk n (n ) n (n )(n ) 4 n (n )(3n ). La ripota D è Coniderando che ( 3 y 3 ) ( y)( y y ) ( y y ), allora ( 3 y 3 ) è diviibile per. Inoltre y y y y 3 4, che equivale a: 3( ), che non è diviibile per 3. La ripota eatta è. Sono le poibili combinazioni di 3 oggetti celti tra 88 (i 90 numeri dell urna, tranne e 90). Le poibili cinquine ono quindi: C 88, ! ! 85! 3 Per la definizione di logaritmo: 3 log 3 ( log 3 ) log 3 log 3 log 3 log 3 log 3. Per eercitarti ancora ugli argomenti trattati nel Svolgi il Problema Queito 3 pag. V 8 Problema 0 pag. π 39 (punti a, b) Problema pag. W 39 Problema Problema 8 pag. U 47 Problema 8 pag. W 53 (punti a, b) Queito Queito 7 pag. π 9 Queito Queito pag. π 9 Queito 4 Problema 3 pag. U 43 (punto a) Problema 0 pag. U 45 (punto a) Queito 5 Queito pag. iota Queito pag. iota Queito Queito 8 pag. W 3 Queito 7 Problema 7 pag. 4 Problema pag. 43 (punti a, f) Queito 9 Problema pag. 4 (punto a) Queito 0 Queito pag. N 95 Queito 7 pag. N 95 8 Zanichelli Editore, 00

3. Catene di Misura e Funzioni di Trasferimento

3. Catene di Misura e Funzioni di Trasferimento 3.. Generalità 3. Catene di Miura e Funzioni di Traferimento 3.. Generalità Il egnale che rappreenta la grandezza da miurare viene trattato in modo da poter eprimere quet ultima con uno o più valori numerici

Dettagli

Capitolo IV L n-polo

Capitolo IV L n-polo Capitolo IV L n-polo Abbiamo oervato che una qualiai rete, vita da due nodi, diventa, a tutti gli effetti eterni, un bipolo unico e queto è in qualche miura ovvio e abbiamo anche motrato come cotruire

Dettagli

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè:

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè: LEZIONI N 44 E 45 CALCOLO A ROTTURA DELLA SEZIONE PRESSOINFLESSA PROBLEMI DI VERIFICA La procedura di verifica dei pilatri di c.a., ottopoti a forzo normale e momento flettente, è baata ulla cotruzione

Dettagli

Le Misure. 2 ottobre 2007

Le Misure. 2 ottobre 2007 Le Miure ottobre 007 In tutte le oluzioni i farà ricoro alla notazione cientifica dei numeri, baata ul ignificato del itema decimale e poizionale. (piegare il ignificato) 1 Lunghezza 1.0.1 Una navetta

Dettagli

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione

Dettagli

Lezione 12. Regolatori PID

Lezione 12. Regolatori PID Lezione 1 Regolatori PD Legge di controllo PD Conideriamo un regolatore che eercita un azione di controllo dipendente dall errore attravero la eguente legge: t ut = K et K e d K de t P + τ τ+ D. dt La

Dettagli

Esercizi sul moto del proiettile

Esercizi sul moto del proiettile Eercizi ul moto del proiettile Riolvi li eercizi ul quaderno utilizzando la oluzione olo per controllare il tuo riultato. 1 Un fucile è puntato orizzontalmente contro un beralio alla ditanza di 30 m. Il

Dettagli

Circuito Simbolico. Trasformazione dei componenti

Circuito Simbolico. Trasformazione dei componenti Circuito Simbolico Principio di bae E poibile applicare a tutte le leggi matematiche che regolano un circuito la traformata di Laplace, in modo da ottenere un nuovo circuito con delle proprietà differenti.

Dettagli

Diagramma circolare di un motore asincrono trifase

Diagramma circolare di un motore asincrono trifase Diagramma circolare di un motore aincrono trifae l diagramma circolare è un diagramma che permette di leggere tutte le grandezze del motore aincrono trifae (potenza rea, perdite nel ferro, coppia motrice,

Dettagli

Controllore Processo. Le principali componenti del sistema sono: il rivelatore di errore, il controllore che ha il compito di trasformare il segnale

Controllore Processo. Le principali componenti del sistema sono: il rivelatore di errore, il controllore che ha il compito di trasformare il segnale CONTROLLORI DI TIO ID rincipi di funzionamento Il termine controllo definice l azione volta per portare e mantenere ad un valore prefiato un parametro fiico di un impianto o di un proceo (ad eempio, la

