RISPOSTA NEL DOMINIO DEL TEMPO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "RISPOSTA NEL DOMINIO DEL TEMPO"

Transcript

1 RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia il sisema con un: ingresso a gradino ingresso a impulso NB: non sempre è possibile ricavare sperimenalmene la risposa del sisema all impulso, in quano l impulso deve fornire l energia sufficiene al sisema per provocarne la risposa.

2 Transiorio e Regime La risposa di un sisema può essere scomposa in componene ransioria yt() e componene di regime yr() : y() = yt() + yr() La componene ransioria è formaa da ui quei ermini che si annullano per il empo che ende a infinio. La componene di regime è formaa da ui quei ermini che invece non si annullano, cioè: y R ( ) lim y( ) NB: nei sisemi lineari la componene di regime assume la sessa forma d onda dell ingresso. Esempio Risposa di un circuio RL ad un gradino di ensione: E i( ) e i(0) e R Componene ransioria: E i T ( ) e i(0) e R Componene ransioria: i R () E R

3 SISTEMI DEL ORDINE Un sisema del ordine è un sisema con un solo accumulaore di energia. Ossia un sisema il cui comporameno è descrivibile con una sola variabile di sao. x() Sisema ordine NB: si assume come uscia del y() sisema la variabile di sao y() y() Risposa al gradino: Risposa all impulso: y() 3

4 Tempi caraerisici Le presazioni di un sisema (non solo del ordine) nel dominio del empo sono spesso fornie con l indicazione di alcuni empi caraerisici definii nella risposa al gradino. 00% Δ% y() D : empo di riardo (delay ime) 90% Fornisce l indicazione della pronezza di risposa del sisema 50% R : empo di salia (rise ime) Fornisce l indicazione della accelerazione di y() S : empo di assesameno (seing ime) 0% D R Fornisce l indicazione della duraa del ransiorio. Corrisponde al empo impiegao dalla risposa y() a porarsi enro la fascia Δ% S 4

5 Modello Nel dominio del empo il modello maemaico di un sisema coninuo è spesso fornio mediane la rappresenazione ingresso/uscia, cioè dalle sue equazioni differenziali. Per un sisema del ordine: x() dy( ) y( ) k x ( ) d y() NB: con y() variabile di sao E comodo sudiare la risposa nel empo ricorrendo anche alla rappresenazione ingresso/uscia nel dominio di Laplace, cioè alla schemaizzazione del sisema con blocchi e relaive funzioni di rasferimeno: X(s) k s X0 Y (s) k X (s) s y() ymax = k X0 NB: Esaminando la risposa nel empo, è possibile simare i parameri della funzione di rasferimeno: k y( ) k X 0 e 63.% y MAX X0 : la si sima individuando il 63.% del valore finale di y() e leggendo il empo corrispondene. 5

6 SISTEMI DEL ORDINE Un sisema del è un sisema il cui comporameno è descrio da due variabili di sao, sono cioè sisemi con due accumulaori di energia: NB: sisema del ordine senza zeri. X(s) Y(s) k s a s a 0 La risposa nel empo dipende dai poli della funzione di rasferimeno. Per meglio descriverle si inroducono due parameri: δ = coefficiene di smorzameno ωn = pulsazione naurale [rad/s] E si eseguono le segueni sosiuzioni: X(s) X0 k s n s n a = δ ωn a0 = ωn Y(s) Y (s) Polo inrodoo dall ingresso X0 k s s n s n Poli propri del sisema 6

7 La risposa al gradino presena un ransiorio che dipende solo dai poli della funzione di rasferimeno. I re poli di Y(s) risulano: s0 0 NB: s e s sono i poli della funzione di s n n rasferimeno; possono essere reali o complessi s n n Ipoesi: in funzione di. y() Im I poli della fd sono reali disini y( ) K 0 K e s K e s > s s Re s0 y() Ipoesi: Im I poli sono reali coincideni y ( ) K 0 K e s = s = s s0 Re 7

8 Ipoesi: s, n j n I poli sono complessi coniugai NB: ωn rappresena la pulsazione alla quale oscillerebbe la risposa del sisema nel caso y( ) K 0 K e cos( ) di assenza di smorzameno ( = 0). y() Im s Ipoesi: Sisema sovrasmorzao 45 s Re s0 y() Im s Ipoesi: 0 45 s s0 Re Sisema soosmorzao 0 8

9 Relazioni ra i poli della funzione di rasferimeno e i parameri e ωn Dall espressione dei poli della funzione di rasferimeno: s, n j n risulano le segueni corrispondenze: n Im n s = + j ω ω ωn s n α Re Da cui: (prescindendo dal segno di ) n, n n : a l u s i r i l o c l a c i n u c l a o p o d, o d n e u i o s n cos 9

10 Relazione ra massima sovraelongazione e Nei sisemi del ordine senza zeri, con poli complessi coniugai ( < ), la massima sovraelongazione SMAX dipende solo dal coefficiene di smorzameno : SMAX% y() ymax SMAX yr SMAX % y MAX y R 00 yr 0

11 Esercizio: Circuio RLC serie, calcolo e ωn in funzione dei parameri del circuio La ensione e() rappresena l ingresso. Come uscia è assuna la ensione sul condensaore. Si deve manipolare la funzione di rasferimeno in modo da porre uguale a il coefficiene del ermine con s: Osservando la funzione di raferimeno, risula: Da cui: R C L n LC R n L LC Vc (s) E(s) R s s L LC n LC NB: un aumeno di R compora un aumeno di, menre non influisce su ωn.