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Sessione suppletiva Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Nel piano riferito

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica I 13 Febbraio 2006 Compito A

Facoltà di Ingegneria Prova scritta di Fisica I 13 Febbraio 2006 Compito A Facoltà di Ingegneria Prova critta di Fiica I 13 Febbraio 6 Copito A Eercizio n.1 Un blocco, aiilabile ad un punto ateriale di aa, partendo da fero, civola da un altezza h lungo un piano inclinato cabro

Dettagli

ERRORE STATICO. G (s) H(s) Y(s) E(s) X (s) YRET(s)

ERRORE STATICO. G (s) H(s) Y(s) E(s) X (s) YRET(s) Preciione a regime: errore tatico ERRORE STATICO Alimentazione di potenza E() YRET() G() Y() H() Per errore tatico i intende lo cotamento, a regime, della variabile controllata Y() dal valore deiderato.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico-Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico-Tecnologico Progetto Brocca Eame di tato 00 ESAME D STATO D LCEO SCENTFCO 00 ndirizzo Scientifico-Tecnologico rogetto Brocca Tema di: FSCA tracrizione del teto e redazione oluzione di Quintino d Annibale Secondo tema L'etto oule

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

Cinematica: soluzioni. Scheda 4. Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it

Cinematica: soluzioni. Scheda 4. Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it Cinematica: oluzioni Problema di: Cinematica - C0015ban Teto [C0015ban] Eercizi banali di Cinematica: 1. Moto rettilineo uniforme (a) Quanto pazio percorre in un tempo t = 70 un oggetto che i muove con

Dettagli

Stato limite ultimo di sezioni in c.a. soggette. SLU per sezioni rettangolari in c.a. con. determinazione del campo di rottura

Stato limite ultimo di sezioni in c.a. soggette. SLU per sezioni rettangolari in c.a. con. determinazione del campo di rottura Univerità degli Studi di Roma Tre Coro di Progetto di trutture - A/A 2008-0909 Stato limite ultimo di ezioni in c.a. oggette a preoleione SLU per ezioni rettangolari in c.a. con doppia armatura determinazione

Dettagli

Sezioni in c.a. La flessione composta. Catania, 16 marzo 2004 Marco Muratore

Sezioni in c.a. La flessione composta. Catania, 16 marzo 2004 Marco Muratore Sezioni in c.a. La fleione compota Catania, 16 marzo 004 arco uratore Per chi non c era 1. Compreione: verifica Tenioni ammiibili α cd Ac f 1.5 f yd A 0.7 σ ( A max c c n A ) Riultati comparabili per il

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Si considerino le funzioni f e g definite, per tutti

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 004 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA In un piano

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Sintesi tramite il luogo delle radici

Sintesi tramite il luogo delle radici Sintei tramite il luogo delle radici Può eere utilizzata anche per progettare itemi di controllo per itemi intabili Le pecifiche devono eere ricondotte a opportuni limiti u %, ta, t di W(), oltre quelle

Dettagli

Definizione delle specifiche per un sistema di controllo a retroazione unitaria

Definizione delle specifiche per un sistema di controllo a retroazione unitaria Definizione delle pecifiche per un itema di controllo a retroazione unitaria Obiettivi del controllo Il itema di controllo deve eere progettato in modo da garantire un buon ineguimento dei egnali di riferimento

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

corso di formazione ed aggiornamento

corso di formazione ed aggiornamento coro di ormazione ed aggiornamento NUOVE NORME TECNICHE IN ZONA SISMICA di cui all ordinanza n. 374 del P.C.M. del 0.03.003 pubblicata ulla Gazzetta Uiciale in data 08.05.003 ARGOMENTO DELLA LEZIONE: LA

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

6) Stati di cedimento 6.1) Introduzione all analisi delle costruzioni in muratura nel loro stato attuale

6) Stati di cedimento 6.1) Introduzione all analisi delle costruzioni in muratura nel loro stato attuale 6) tati di cedimento 6.1) Introduzione all analii delle cotruzioni in muratura nel loro tato attuale Nel conteto del modello di materiale rigido non reitente a trazione, la valutazione delle capacità portanti

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Il problema Laboratorio di Algoritmi e Strutture Dati Docenti: M. Goldwurm, S. Aguzzoli Appello del 5 Aprile 005 Progetto Recinti Conegna entro il Aprile 005 Si tudia la reitenza di alcune pecie di piante

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

1 Generalità sui sistemi di controllo

1 Generalità sui sistemi di controllo 1 Generalità ui itemi di controllo Col termine proceo nell impiantitica chimica i intende un inieme di operazioni eeguite u una certa quantità di materia allo copo di modificarne in tutto o in parte alcune

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1. ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1

Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1 Lezione 2. Campionamento e Aliaing F. Previdi - Controlli Automatici - Lez. 2 1 Schema della lezione 1. Introduzione 2. Il campionatore ideale 3. Traformata di un egnale campionato 4. Teorema del campionamento

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma Note u alcuni principi fondamentali di macroeconomia Verione parziale e provvioria Claudio Sardoni Sapienza Univerità di Roma Anno accademico 2010-2011 ii Indice Premea v I Il breve periodo 1 1 Il fluo

Dettagli

Teorema del Limite Centrale

Teorema del Limite Centrale Teorema del Limite Centrale Una combinazione lineare W = a 1 X + a Y + a 3 Z +., di variabili aleatorie indipendenti X,Y,Z, ciacuna avente una legge di ditribuzione qualiai ma con valori attei comparabili

Dettagli

Poiché la retta è definita dall equazione: y = a + bx. Capitolo 4. Regressione e Correlazione.

Poiché la retta è definita dall equazione: y = a + bx. Capitolo 4. Regressione e Correlazione. Diaz - Appunti di tatitica - AA 1/ - edizione 9/11/1 Cap. 4 - Pag. 1 Capitolo 4. Regreione e Correlazione. Regreione Il termine regreione ha un'origine antica ed un ignificato molto particolare. L inventore

Dettagli

Esempio 1 Si consideri la sezione di un solaio latero-cementizio (1 m) di caratteristiche geometriche:

Esempio 1 Si consideri la sezione di un solaio latero-cementizio (1 m) di caratteristiche geometriche: Si riporta di eguito la rioluzione di alni eercizi riguardanti il calcolo del momento reitente e del dominio di preoleione di ezioni in cemento armato. In tutte le applicazioni ucceive i è utilizzato per

Dettagli

Archimede 4 2003 ESAME DI STATO 2003 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

Archimede 4 2003 ESAME DI STATO 2003 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede 4 2003 ESAME DI STATO 2003 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA

Dettagli

2. In un mercato concorrenziale senza intervento pubblico non si ha perdita di benessere sociale netto.

2. In un mercato concorrenziale senza intervento pubblico non si ha perdita di benessere sociale netto. Beanko & Breautigam Microeconomia Manuale elle oluzioni Capitolo 10 Mercati concorrenziali: applicazioni Soluzioni elle Domane i ripao 1. In corriponenza ell equilibrio i lungo perioo, un mercato concorrenziale

Dettagli

Meccanica Classica: Cinematica Formule

Meccanica Classica: Cinematica Formule Tet di Fiica - Cinematica Meccanica Claica: Cinematica Formule Velocità media: m Accelerazione media: Formule da ricordare: x x x1 t t t1 1 a m t t t Motouniforme: x(t)x 0 + t oppure x t 1 Moto uniformemente

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

CHAPTER 1 CINEMATICA. 1.1. Moto Rettilineo

CHAPTER 1 CINEMATICA. 1.1. Moto Rettilineo ESERCIZI DI FISICA CHAPTER 1 CINEMATICA 1.1. Moto Rettilineo Velocità media: vettoriale e calare. Exercie 1. Carl Lewi ha coro i 100m piani in circa 10, e Bill Rodger ha vinto la maratona (circa 4km)

Dettagli

22 - Il principio dei lavori virtuali

22 - Il principio dei lavori virtuali - Il principio dei lavori virtuali ü [.a. 0-0 : ultima reviione 5 aprile 0] Eempio n. Si conideri il portale di Figura, emplicemente ipertatico. Si vuole applicare il principio dei lavori virtuali per

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 11: 13-14 Maggio 2010. Meccanismi per la Condivisione dei Costi

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 11: 13-14 Maggio 2010. Meccanismi per la Condivisione dei Costi Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/0 Lecture : 3-4 Maggio 200 Meccanimi per la Condiviione dei Coti Docente Paolo Penna Note redatte da: Paolo Penna Primo Eempio Vogliamo vendere

Dettagli

Corso di Microonde II

Corso di Microonde II POITECNICO DI MIANO Coro di Microonde II ezi n. 3: Generalità ugli amplificatori ineari Coro di aurea pecialitica in Ingegneria delle Telecomunicazi Circuiti attivi a microonde (Amplificatori) V in Z g