12 Eserciazione : Esaminare il diverso ruolo eserciao dal resisore nei segueni circuii: Dai: ensione di ingresso e(): gradino di 0 V parameri: Circuio a) C = F, L=H uscia: ensione sul condensaore vc() Circuio b) ) Compilare, mediane simulazione, per enrambi i circuii, la seguene abella: R [Ohm] Poli SMAX (%) ωn [rad/s] TD TR TS ) Esaminare le due abelle e svolgere le proprie considerazioni 3) Verificare alcuni risulai mediane il calcolo di e ωn in funzione dei parameri.

13 Eserciazione : File da uilizzare nella simulazione (SCILAB) xbasc(); // cancellazione di ui i grafici precedeni clear; // cancellazione di ue le variabili cosruie in precedenza s = poly(0,"s"); R = ; L = ; C = ; // creazione della variabile di Laplace 's' // Ohm Paramero da variare nella compilazione della abella // Henry // Farad H = syslin("c",, L*C*s^ + R*C*s + ); // cosruzione della funzione di rasferimeno // "c": sisema coninuo // : numeraore della fd // L*C*s + R*J*s + : denominaore della fd = 0:0.00:0; // 0:... :0 isani iniziale e finale del calcolo // 0.00 passo di inegrazione u = 0 + 0*; // u, ensione di alimenazione del circuio vc = csim(u,, H); // calcolo della ensine sul condensaore plod(, vc); xgrid(3); // grafico della correne i // inserimeno della griglia poli = roos([denom(h)]) // roos, funzione che calcola le radici del polinomio // "denom", funzione che esrae il denominaore di H 3

14 Sisema del ordine, la cui funzione di rasferimeno possiede uno zero La presenza di uno zero: alera la pendenza con cui la risposa si avvia: non più con angene orizzonale. alera SMAX, che non dipende più solo da non alera la pulsazione di oscillazione ω X(s) k b s s a s a 0 Y(s) y() Con zero negaivo Nel sisema è presene uno zero: s b yr Senza zero NB: con zero posiivo il sisema presena una risposa che si avvia in direzione opposa. Con zero posiivo 4

15 e funzione di rasferimeno Esaminando la risposa nel empo, è possibile simare i parameri della funzione di rasferimeno. Esempio: sisema del senza zeri (ricavare k,, ωn) X0 X(s) k s n s n NB: Per il calcolo del valore di regime yr è conveniene ricorrere al eorema del valore finale: Y(s) y R lim y( ) lim s Y (s) s 0 y() Calcolo : Dal grafico della risposa si legge ymax e yr, con essi si calcola SMAX e per via grafica si ricava. ymax SMAX Calcolo ωn: Dal grafico della risposa si legge il periodo T, con esso si calcola la pulsazione di oscillazione ω = / T, e quindi: n Calcolo k: Applicando il eorema del valore finale si oiene: y R lim s Y (s) lim s s 0 Da cui: s 0 y R n k X0 yr T X0 X0 k k s s n s n n 5

16 Poli dominani In un sisema possono essere preseni più accumulaori di energia, quindi più variabili di sao, ossia più poli nelle funzioni di rasferimeno. Ad ogni polo corrisponde una cosane di empo. Le cosani di empo più grandi deerminano la duraa complessiva del ransiorio. Quando sono molo più grandi, il ransiorio è di fao deerminao da esse. Alle cosani di empo più grandi corrispondono i poli più piccoli (in valore assoluo). Quesi poli sono chiamai dominani. Se nel sisema sono preseni poli dominani, gli alri poli si possono rascurare. 6

17 Eserciazione : Idenificare la funzione di rasferimeno di un sisema mediane l esame della sua risposa al gradino. Confronare poi la risposa del modello con quella effeiva. Il sisema è solleciao mediane un gradino di ampiezza X 0 = 5 e presena la seguene risposa: y() X(s) Y(s) (s) 7

18 Esercizio Idenificare il sisema (funzione di rasferimeno) la cui risposa al gradino di ampiezza 5 è la seguene: Tempo ( s ) 8

19 Esercizio Idenificare il sisema (funzione di rasferimeno) la cui risposa al gradino di ampiezza 5 è la seguene: Tempo ( s ) 9

20 Esercizio 3 Idenificare il sisema (funzione di rasferimeno) la cui risposa al gradino di ampiezza 8 è la seguene: Tempo ( s ) 0

21 SOLUZIONE : Circuio a): Eserciazione R SMAX 0 (00%) Poli [Ohm] Circuio b): / (%) ωn [rad/s] 0 0 j j (3%) j (4.3%) , , 0. SMAX ωn R [Ohm] Poli (%) [rad/s] j (4.3%) j (3%) j (47%) j (57%) j (64%) 0.4