Dettagli

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità Capitolo 6 Il comportamento dei itemi di controllo in regime permanente 6. Claificazione dei itemi di controllo 6. Errore tatico: generalità 6. Calcolo dell errore a regime 6.4 Eercizi - Errori a regime

Dettagli

Raccolta Temi d'esame - Corso di Ordinamento

Raccolta Temi d'esame - Corso di Ordinamento ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinaria Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Si consideri la seguente

Dettagli

L interpolazione areale: una soluzione al problema del confronto fra dati riferiti a sistemi spaziali differenti

L interpolazione areale: una soluzione al problema del confronto fra dati riferiti a sistemi spaziali differenti L interpolazione areale: una oluzione al problema del confronto fra dati riferiti a itemi paziali differenti Maria Michela Dickon, Giueppe Epa, Diego Giuliani e Emanuele Taufer 1. Introduzione Accade di

Dettagli

La popolazione di gatti urbani sul territorio del Comune di Firenze

La popolazione di gatti urbani sul territorio del Comune di Firenze Relazione di Teoria dei Sitemi La popolazione di gatti urbani ul territorio del Comune di Firenze Modelli per lo tudio ed il controllo Docente: Aleandro Caavola Studenti: Leonardo Profeti, Manfredi Toraldo,

Dettagli

Ottica. LEYBOLD Schede di fisica P5.6.2.1

Ottica. LEYBOLD Schede di fisica P5.6.2.1 Ottica LEYBOLD Schede di fiica Velocità della luce Miura eeguita ediante ipuli luinoi di breve durata LEYBOLD Schede di fiica Deterinazione della velocità della luce nell aria eeguita ediante il tepo di

Dettagli

2. LA DIFFUSIONE - CONCETTI BASE

2. LA DIFFUSIONE - CONCETTI BASE LA DIFFUSIONE . LA DIFFUSIONE - CONCETTI BASE Molte reazioni e molti procei di rilevante importanza nel trattamento dei materiali i baano ul traporto di maa. Queto traporto può avvenire o all interno di

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

SERS (surface enhanced raman scattering)

SERS (surface enhanced raman scattering) a pettrocopia aman tradizionale SS (urface enhanced raman cattering) a pettrocopia aman è una tecnica di indagine uperficiale che i baa ul principio di eccitazione dei livelli energetici della materia.

Dettagli

Lezione 4: la velocità. Nella scorsa lezione abbiamo considerato la grandezza velocità media. Essa, come ricordate, è definita così:

Lezione 4: la velocità. Nella scorsa lezione abbiamo considerato la grandezza velocità media. Essa, come ricordate, è definita così: Lezione 4 - pag.1 Lezione 4: la velocità 4.1. Velocità edia e grafico tepo - poizione Nella cora lezione abbiao coniderato la grandezza velocità edia. Ea, coe ricordate, è definita coì: ditanza percora

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014 SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0

Dettagli

IL TEOREMA DI UNICITA PER 1 FLUIDI INCOMPRESSIBILI, PERFETTI,ETEROGENEI

IL TEOREMA DI UNICITA PER 1 FLUIDI INCOMPRESSIBILI, PERFETTI,ETEROGENEI IL TEOREMA DI UNICITA PER 1 FLUIDI INCOMPRESSIBILI, PERFETTI,ETEROGENEI di DARIO GRAFFI, Bologna (Italia) 1. In una Nota pubblicata due anni fa (1) ho tabilito il teorema di unicitil per le'equazioni dei

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

Indice. 1 Le misure, 4. 3 Le forze e il moto, 118 2 Le forze e l equilibrio, 40 III. Unità 5 Equilibrio del corpo rigido, 80

Indice. 1 Le misure, 4. 3 Le forze e il moto, 118 2 Le forze e l equilibrio, 40 III. Unità 5 Equilibrio del corpo rigido, 80 III Indice Premea, V Introduzione, Un po di curioità..., Il metodo perimentale, 3 Le miure, Unità Miure ed errori, 6. Le miure, 6. L incertezza della miura, 0.3 L errore relativo,. Il Sitema Internazionale

Dettagli

Fig. 9.72 - Prisma di Saint Venant soggetto a torsione

Fig. 9.72 - Prisma di Saint Venant soggetto a torsione 9.6 orione del prima di Saint Venant La trattazione del problema di de Saint Venant volta inora ha ecluo la preenza della torione, coa per la quale era neceario che la retta di azione del taglio paae per

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PROBLEMA 1 In un piano, riferito