22 SOLUZIONE : Eserciazione / Le variazioni delle variabili di sao descrivono l accumulo di energia nei due accumulaori (induore, condensaore). L accumulo avviene mediane il flusso della carica elerica (correne). Nel circuio a) quesa correne elerica araversa anche il resisore, per cui valori ali di R la frenano. Dalla abella si osserva che valori bassi di R comporano uno scambio ripeuo di energia ra L e C (soluzioni complesse coniugae), con frequenza (pulsazione) in diminuzione all aumenare di R. L aumeno di R, riduce la correne e così ridimensiona il ira e molla dell energia, come rilevao dalla diminuzione di SMAX e, fino ad annullarlo (soluzioni reali). Nel circuio b) la correne che araversa il resisore rappresena una sorazione a quella che raspora l energia in L e C. Quano minore è R, ano maggiore è quesa sorazione e più osacolao risula lo scambio energeico ra L e C. All aumenare di R, si riduce la correne soraa e si riduce quindi l effeo frenane sullo scambio energeico, che quindi si amplifica in ermini di frequenza e ampiezza, come rilevao dalla pare immaginaria dei poli e da SMAX.

23 SOLUZIONE : Eserciazione /3 La risposa del sisema presena: una dinamica oscillane, si è quindi in presenza di almeno due poli complessi coniugai una fase di avvio con angene orizzonale, cioè il sisema non presena zeri In definiiva si è nella condizione di poer pensare a un modello maemaico ipo funzione di rasferimeno senza zeri e con due poli complessi coniugai. X(s) k s n s n Y(s) 3

24 SOLUZIONE : Eserciazione /3 Il calcolo dei parameri della funzione di rasferimeno richiede la leura dei segueni dai dal grafico della risposa: SMAX % y() y MAX y R % yr 7.9 Da grafico: = rad/s T n.4 rad/s T s y R n k. X0 5 (s)

25 SOLUZIONE : Eserciazione La reale funzione di rasferimeno, di cui il profilo Dai calcoli risula la seguene funzione di esaminao è la sua risposa al gradino, è invece: rasferimeno: X(s) y(). s s.538 Poli = 3/3 Y(s) 0.36 j.99 X(s) Y(s) 30 s 3 s 8 s 6 Poli = 0.3 j Modello semplificao Sisema reale Osservazioni: Il modello semplificao fornisce una risposa più prona per via del minor numero di poli I poli del modello semplificao sono circa uguali a quelli complessi coniugai del sisema reale, i quali, dao il valore del polo reale, assumono il significao di poli dominani. 5

26 SOLUZIONE : Esercizi Esercizio X(s) 6 s s 0 Y(s) Poli = 6.0 j 9. Poli = 5.0 j 4.5 Poli =.0 j 4.9 Esercizio X(s) 0 s 0. 5 s 5 Y(s) 430 s 0. 5 s 5 Y(s) Esercizio 3 X(s) 6

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di A. A 3/4 e 4/5 Ulimo aggiornameno 4//9 Premessa egime sazionario Un sisema elerico è in

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di LTTOTNIA per meccanici e chimici A. A 3/4 e 4/5 Ulimo aggiornameno // Appuni a cura degli

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

del segnale elettrico trifase

del segnale elettrico trifase Rappresenazione del segnale elerico rifase Gli analizzaori di poenza e di energia Qualisar+ consenono di visualizzare isananeamene le caraerisiche di una ree elerica rifase. Rappresenazione emporale I

Dettagli

Circuiti del primo ordine

Circuiti del primo ordine Circuii del primo ordine Un circuio del primo ordine è caraerizzao da un equazione differenziale del primo ordine I circuii del primo ordine sono di due ipi: L o C Teoria dei Circuii Prof. Luca Perregrini

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE Fisica Generale Modulo di Fisica II A.A. 4-5 Eserciazione 7 CICUII IN EGIME SINUSOIDALE Fa. Un generaore di correne alernaa con volaggio massimo di 4 e frequenza di 5 Hz è collegao a una resisenza 65 Ω.

Dettagli

Giorgio Porcu. Appunti di SISTEMI. ITI Elettronica Classe QUINTA

Giorgio Porcu. Appunti di SISTEMI. ITI Elettronica Classe QUINTA Giorgio Porcu Appuni di SSTEM T Eleronica lasse QUNTA Appuni di SSTEM T Eleronica - lasse QUNTA 1. TEORA DE SSTEM SSTEMA ollezione di elemeni che ineragiscono per realizzare un obieivo. l ermine è applicabile

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14 Universià di isa - olo della Logisica di Livorno Corso di Laurea in Economia e Legislazione dei Sisemi Logisici Anno Accademico: 03/4 CORSO DI SISTEMI DI MOVIMENTAZIONE E STOCCAGGIO Docene: Marino Lupi

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,

Dettagli

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI A.A. 2013/14 Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro dipendene

Dettagli

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

Regolatori switching

Regolatori switching 2 A4 Regolaori swiching I regolaori di ensione lineari hanno il grave difeo di non consenire il raggiungimeno di valori di efficienza paricolarmene elevai. Infai, in quese archieure gli elemeni di regolazione

Dettagli

Lezione n.12. Gerarchia di memoria

Lezione n.12. Gerarchia di memoria Lezione n.2 Gerarchia di memoria Sommario: Conceo di gerarchia Principio di localià Definizione di hi raio e miss raio La gerarchia di memoria Il sisema di memoria è molo criico per le presazioni del calcolaore.