Dettagli

La manutenzione. Definizioni. Evoluzione storica. Manutenzione: Manutenibilità: Dott.ssa Brunella Caroleo

La manutenzione. Definizioni. Evoluzione storica. Manutenzione: Manutenibilità: Dott.ssa Brunella Caroleo La Dott.a Brunella Caroleo Definizioni Manutenzione: È il controllo cotante degli impianti e l inieme dei lavori di riparazione e otituzione neceari ad aicurare il funzionamento regolare e a mantenere

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

ALU STAFFE IN ALLUMINIO SENZA FORI

ALU STAFFE IN ALLUMINIO SENZA FORI ALU STAFFE IN ALLUMINIO SENZA FORI Giunzione a compara in lega di alluminio per utilizzo in ambienti interni ed eterni (cl. di erv. 2) Preforata con ditanze ottimizzate per giunzioni ia u legno (chiodi

Dettagli

6 Lezione. STATI LIMITE: Esempi di progetto/verifica

6 Lezione. STATI LIMITE: Esempi di progetto/verifica 6 Lezione STATI LIMITE: Eempi di progetto/veriica SLU Applicazioni Progetto della ezione in c.a. PROBLEMA N. 1 40 Determinare: 1) Il valore dell armatura bilanciata. ) Il momento ultimo a leione emplice

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 3 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA È assegnata

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATIA Scuola secondaria di II grado lasse... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

APPLICAZIONI DELLA TRASFORMATA DI LAPLACE

APPLICAZIONI DELLA TRASFORMATA DI LAPLACE C A P I T O L O 7 APPLICAZIONI DELLA TRASFORMATA DI LAPLACE 7. INTRODUZIONE Ora che è tata introdotta la traformata di Laplace, è poibile paare a eaminare che coa i può fare con ea. La traformata di Laplace

Dettagli

Controlli automatici

Controlli automatici Controlli automatici Proetto del controllore nel dominio della frequenza Prof. Paolo Rocco (paolo.rocco@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioineneria Introduzione

Dettagli

Il grigliato Keller, nelle realizzazioni di piani di lavoro, offre il più elevato rapporto tra carico sopportabile e peso proprio, oltre ad una

Il grigliato Keller, nelle realizzazioni di piani di lavoro, offre il più elevato rapporto tra carico sopportabile e peso proprio, oltre ad una Il grigliato Keller, nelle realizzazioni di piani di lavoro, offre il più elevato rapporto tra carico opportabile e peo proprio, oltre ad una elevata permeabilità alla luce e all aria. Tali caratteritice

Dettagli

11 L energia. meccanica. unità

11 L energia. meccanica. unità unità 11 L energia meccanica Ceare Galimberti, Olycom Il record mondiale di alto in alto è di 2,45 m. Se i faceero le Olimpiadi ulla Luna, l ata dovrebbe eere itemata molto più in alto, perché la forza

Dettagli

IL CONTROLLO DEI GNSS SYSTEMS IN REAL TIME KINEMATIC CON LE NUOVE NORME ISO 17123-8:2007

IL CONTROLLO DEI GNSS SYSTEMS IN REAL TIME KINEMATIC CON LE NUOVE NORME ISO 17123-8:2007 IL CONTROLLO DEI GNSS SYSTEMS IN REAL TIME KINEMATIC CON LE NUOVE NORME ISO 17123-8:2007 Lorenzo LEONE (*), Daniela LAUDANI FICHERA (**) Marco LEONE (***), Giueppe PULVIRENTI (****) (*) Dipartimento di

Dettagli

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II)

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II) Eercitazione di Meccanica dei fluidi con Fondaenti di Ingegneria hiica Eercitazione 5 Gennaio 3 Scabio di ateria (II) Eercizio Evaporazione di acqua da una picina Stiare la perdita giornaliera di acqua

Dettagli

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE Traformata di Laplace ESEMPI DI MODELLIZZAZIONE Introduzione La traformata di Laplace i utilizza nel momento in cui è tata individuata la funzione di traferimento La F.d.T è una equazione differenziale

Dettagli

Paolo Rocco. Automatica

Paolo Rocco. Automatica Paolo Rocco Dipene ad uo degli tudenti del Politecnico di Milano per i cori da cinque crediti didattici Automatica Ingegneria Aeropaziale E vietato l uo commerciale di queto materiale Avvertenza Queta

Dettagli

Problema 1: Una collisione tra meteoriti

Problema 1: Una collisione tra meteoriti Problema : Una colliione ra meeorii Problemi di imulazione della econda prova di maemaica Eami di ao liceo cienifico 5 febbraio 05 Lo udene deve volgere un olo problema a ua cela Tempo maimo aegnao alla

Dettagli

ESAME DI STATO 2006, SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI SCIENTIFICI DI ORDINAMENTO

ESAME DI STATO 2006, SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI SCIENTIFICI DI ORDINAMENTO 4 006 Archimede ESAME DI STATO 006, SECONDA PROVA SCRITTA PER I LICEI SCIENTIFICI SCIENTIFICI DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario.