Dettagli

SCELTE INTERTEMPORALI E DEBITO PUBBLICO

SCELTE INTERTEMPORALI E DEBITO PUBBLICO SCELTE INTERTEMPORALI E DEBITO PUBBLICO Lo sudio delle poliiche economiche con il modello IS-LM permee di analizzare gli effei di breve periodo delle decisioni di poliica fiscale e monearia del governo.

Dettagli

Osservabilità (1 parte)

Osservabilità (1 parte) eoria dei sisemi - Capiolo 9 sservabilià ( pare) Inroduzione al problema della osservabilià: osservazione e ricosruzione. Sai indisinguibili e sai non osservabili...3 Soospazi di osservabilià e non osservabilià

Dettagli

ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI

ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI Prof. Ing. R. M. Poro A cura della TELECOMUNICAZIONI Con il ermine elecomunicazioni

Dettagli

Un po di teoria. cos è un condensatore?

Un po di teoria. cos è un condensatore? Sudio sperimenale del processo di carica e scarica di un condensaore cos è un condensaore? Un po di eoria Un condensaore è un sisema di due conduori affacciai, dei armaure, separai da un isolane. Esso

Dettagli

La previsione della domanda nella supply chain

La previsione della domanda nella supply chain La previsione della domanda nella supply chain La previsione della domanda 1 Linea guida Il ruolo della prerevisione nella supply chain Le caraerisiche della previsione Le componeni della previsione ed

Dettagli

Differenziazione di prodotto e qualità in monopolio

Differenziazione di prodotto e qualità in monopolio Economia Indusriale Capiolo 7 Differenziazione di prodoo e qualià in monopolio Beoni Michela Gallizioli Giorgio Gaverina Alessandra Rai Nicola Signori Andrea AGENDA Concei di differenziazione vericale

Dettagli

USO DELL OSCILLOSCOPIO

USO DELL OSCILLOSCOPIO Con la collaborazione dell alunno Carlo Federico della classe IV sez. A Indirizzo Informaica Sperimenazione ABACUS Dell Isiuo Tecnico Indusriale Saele A. Monaco di Cosenza Anno scolasico 009-010 Prof.

Dettagli

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

Apertura nei Mercati Finanziari

Apertura nei Mercati Finanziari Lezione 20 (BAG cap. 6.2, 6.4-6.5 e 18.5-18.6) La poliica economica in economia apera Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Aperura nei Mercai Finanziari 1) Gli invesiori possono

Dettagli

Il condensatore. Carica del condensatore: tempo caratteristico

Il condensatore. Carica del condensatore: tempo caratteristico Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie

Dettagli

Operazioni finanziarie. Operazioni finanziarie

Operazioni finanziarie. Operazioni finanziarie Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO ESAME DI STATO DI LICEO SCIENTIFICO SIMULAZIONE DELLA II PROVA A.S. 014-15 Indirizzo: SCIENTIFICO Tema di: MATEMATICA 1 Nome del candidao Classe Il candidao risolva uno dei due problemi; il problema da

Dettagli

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management La vischiosià dei deposii a visa durane la recene crisi finanziaria: implicazioni in una prospeiva di risk managemen Igor Gianfrancesco Camillo Gilibero 31/01/1999 31/07/1999 31/01/2000 31/07/2000 31/01/2001

Dettagli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli FOCUS TECNICO IL DIMENSIONAMENTO DEGLI IMIANTI IDROSANITARI asi d espansione e accumuli RODUZIONE DI ACQUA CALDA SANITARIA Due sono i sisemi normalmene uilizzai per produrre acqua calda saniaria: quello

Dettagli

7 I convertitori Analogico/Digitali.

7 I convertitori Analogico/Digitali. 7 I converiori Analogico/Digiali. 7 1. Generalià Un volmero numerico, come si evince dal nome, è uno srumeno che effeua misure di ensione mediane una conversione analogicodigiale della grandezza in ingresso

Dettagli

PROPRIETÀ ENERGETICHE DEI BIPOLI

PROPRIETÀ ENERGETICHE DEI BIPOLI CAPITOLO 4 PROPRIETÀ ENERGETICHE DEI BIPOLI 4.1 Poenza elerica. Conservazione delle poenze eleriche. Si consideri un circuio N con b bipoli e siano i 1 i 2 i b le correni e v 1 v 2 v b le ensioni; per

Dettagli

DI IDROLOGIA TECNICA PARTE III

DI IDROLOGIA TECNICA PARTE III FCOLT DI INGEGNERI Laurea Specialisica in Ingegneria Civile N.O. Giuseppe T. ronica CORSO DI IDROLOGI TECNIC PRTE III Idrologia delle piene Lezione XVII: I meodi indirei per la valuazione delle porae al

Dettagli

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica ar. 64686 olla ad elica cicilindrica Eserciazione n 9 In figura è rappresenao un basameno sospeso anivibrane di una macchina nella quale viene originaa una forza perurbane alernaa sinusoidale di inensià

Dettagli

flusso in uscita (FU) Impresa flusso in entrata (FE)

flusso in uscita (FU) Impresa flusso in entrata (FE) Analisi degli invesimeni Il bilancio è una sinesi a poseriori della siuazione di un'azienda. La valuazione degli invesimeni è un enaivo di valuare a priori la validià delle scele dell'azienda. L'invesimeno

Dettagli

MODELLI AFFLUSSI DEFLUSSI

MODELLI AFFLUSSI DEFLUSSI MODELLI AFFLUSSI DEFLUSSI Al ecnico si presenano moli casi in cui non è sufficiene la deerminazione delle massime porae ramie i crieri di similiudine idrologica, precedenemene esposi. Si ciano, a iolo

Dettagli

I confronti alla base della conoscenza

I confronti alla base della conoscenza I confroni alla ase della conoscenza Un dao uaniaivo rae significao dal confrono con alri dai Il confrono è la prima e più immediaa forma di analisi dei dai I confroni Daa una grandezza G, due suoi valori

Dettagli

Soluzione degli esercizi del Capitolo 2

Soluzione degli esercizi del Capitolo 2 Sisemi di auomazione indusriale - C. Boniveno, L. Genili, A. Paoli 1 degli esercizi del Capiolo 2 dell Esercizio E2.1 Il faore di uilizzazione per i processi in esame è U = 8 16 + 12 48 + 6 24 = 1. L algorimo

Dettagli

4 La riserva matematica

4 La riserva matematica 4 La riserva maemaica 4.1 Inroduzione La polizza, come si è viso, viene cosruia in modo da essere in equilibrio auariale alla daa di sipula = 0 e rispeo alla base ecnica del I ordine: se X è il flusso

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoi Parhenope Facoà di Ingegneria Corso di Comunicazioni Eeriche docene: Pro. Vio Pascazio 14 a Lezione: 8/5/3 Sommario Fasori Segnai passabanda Trasmissione di segnai passabanda in sisemi

Dettagli

Il PLL: anello ad aggancio di fase

Il PLL: anello ad aggancio di fase 9 Il PLL: anello ad aggancio di ase l PLL (Phase-Locked Loop) è un circuio, le cui applicazioni sono descrie nel SOTTOPARAGRAFO 9., cosiuio da re blocchi (FIGURA ) che realizzano un sisema in reroazione

Dettagli

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33 Processi socasici Inroduzione isemi lineari e sazionari; luuazioni casuali, derive e disurbi; processi socasici sazionari in senso lao, unzione di auocorrelazione e spero di poenza; risposa di un sisema

Dettagli

TEMPORIZZATORE CON Ic NE 555 ( a cura del prof A. GARRO ) SCHEMA A BLOCCHI : NE555 1 T. reset (4) VCC R6 10K. C5 10uF

TEMPORIZZATORE CON Ic NE 555 ( a cura del prof A. GARRO ) SCHEMA A BLOCCHI : NE555 1 T. reset (4) VCC R6 10K. C5 10uF TEMPOIZZATOE CON Ic NE 555 ( a cura del prof A GAO ) SCHEMA A BLOCCHI : M (8) NE555 00K C7 00uF STAT S 4 K C6 0uF (6) (5) () TH C T A B 0 0 Q S Q rese T DIS (7) OUT () 0 T T09*()*C7 (sec) GND () (4) 6

Dettagli

MACCHINE ELETTRICHE. Campo rotante. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. Campo rotante. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCINE ELETTRICE Campo roane Sefano Pasore Diparimeno di Ingegneria e Archieura Corso di Eleroecnica (IN 043) a.a. 01-13 Inroduzione campo magneico con inensià ane che ruoa aorno ad un asse con velocià

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI Corso di Comunicazioni Eleriche RICHIAMI DI TEORIA DEI SEGNALI Pro. Giovanni Schembra Richiami di Teoria dei segnali TEORIA DEI SEGNALI DETERMINATI Richiami di Teoria dei segnali Valori caraerisici di

Dettagli

La volatilità delle attività finanziarie

La volatilità delle attività finanziarie 4.30 4.5 4.0 4.5 4.0 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.5 3.0 3.5 3.0 3.05 3.00.95.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00.95.90.85.80.75.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00

Dettagli

Si analizza la lavorazione attuale per ricavare dati sulla durata utensile. A questo scopo si utilizza la legge di Taylor:

Si analizza la lavorazione attuale per ricavare dati sulla durata utensile. A questo scopo si utilizza la legge di Taylor: Esercizio D2.1 Torniura cilindrica eserna Un ornio parallelo è arezzao con uensili in carburo e viene uilizzao per la sgrossaura di barre in C40 da Φ 32 a Φ 28. Con un rapporo di velocià corrispondene

Dettagli

TIMER 555 E CIRCUITI DI IMPIEGO

TIMER 555 E CIRCUITI DI IMPIEGO ME E U MEGO U EL OF. GNLO FON...S.. MONO - OSENZ NE imer e circuii di impiego...ag. Mulivibraore asabile col imer...ag. Mulivibraore monosabile col imer.... ag. rieri di progeo.ag. 6 rogeo e verifica di

Dettagli

Motori elettrici per la trazione veicolare. Vincenzo Di Dio

Motori elettrici per la trazione veicolare. Vincenzo Di Dio Moori elerici per la razione veicolare Vincenzo Di Dio Tipologie di moori elerici uilizzai per la razione veicolare Moori a correne coninua Moori a correne alernaa Sincroni Asincroni Correni eleriche e

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà La Teoria Generale 1 1.7. Il modello compleo e le sue proprieà Il ragionameno svolo fino a queso puno è valido per un livello dao del salario nominale e dei prezzi. Le grandezze preseni nel modello, per

Dettagli

Pianificazione di traiettorie nello spazio cartesiano

Pianificazione di traiettorie nello spazio cartesiano Corso di Roboica 1 Pianificazione di raieorie nello spazio caresiano Prof. Alessandro De Luca Roboica 1 1 Traieorie nello spazio caresiano le ecniche di pianificazione nello spazio dei giuni si possono

Dettagli

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1 La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa

Dettagli

4 Il Canale Radiomobile

4 Il Canale Radiomobile Pare IV G. Reali: Il canale radiomobile 4 Il Canale Radiomobile 4.1 INTRODUZIONE L evoluzione fondamenale nella filisofia di progeo delle rei di comunicazione indoor è il passaggio dalla modalià di rasmissione

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte deerminisica variabile nel empo Quando la domanda viaria nel empo, il problema della gesione dell invenario divena preamene dinamico. e viene deo di lo-sizing. Consideriamo il caso in cui la domanda pur

Dettagli

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza Nome..Cognome. classe D Gennaio 0 erifica: Parabola e circonferenza. Dai la definizione di parabola. Considera la parabola di fuoco F(,) e direrice r:, deermina: a) l equazione dell asse b) le coordinae

Dettagli

Azionamenti Elettrici

Azionamenti Elettrici Azionameni Elerici 2.4. CONVERTITORI DC/DC... 33 2.4.1. Conrollo dei converiori DC/DC... 33 2.4.2. FullBridge converer (DC/DC)... 34 2.4.2.1. PWM con commuazione di ensione bipolare...35 2.4.2.2. PWM con

Dettagli

Moltiplicazione di segnali lineari

Moltiplicazione di segnali lineari Moliplicazione di segnali lineari Processo non lineare: x ( x ( x ( Meodologia uilizzaa per: Campionameno ed acquisizione dai Processi di comunicazione (modulazione Abbiamo viso con il campionameno dei

Dettagli

Analisi dei guasti a terra nei sistemi MT a neutro isolato e neutro compensato

Analisi dei guasti a terra nei sistemi MT a neutro isolato e neutro compensato Analisi dei uasi a erra nei sisemi MT a neuro isolao e neuro compensao - Problemaiche inereni alle proezioni 5N e 67N - A cura di: n. laudio iucciarelli n. Marco iucciarelli . nroduzione Di seuio viene

Dettagli

3 CORRENTE ELETTRICA E CIRCUITI

3 CORRENTE ELETTRICA E CIRCUITI 3 ONT LTT UT lessandro ola Descrizione dell esperienza di Galvani Nel 79 il medico bolognese Luigi Galvani nell ambio dello sudio delle azioni eleriche sugli organi animali osservò che occando con uno

Dettagli

ELENCO FILTRI DI USCITA INVERTER. Prodotti considerati:

ELENCO FILTRI DI USCITA INVERTER. Prodotti considerati: Moori, azionameni, accessori e servizi per l'auomazione EENCO FITRI DI USCITA INVERTER PER A RIDUZIONE DE dv/dt della ensione di uscia ( riduzione della ensione di modo comune e differenziale) Prodoi considerai:

Dettagli

UNIVERSITA DEGLI STUDI DI SASSARI. L approccio time series per l analisi e la previsione della disoccupazione sarda

UNIVERSITA DEGLI STUDI DI SASSARI. L approccio time series per l analisi e la previsione della disoccupazione sarda UNIVERSITA DEGLI STUDI DI SASSARI FACOLTA DI SCIENZE POLITICHE MASTER IN STATISTICA APPLICATA L approccio ime series per l analisi e la previsione della disoccupazione sarda Relaore: Prof. Paolo Maana

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà Macroeconomia neoclassica 1 1.7. Il modello compleo e le sue proprieà Disponiamo ora di ui gli elemeni necessari a rappresenare il modello compleo e l equilibrio. I dai del modello sono: 1. numero degli

Dettagli

APPUNTI DI ANALISI DEI SEGNALI DAVIDE BASSI

APPUNTI DI ANALISI DEI SEGNALI DAVIDE BASSI UNIVERIÀ DEGLI UDI DI RENO FACOLÀ DI CIENZE MAEMAICHE, FIICHE E NAURALI CORO DI LAUREA IN FIICA APPLICAA DAVIDE BAI APPUNI DI ANALII DEI EGNALI Indice Risposa impulsionale dei sisemi lineari -. isemi lineari

Dettagli

Metodo della trasformata di Laplace

Metodo della trasformata di Laplace Meodo della raformaa di aplace Il meodo imbolico conene di affronare l analii di rei coneneni componeni reaivi (condenaori e induori) in regime inuoidale, aggirando la compleià maemaica inrodoa dalle relazioni

Dettagli

C R CARICO. Fig. 2.1 - Sistema meccanico

C R CARICO. Fig. 2.1 - Sistema meccanico 2 DINAMIA DEL SISTEMA MOTOE AIO 2. Equazione di equilibrio meccanico Nel caso di movimeno roaorio, che rappresena il caso più comune nel campo degli azionameni elerici, il moore ed il relaivo carico azionao

Dettagli

Principi di ingegneria elettrica. Lezione 19 a. Conversione elettromeccanica dell'energia Trasmissione e distribuzione dell'energia elettrica

Principi di ingegneria elettrica. Lezione 19 a. Conversione elettromeccanica dell'energia Trasmissione e distribuzione dell'energia elettrica Principi di ingegneria elerica Lezione 19 a Conversione eleromeccanica dell'energia Trasmissione e disribuzione dell'energia elerica acchina elerica elemenare Una barra condurice di lunghezza l immersa

Dettagli

ANALISI DEGLI SPOSTAMENTI DI UNA COLATA LENTA IN ARGILLE VARICOLORI E DEL LORO LEGAME CON LE PIOGGE

ANALISI DEGLI SPOSTAMENTI DI UNA COLATA LENTA IN ARGILLE VARICOLORI E DEL LORO LEGAME CON LE PIOGGE ANALISI DEGLI SPOSTAMENTI DI UNA COLATA LENTA IN ARGILLE VARICOLORI E DEL LORO LEGAME CON LE PIOGGE Robero Vassallo, Giuseppe Maria Grimaldi, Caerina Di Maio Universià della Basilicaa robero.vassallo@unibas.i;

Dettagli

Lezione 15. Lezione 15. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. Sommario. Materiale di riferimento

Lezione 15. Lezione 15. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. Sommario. Materiale di riferimento Sommario Lezione 15 Converiore di ipo Flash Converiore a gradinaa Converiore a rampa Converiore ad approssimazioni successive (SA) Converiore di ipo SigmaDela Esempi di converiori preseni a bordo di mc

Dettagli

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità Economia e gesione delle imprese - 07 Obieivi: Descrivere i processi operaivi della gesione finanziaria nel coneso aziendale. Analizzare le decisioni di invesimeno. Analizzare le decisioni di finanziameno.

Dettagli

Analisi di Mercato. Facoltà di Economia. La pubblicità. Creare la conoscenza di un prodotto. Creare l'immagine di marca. Influenzare gli atteggiamenti

Analisi di Mercato. Facoltà di Economia. La pubblicità. Creare la conoscenza di un prodotto. Creare l'immagine di marca. Influenzare gli atteggiamenti Obieivi della pubblicià Creare la conoscenza di un prodoo Analisi di Mercao Facolà di Economia francesco mola La pubblicià Creare l'immagine di marca Influenzare gli aeggiameni Rafforzare la fedelà alla

Dettagli

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti:

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti: Analisi degli Invesimeni Obieivo: Sviluppare una meodologia di analisi per valuare la convenienza economica di un nuovo invesimeno, enendo cono di alcuni faori rilevani: 1. Dimensione emporale. 2. Grado

Dettagli

COMUNE DI CAMPONOGARA

COMUNE DI CAMPONOGARA REGIONE DEL VENETO PROVINCIA DI VENEZIA COMUNE DI CAMPONOGARA PIANO DELLE ACQUE COMUNALE RELAZIONE IDROLOGICA E IDRAULICA INDICE 1 PREMESSE... 3 2 VERIFICA DELLA RETE SCOLANTE... 4 2.1 GENERALITÀ... 4

Dettagli

LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO. Sergio Rech

LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO. Sergio Rech LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO Sergio Rech Diparimeno di Ingegneria Indusriale Universià di Padova Mercai energeici e meodi quaniaivi: un pone ra Universià

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. 2) Il signor

Dettagli

Conversione Analogico-Digitale

Conversione Analogico-Digitale Capiolo 4 Conversione Analogico-Digiale I segnali del mondo reale sono analogici, menre un elaboraore digiale è in grado di memorizzare e raare esclusivamene sequenze finie di bi. Per raare con ecniche

Dettagli

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,

Dettagli

Crescita e Convergenza economica nei modelli neoclassici

Crescita e Convergenza economica nei modelli neoclassici MACEOECONOMIA AVANZATA Crescia e Convergenza economica nei modelli neoclassici Pasquale Tridico Universià di Roma Tre ridico@uniroma3.i Il seso fao silizzao di KAldor non vi sono prove significaive di

Dettagli

Automazione Industriale AA 2002-2003 Prof. Luca Ferrarini

Automazione Industriale AA 2002-2003 Prof. Luca Ferrarini Auomazione Indusriale AA 2002-2003 Prof. Luca Ferrarini Laboraorio 1 Obieivi dell eserciazione Sviluppare modelli per la realizzazione di funzioni di auomazione Comprensione e uilizzo di Ladder Diagrams

Dettagli

9. Conversione Analogico/Digitale

9. Conversione Analogico/Digitale 9.1. Generalià 9. Conversione Analogico/Digiale 9.1. Generalià In un converiore analogico/digiale, il problema di fondo consise nello sabilire la corrispondenza ra la grandezza analogica di ingresso (che

Dettagli

Metodo della Trasformata di Laplace (mtl)

Metodo della Trasformata di Laplace (mtl) Lezione 7 Meodo della raformaa di Laplace Lezione n.7 Meodo della raformaa di Laplace (ml). Inroduzione. Richiami ulla raformaa di Laplace. Proprieà della raformaa. Regola di derivazione.3 abella di raformae

Dettagli

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia.

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia. Risparmio Energeico Risparmio Energeico per Scale e Tappei Mobili La riduzione dei consumi di energia proveniene dalle foni fossili non rinnovabili (perolio, carbone) è una delle priorià assolue, insieme

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Sezione A La Maemaica nella Socieà e nella Culura Sabrina Mulinacci Valuazione del prezzo delle opzioni Americane: meodi probabilisici Bolleino dell Unione Maemaica

Dettagli

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione INTRODUZIONE AI SEGNALI Classiicazione dei segnali ( I segnali rappresenano il comporameno di grandezze isiche (ad es. ensioni, emperaure, pressioni,... in unzione di una o piu variabili indipendeni (ad

Dettagli

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine APPUNTI INTEGATIVI Provvisori circa: isposa in Frequenza: Inroduzione ai Filri Passivi e Aivi Filri del I ordine. Passa-Basso Consideriamo la funzione di ree: Trasferimeno in ensione ai capi di un condensaore

Dettagli

Trasformata di Fourier (1/7)

Trasformata di Fourier (1/7) 1 rasormaa di Fourier (1/7 + De: Un segnale x( è impulsivo se x ( d < + F : + j X( x( e π d F{ x( }, < < + F -1 + jπ 1 : x( X( e d F { X( }, < < + X( è una rappresenazione di x( nel dominio della requenza

Dettagli

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale Teoria della Finanza Aziendale Rischio e Valuazione degli invesimeni 9 1-2 Argomeni raai Coso del capiale aziendale e di progeo Misura del bea Coso del capiale e imprese diversificae Rischio e flusso di

Dettagli

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100.

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100. Soluzione dell Esercizio 1: Assicurazioni a) In un mercao perfeamene concorrenziale, deve valere la condizione di profii aesi nulli: E(P)=0. E possibile mosrare che ale condizione implica che l impresa

Dettagli

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche:

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche: LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Edward Presco, Finn Kydland, Rober King, ecc. Si inserisce nel filone della NMC: - Equilibrio generale walrasiano; - incerezza e dinamica:

Dettagli

MISURE DELL ISOLAMENTO AL RUMORE AEREO, DEL RUMORE DI CALPESTIO E DEL TEMPO DI RIVERBERAZIONE

MISURE DELL ISOLAMENTO AL RUMORE AEREO, DEL RUMORE DI CALPESTIO E DEL TEMPO DI RIVERBERAZIONE MISURE DELL ISOLAMENTO AL RUMORE AEREO, DEL RUMORE DI CALPESTIO E DEL TEMPO DI RIVERBERAZIONE Angelo Farina (1), Parizio Fausi () (1) Diparimeno di Ingegneria Indusriale, Universià di Parma () Diparimeno

Dettagli

Analisi Frequenziale di Segnali a Tempo Discreto

Analisi Frequenziale di Segnali a Tempo Discreto Capiolo 3 Analisi Frequenziale di Segnali a Tempo Discreo Nei capioli precedeni sono sae inrodoe le nozioni basilari di segnali analogici e a empo discreo, le operazioni fondamenali ra segnali, e, infine,

Dettagli

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C Capitolo La funzione di trasferimento. Funzione di trasferimento di un sistema.. L-trasformazione dei componenti R - L - C. Determinazione delle f.d.t. di circuiti elettrici..3 Risposta al gradino . Funzione

Dettagli

Università degli Studi di Milano-Bicocca - Facoltà di Economia Matematica Generale Modulo B - 15 Luglio 2003. Soluzione

Università degli Studi di Milano-Bicocca - Facoltà di Economia Matematica Generale Modulo B - 15 Luglio 2003. Soluzione Universià degli Sudi di Milano-Bicocca - Facolà di Economia Maemaica Generale Modulo B - 5 Luglio 00 Eserciio. Dare la definiione di rango di una marice. Enunciare il Teorema di Rouchè-Capelli., verifi-

Dettagli

I mercati dei beni e i mercati finanziari in economia aperta

I mercati dei beni e i mercati finanziari in economia aperta I mercai dei beni e i mercai finanziari in economia apera Economia apera Mercai dei beni: l opporunià per i consumaori e le imprese di scegliere ra beni nazionali e beni eseri. Mercai delle aivià finanziarie:

Dettagli