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media Errori di miura Se lo trumento di miura è abbatanza enibile, la miura rietuta della tea grandezza fiica darà riultati diveri fra loro e fluttuanti in modo caratteritico. E l effetto di errori cauali, o

Dettagli

ELETTRONICA ANALOGICA INDUSTRIALE PARTE 4. Retroazione

ELETTRONICA ANALOGICA INDUSTRIALE PARTE 4. Retroazione Retroazione Eetto della retroazione ul guadagno Riduzione della ditorione Impedenze di ingreo e di ucita Reti di retroazione Ripota in requenza Eetto della retroazione ui poli Margini di guadagno e di

Dettagli

11. LO SCAMBIO TERMICO PER CONDUZIONE

11. LO SCAMBIO TERMICO PER CONDUZIONE . LO SCAMBIO ERMICO PER CONDUZIONE. Premea: i meccanimi di tramiione del calore In ermodinamica i è definito il calore come la forma aunta dall energia in tranito uando la ua tramiione da un corpo ad un

Dettagli

Lamiere grecate semplici in acciaio e alluminio

Lamiere grecate semplici in acciaio e alluminio Capitolo 1 Lamiere grecate emplici in acciaio e alluminio Sommario: 1.1 Generalità 1.1.1 Norme di riferimento 1.1. Tipologie, materiali e campi di applicazione 1.1.3 Definizione della ezione efficace 1.

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

SPECIALISTI DELL AUTOMOTIVE

SPECIALISTI DELL AUTOMOTIVE 80_84_147do5 d Pagina 80 o di MILA MOLINARI i e SPECIALISTI DELL AUTOMOTIVE Eperti nella lavorazione di prototipi e particolari detinati al ettore automobilitico, CMG Cofeva da oltre 30 anni opera nel

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

MOTI IN DUE E TRE DIMENSIONI

MOTI IN DUE E TRE DIMENSIONI MOTI IN DUE E TRE DIMENSIONI 1. Poizione e Spotaento Exercie 1. Un anguria in un capo è collocata nella poizione data dalle eguenti coordinate: x = 5.0, y = 8.0 e z = 0. Trovare il vettore poizione traite

Dettagli

LA GESTIONE DELLO STRESS

LA GESTIONE DELLO STRESS LA GESTIONE DELLO STRESS Stre è enza alcun dubbio una delle parole più uate (o abuate) nel mondo, almeno in quello occidentale. Vi ono molti ignificati dati a queto termine, alcuni ne ottolineano primariamente

Dettagli

Università di Firenze Corso di Laurea in Ingegneria per l'ambiente e il Territorio. Corso di TECNICA DELLE COSTRUZIONI

Università di Firenze Corso di Laurea in Ingegneria per l'ambiente e il Territorio. Corso di TECNICA DELLE COSTRUZIONI Univerità di Firenze Coro di Laurea in Ingegneria per l'ambiente e il Territorio Coro di TECNICA DELLE COSTRUZIONI APPUNTI DI TECNICA DELLE COSTRUZIONI ( prof. Gianno Bartoli e prof. Maurizio Orlando)

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Slide del corso di. Controllo digitale

Slide del corso di. Controllo digitale Slide del coro di Controllo digitale Coro di Laurea in Ingegneria Informatica e dell Informazione Univerità di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte III Sitemi a dati campionati Gianni

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Elenco Ordinato per Materia Chimica

Elenco Ordinato per Materia Chimica ( [B,25404] Perché le ossa degli uccelli sono pneumatiche, cioè ripiene di aria? C (A) per consentire i movimenti angolari (B) per immagazzinare come riserva di ossigeno X(C) per essere più leggere onde

Dettagli

Unità Didattica 1. Le unità di misura

Unità Didattica 1. Le unità di misura Unità Didattica 1. Le unità di iura Pria di addentrarci nella ateria, è bene fare un rapido riaunto delle tecniche di converione e delle più iportanti unità di iura nel capo dell aeronautica, perché capiterà

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli