Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento"

Transcript

1 TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento di B. A f B A B L insieme B può coincidere con A. Analogamente, è detta controimmagine di. Spesso il dominio di una funzione viene indicato con la lettera D. Poiché una funzione fa corrispondere a ogni elemento di A un unico elemento di B, essa viene anche chiamata corrispondenza univoca. Indichiamo una funzione nel seguente modo f A " B, oppure A B, che si legge «f è una funzione da A a B». Si dice che A è l insieme di partenza della funzione e B l insieme di arrivo. Se a un elemento di A corrisponde un elemento di B, scriviamo f 7, oppure = f( ), che si legge «uguale a f di». è detta l immagine di mediante la funzione f. A f B C f L insieme di partenza A è detto dominio della funzione; il sottoinsieme di B formato dalle immagini degli elementi di A è detto codominio. Indichiamo il codominio con la lettera C. Vale la relazione C B. dominio codominio Figura Le funzioni numeriche Quando i due insiemi A e B sono numerici, le funzioni vengono dette funzioni numeriche. Esse possono essere descritte da un espressione analitica, ossia da una formula matematica. R è l insieme dei numeri reali. ESEMPI Consideriamo la funzione f R " R descritta dalla legge matematica = +. 6 Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0

2 PARAGRAF. LE FUNZINI TERIA A ogni valore di la legge fa corrispondere uno e un solo valore di. Per esempio, per = il valore di è = $ + =. Possiamo anche dire che è l immagine di, cioè f() =. Il valore che assume dipende da quello attribuito a. Per questo motivo prende il nome di variabile dipendente e di variabile indipendente. Di una funzione numerica si cerca spesso di studiare il grafico, ossia l insieme dei punti P(; ) del piano cartesiano tali che è un numero reale nel dominio di f e è l immagine di, ossia = f(). Se la funzione f è definita da un equazione = f(), il suo grafico è una curva c, luogo di tutti i punti del piano che soddisfano l equazione. Il grafico viene anche detto diagramma cartesiano. C = codominio γ Alcuni grafici possono essere tracciati conoscendo anche pochi elementi, se si sanno le loro caratteristiche. Per esempio, il grafico di una funzione del tipo = m + q è una retta e per rappresentarla è sufficiente determinare due suoi punti. Quello che segue non è il grafico di una funzione. Spiega perché. D = dominio Figura Il grafico di una funzione = f(). Le funzioni definite per casi Esistono funzioni definite da espressioni analitiche diverse a seconda del valore attribuito alla variabile indipendente. Tali funzioni sono dette funzioni definite per casi. Si chiamano anche funzioni definite a tratti. ESEMPI La funzione + 6 = ( - + se #- se - = + 6 è una funzione definita per casi. Il suo grafico è rappresentato nella figura. Figura Un esempio di grafico di una funzione definita per casi. = = se + se > Anche la funzione valore assoluto può essere definita per casi = = = ' - se $ se Il suo grafico è rappresentato nella figura a lato. 0 0 = = Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0 6

3 TERIA CAPITL 9. ESPNENZIALI E LGARITMI Il dominio naturale di una funzione Il dominio naturale viene anche chiamato campo di esistenza. Per brevità, chiamiamo il dominio naturale anche soltanto dominio e lo indichiamo con D. DEFINIZINE Dominio naturale Il dominio naturale della funzione = f() è l insieme più ampio dei valori reali che si possono assegnare alla variabile indipendente affinché esista il corrispondente valore reale. Normalmente il dominio naturale non viene assegnato esplicitamente, perché può essere ricavato dall espressione analitica della funzione. Per esempio, consideriamo la funzione = -. Se sostituiamo a un valore minore di, la radice perde significato. Il dominio naturale di tale funzione è l intervallo $, con! R. In forma abbreviata scriviamo D $. Perciò, quando viene assegnata una funzione senza dominio, si sottointende che esso sia il dominio naturale. Gli zeri di una funzione e il suo segno Un numero reale a è uno zero della funzione = f( ) se fa ( ) = 0. zero zero = f() Gli zeri di una funzione sono le ascisse dei punti di intersezione del grafico della funzione con l asse, quindi si determinano risolvendo il sistema = f( ) * " f ( ) = 0. = 0 Per studiare il segno di una funzione = f( ) risolviamo la disequazione f ( ) 0. ESEMPI Studiamo il segno della funzione f ( ) = Risolviamo la disequazione = + + Si ha -- 0 " f() > 0 " ( + )( -) 0" " -. Dunque f() < 0 f ( ) 0 se -, f ( ) 0 se -0. = - e = sono gli zeri della funzione. Figura 6 Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0

4 PARAGRAF. LE FUNZINI TERIA La classificazione delle funzioni Se l espressione F(; ) = 0 di una funzione contiene soltanto operazioni di addizione, sottrazione, moltiplicazione, divisione, elevamento a potenza o estrazione di radice, la funzione è algebrica. Una funzione algebrica può essere razionale intera (o polinomiale) se è espressa mediante un polinomio; in particolare, se il polinomio è di primo grado rispetto alla variabile, la funzione si dice lineare, se il polinomio in è di secondo grado, la funzione è detta quadratica; razionale fratta se è espressa mediante quozienti di polinomi; irrazionale se la variabile indipendente compare sotto il segno di radice. L espressione analitica che descrive una funzione può avere due forme forma esplicita, del tipo = f(); per esempio, = - ; forma implicita, del tipo F(; ) = 0; per esempio, - - = 0. Se una funzione non è algebrica, si dice trascendente. Studieremo in seguito alcune funzioni trascendenti, per esempio la funzione logaritmica e la funzione esponenziale. intere = 7 razionali algebriche trascendenti =, = cos irrazionali = + fratte = + FUNZINI Figura La classificazione delle funzioni reali di variabile reale della forma = f() e alcuni esempi. Le funzioni iniettive, suriettive e biiettive DEFINIZINE Funzione iniettiva Una funzione da A a B si dice iniettiva se ogni elemento di B è immagine di al più un elemento di A. Se una funzione è iniettiva, a due elementi distinti del dominio non corrisponde mai lo stesso elemento del codominio, cioè 6,! D,! & f( )! f( ). ESEMPI. La funzione = + è iniettiva perché ogni valore assunto da è immagine di un solo valore di.. La funzione = - + = + non è iniettiva. Scegliamo, per esempio, =. Sostituendo, otteniamo - + = " -- = 0 " = - =- + = Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0 6

5 TERIA CAPITL 9. ESPNENZIALI E LGARITMI = + Il valore della è immagine di due diversi valori della, = - e =. Se una funzione non è iniettiva, esiste almeno una retta parallela all asse che interseca il grafico della funzione in più di un punto. Se una funzione è suriettiva, l insieme di arrivo B coincide con il codominio. DEFINIZINE Funzione suriettiva Una funzione da A a B si dice suriettiva quando ogni elemento di B è immagine di almeno un elemento di A. Figura 6 Se per la funzione = f() consideriamo come insieme di arrivo il suo codominio (l insieme dei reali tali che # # ), la funzione è suriettiva. ESEMPI La funzione rappresentata nella figura 6 è suriettiva se l insieme d arrivo è costituito dagli tali che # #. 8 = f() Una funzione biiettiva viene anche chiamata biiezione o corrispondenza biunivoca fra A e B. DEFINIZINE Funzione biiettiva (o biunivoca) Una funzione da A a B è biiettiva quando è sia iniettiva sia suriettiva e quindi a ogni elemento di A corrisponde uno e un solo elemento di B e viceversa. ESEMPI. La funzione f [a; b] " [c; d] rappresentata nella figura 7a è biiettiva. gni valore di è il corrispondente di uno e un solo valore di.. La funzione g [a; b] " [c; d] della figura 7b non è biiettiva. Ci sono valori di che sono immagini di più valori di. Figura 7 d = f() d = g() c c a b a b a. La funzione = f() è biiettiva. b. La funzione = g() non è biiettiva perché non è iniettiva. 66 Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0

6 PARAGRAF. LE FUNZINI TERIA Le funzioni crescenti, le funzioni decrescenti DEFINIZINE Funzione crescente in senso stretto Una funzione = f () di dominio D si dice crescente in senso stretto in un intervallo I, sottoinsieme di D, se comunque scelti e appartenenti a I, con, risulta f ( ) f ( ). f D,, < D f( ) f( ) f( ) < f( ) D ESEMPI La funzione = + è crescente in senso stretto in R. Infatti = + " + + ". Se nella definizione precedente sostituiamo la relazione f ( ) f ( ) con f ( ) # f ( ), otteniamo la definizione di funzione crescente in senso lato, o anche non decrescente. ESEMPI La funzione Si può anche dire che la funzione è debolmente crescente. - se 0# # = ) se è crescente in senso lato nel suo dominio, mentre è crescente in senso stretto in 0# #. = DEFINIZINE Funzione decrescente in senso stretto Una funzione = f () di dominio D si dice decrescente in senso stretto in un intervallo I, sottoinsieme di D, se comunque scelti e appartenenti a I, con, risulta f ( ) f ( ). f D,, f( ) f( ) < D D f( ) > f( ) = Se nella definizione precedente sostituiamo la relazione f ( ) f ( ) con f ( ) $ f ( ), otteniamo la definizione di funzione decrescente in senso lato, o anche non crescente. In seguito, se diremo che una funzione è crescente (o decrescente), senza aggiungere altro, sarà sottinteso che lo è in senso stretto. In questo caso la funzione si può anche dire debolmente decrescente. Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0 67

7 TERIA CAPITL 9. ESPNENZIALI E LGARITMI Una funzione si dice monotòna in un intervallo I del suo dominio se in I è sempre crescente o sempre decrescente. La funzione inversa DEFINIZINE Funzione inversa Sia fa " Buna funzione biiettiva, quindi tale che ogni in A ha una e una sola immagine = f( ) in B. La funzione inversa di f è la funzione biiettiva f B" A in cui ogni - in B ha per immagine il valore in A tale che = f(). A A = f () f biiettiva f B = f() B Nella funzione inversa f -, è l immagine di ; si ha quindi è la variabile indipendente, quella dipendente. = f - (), ma per poter rappresentare questa funzione nello stesso piano cartesiano di = f( ), operiamo la sostituzione " e ". ESEMPI Consideriamo la funzione biiettiva f R " R definita da f() = = -. Possiamo ottenere la sua inversa f - () nel seguente modo ricaviamo in funzione di dalla re lazione precedente = = = + ; indichiamo con la variabile di pen dente e con quella indipendente, ossia scambiamo con a = + f ( ) = = + -. Rappresentiamo la funzione e la sua inversa nello stesso piano cartesiano (figura a). I grafici sono simmetrici rispetto alla bisettrice del primo e terzo quadrante. Se f non è biiettiva, e quindi non è invertibile, possiamo operare una restrizione del dominio a un sottoinsieme in cui f risulti biiettiva. ESEMPI La funzione f R " R tale che f() = = - non ammette la funzione inversa perché non è biiettiva (figura b). 68 Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0

8 PARAGRAF. LE PTENZE CN ESPNENTE REALE TERIA Possiamo dedurre che la funzione non è biiettiva anche per via analitica, ricavando dalla relazione che esprime f() = + è soddisfatta per = + e =- +. sserviamo che le espressioni che definiscono hanno significato se e solo se $ -, pertanto, per - non si ricava alcun valore di la funzione non è suriettiva. Inoltre, ciascun valore di - è immagine di due diversi valori di, uno positivo e uno negativo = +, =- +. Quindi la funzione non è nemmeno iniettiva. Consideriamo allora la restrizione A del dominio e la funzione b = f A " B, con A = {! R / $ 0} e B = {! R / $ - }. Il grafico della funzione così definita è quello disegnato in colore rosso nella figura c la funzione è biiettiva e quindi invertibile. Il valore di dato da + appartiene al dominio A, mentre - + non appartiene ad A. Quindi l espressione = - si inverte in = +. Scambiando i ruoli di e otteniamo la funzione inversa Possiamo leggere così «A è l insieme dei reali tali che $ 0; B è l insieme dei reali tali che $ -». B - - f B" A, f ( ) = = +. = = Figura 8 I grafici della funzione = - e della sua inversa = + sono simmetrici rispetto alla bisettrice del primo e terzo quadrante. c A = + = Il grafico di una funzione e quello della sua inversa sono sempre simmetrici rispetto alla bisettrice del primo e terzo quadrante. Se un punto P(; ) appartiene al grafico della funzione, il punto Pl(; ) appartiene al grafico della funzione inversa e, osservando la figura a lato, notiamo che tali punti individuano i triangoli rettangoli PH e PlHl congruenti. Allora il triangolo PPl è isoscele, la bisettrice del primo e terzo quadrante è bisettrice, altezza e mediana del triangolo e P e Pl sono simmetrici rispetto a tale retta. P'(; ) H' P(; ) H. LE PTENZE CN ESPNENTE REALE Le potenze con esponente intero o razionale Riassumiamo nelle tabelle seguenti le definizioni, già note, relative alle potenze di un numero reale con esponente intero o razionale e le proprietà delle potenze. Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0 69

9 PARAGRAF. LE FUNZINI ESERCIZI. LE FUNZINI Teoria a pag. 6 Le funzioni numeriche Dati gli insiemi A = {, 9, } e B = {,,,, } e la relazione R da A a B così definita R se = a) scrivi le coppie degli elementi che sono in relazione; b) R è una funzione? [a) (; ), (9; ), (; ); b) sì] Quali di queste equazioni rappresentano delle funzioni da R in R? a) - = 9, b) - = 0, c) + =-, d) = -. 6 a), b), Data la funzione f da R in R così definita f 7 6 -, trova f(0), f(), f( - ). [0,, - 8] Data la funzione = - + -, trova le immagini di - e e le controimmagini di -. sserva i seguenti grafici e stabilisci quali di essi rappresentano una funzione. -;-;-; D a b c 6 a b c 7 ESERCIZI GUIDA Data la funzione f R " R tale che = 6 -, completiamo le uguaglianze, scrivendo il valore mancante (se esiste) al posto dei puntini, nei seguenti casi. a) = f(); b) = f( ); c) -7 = f( ). a) Basta sostituire il valore a nell espressione analitica della funzione f() = 6() - = - =. b) Dobbiamo cercare il valore che, attribuito a, ha come immagine. Per farlo risolviamo l equazione = " 6 = " = = " =! =!. 6 Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0 9

10 ESERCIZI CAPITL 9. ESPNENZIALI E LGARITMI c) L equazione 6 - = -7 " 6 = -6 " = - non ha soluzioni, quindi non esistono valori che, attribuiti a, hanno come immagine -7. CMPLETA le uguaglianze per ogni funzione f R " R, scrivendo il valore mancante (se esiste) al posto dei puntini =, f = f( ); f = fb- l ; - 0 = f( f); = f( f). 6 =-, f = f( ); f = fb l ; = f( f); 6 = f( f). =--, f = fb- l ; f = fb- l ; 8 = f( f); = f( f). =, f = f( - 8); f = fbl ; 7 = f( f); - = f( f) = +, f = f( 0); 0 = f( f); f = f b l. =, - 7 = f( f); f = f( - ); f = f b- l. Date le funzioni = f( ) = - e = g( ) =, determina, se esistono, i valori (o il valore) di che hanno la stessa immagine nelle due funzioni. = D Come nell esercizio precedente, ma per le funzioni = f( ) =- - e = g( ) = +. [impossibile] Trova il codominio della funzione f A " R, con A = {-, 0,, } e f() = +. [C = {,, 9}] Data la funzione = 6 -, determina il suo codominio se il dominio è D = {-, -,,, 8}. [C = {-9, -,, 9, 7}] Trova i valori di a e b per la funzione f ( ) = a+ b- sapendo che f( 0) =- e f( - ) =. [a =, b = - ] Determina l espressione analitica della funzione che associa a ogni numero reale il suo triplo aumentato di e trova il suo codominio. [ = + ; R] Una funzione f() associa al numero reale la somma tra il doppio del quadrato del numero e il quadrato della somma tra il numero e. Scrivi f() e trova f(-) e f(). [ f ( ) = + + ; ; 7] È assegnata la funzione f Trova f( - ), f( + ), f( ). [- + ; ; - -8] Per la funzione f ( ) = - calcola f( ), f( ), f + b - - l. ; ; + - D Data la funzione = indica quale dei seguenti punti appartiene al suo grafico. A( -;-6), B( ; 8), C( 0; ), Db ; l. [A, C] 96 Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0

11 PARAGRAF. LE FUNZINI ESERCIZI Date le funzioni f ( ) =- + e g ( ) =--, risolvi la disequazione f( - ) gb l. [ - 0 ] CMPLETA Utilizza il grafico della figura che rappresenta una funzione f per completare le uguaglianze. Codominio C = ; f () =, f (0) = ; f ( ) = 0, f ( ) = -, f ( ) = ; f (-) = ; $ f () = 6 7 Le funzioni definite per casi L espressione 6 8 f ( ) = ' - se se # $ non indica una funzione. Perché? Data la funzione f() R " R così definita f ( ) = se ' se $ - trova f(- ), f(- ), f(0), f(). [- ; 6; ; - ] È assegnata la funzione f() R "R così de finita 7 9 f ( ) a) calcola - = * - se - se - # # se f( -), f( -), fb- l, f(0), f(), f( ) ; b) trova i valori di per cui f ( ) =- e quelli per cui f () = 0. a) -, -, -, 0,, ; b) - ;0D 0 Data la funzione f ( ) = ' + - se se $ a) calcola le immagini di -, 0, e ; b) calcola le controimmagini di Considera la funzione f ( ) - ; ; -. 7 a),, b, -6; b) -,0,-7e D + se 0 = ' se $ 0 e indica quale dei seguenti punti appartiene al su grafico. A( -; -6), B( 0; ), C( ; -), D( ; ). Disegna il grafico delle seguenti funzioni e indica il codominio. se $ 0 =( se 0 = ( - - = se $ se + se - se - # # - + se * 6 = + se # 0 ( - - se 0 = - + se $ 0 ( - se 0-6 se - = * - + se -# # - se Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0 97

12 ESERCIZI CAPITL 9. ESPNENZIALI E LGARITMI Disegna il grafico delle seguenti funzioni con il valore assoluto. 7 8 = - ; = -. = - ; = = + ; = -. = + ; = - +. sservando il grafico della figura che rappresenta una funzione f() trova a) il dominio e il codominio di f(); b) l equazione di f(). = f() = f() 6 = f() = f() Il dominio naturale di una funzione ESERCIZI GUIDA Determiniamo il dominio delle seguenti funzioni a) = - ; - 9 b) = - 7; c) = - - ; d) = a) L espressione ha significato per - 9 ogni valore di che non renda nullo il denominatore, ossia 9-9! 0 " D!, cioè D R - & 9 0. b) L indice della radice - 7 è pari, quindi l espressione esiste soltanto se - 7 $ 0 " D # - 70 $ 7. c) L indice della radice - è dispari, quindi l espressione esiste per ogni valore reale D R. d) Affinché esista l espressione + + -, il valore di deve rendere contemporaneamente non negative le espressioni + e -, quindi dobbiamo risolvere il sistema + $ 0 ' - $ 0 D $ " $ - ' $ 98 Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0

13 PARAGRAF. LE FUNZINI ESERCIZI Determina il dominio delle seguenti funzioni. 6 7 = - R? = + 9 [! 0] 8 = [! ] 9 = - + R? + 0 = - + [! 0 /!! ] = ( - ) [! ] = ( - ) [ ] = [! -/! 0 /! ] = R? = - 8 $ 8? - 6 = ( - ) - 7 = = = !?!!/! 0?! -/! D! 0/!? = - 0 # 00 $ 0? = R? = 7- R? = + 7 R? 6 =! D = + R? = - + 6! /!? = 9 - -# #? - 7 = - + R? = -- R? 70 = - +! 0? = - = 0/!? = - + $ D = + - 0/!? 7 = - 9! 0/!!? - 7 = + 6 $? 76 = - -! /!? + 77 = - + $-/!? - 78 = + - #? + 79 = - + -!? 80 = - 6-0? 8 = D = Q? - 8 = #? = = = - -! /!!? -0 $ D ; # 0 E se 87 = *! 0/!? + se + se # 0 88 = * se 0 $-/!? - = 89-9 = = 9 8 = 9 - # 00? -# 0? -# 00 8? - # 00 # D Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0 99

14 ESERCIZI CAPITL 9. ESPNENZIALI E LGARITMI = Q? 6 - = -# 0 #? = # 80 8D 96 Considera la funzione = f() rappresentata dal grafico a lato. a) Indica il dominio e il codominio di f(). b) Trova f(0), f(), f(- ), f() e completa b ) f( ) =, f( ) =, f( ) = -. [a) D R, C {- # # } { }; b), -,, ] È data la funzione f() R " R = k determina k - f ( ) = * + se 0 in modo che il dominio sia R - {- }. [k = ] se $ 0 a) Calcola f(- ), f(0), f(), f(). b) Determina il dominio di f(). c) Il punto (; - ) appartiene al grafico della funzione? [ a) -! Y D; 6 ; ; 0; b) D # /! -; c) no] Data la funzione + a- 99 =, determina - b a e b in modo che il dominio sia R - {} e il grafico passi per il punto b ; l. [a = -, b = 8] Gli zeri di una funzione e il suo segno Trova gli zeri delle seguenti funzioni = - [0; ] = - 6 [0; ] = - + [] = + - -; D 0 - = - - = [ b! R]! D = - 9 [0; 9] = + -- [! ; - ] Studia il segno delle seguenti funzioni dopo averne determinato il dominio. 08 = [ D ; 0 00 ] -! 09 = - [D = R; 0 ] 600 Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0

15 PARAGRAF. LE FUNZINI ESERCIZI 0 - = 6 + [D!-6; 0-6 ] = [D! -/! ; 0-00 ] ( + )( - ) 6 7 = 6+ + [D $ -6; 0 6! D] = [ D $ 0; 0 0] = + [D = R; 0 0] = [D = R; 0 0 ] + = + - D $ ; 0 6! D D - = D! /! ; 0-0 D - + La classificazione delle funzioni Per ognuna delle seguenti funzioni indica se è razionale (intera o fratta) o irrazionale o trascendente = - ; = - ; = + ; = +. = 0 + ; = ; = - 7; = -. 9 = + ; = ; = ; - = r. Le funzioni iniettive, suriettive e biiettive gni grafico rappresenta una funzione f R " R. Indica per ognuno se si tratta di una funzione iniettiva, suriettiva, biiettiva. a b c d Per ognuna delle seguenti funzioni di R in R, indica quale sottoinsieme di R si deve prendere come insieme di arrivo se si vuole che la funzione sia suriettiva a b c d Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0 60

16 ESERCIZI CAPITL 9. ESPNENZIALI E LGARITMI Indica quale dei seguenti grafici rappresenta una funzione di R in R. Per ogni funzione indica se è una funzione iniettiva, suriettiva, biettiva, scrivi qual è il suo dominio, il codominio ed evidenzia per quali valori di la funzione è positiva. a b c a b c Le funzioni crescenti, le funzioni decrescenti Indica per ogni funzione se è crescente o decrescente (in senso stretto o in senso lato) in R. a b c 6 CMPLETA utilizzando i dati del grafico a) il dominio è ff; b) il codominio è ff; c) f() = f, f() = ff; d) f( f) =, f( f) = 0; e) la funzione è crescente negli intervalli fff; è decrescente in fff; f) f ( ) 0 per fff. 60 Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0

17 PARAGRAF. LE FUNZINI ESERCIZI Rappresenta le seguenti funzioni e indica in quali intervalli sono crescenti e in quali decrescenti = - = = - 0 = se # = ' se - se 0 - = ( + se La funzione inversa Spiega perché ognuna delle seguenti funzioni ammette la funzione inversa e traccia il suo grafico. a b c gni grafico rappresenta una funzione. Considera opportuni insiemi di partenza e di arrivo in modo che la funzione ammetta la funzione inversa e disegnane il grafico. a b c 6 7 Data la funzione f ( ) - =, trova f - () e calcola f - () f ( ) = ; f () = 7D Dimostra che la funzione f ( ) = + è biunivoca. Trova la funzione inversa f - () e traccia i grafici di f() e f - - (). 6 f ( ) = Verifica che la funzione 6 = coincide con la sua inversa. In un diagramma cartesiano disegna le seguenti funzioni e le loro inverse, dopo aver considerato, se necessario, opportuni insiemi di partenza e di arrivo, tali che le funzioni siano biiettive. Scrivi l espressione analitica della funzione inversa. 8 9 =- + 7; = ; =- ; = -. 7 =- + ; = ; =- ; $ 0, = + 0 D = ; =- ; = ; =-. = ; =- ; $ 0, = ; # 0, = - D 9 Bergamini, Trifone, Barozzi MATEMATICA.AZZURR - Modulo N+ Zanichelli 0 60

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Anno 5 Funzioni inverse e funzioni composte

Anno 5 Funzioni inverse e funzioni composte Anno 5 Funzioni inverse e funzioni composte 1 Introduzione In questa lezione impareremo a definire e ricercare le funzioni inverse e le funzioni composte. Al termine di questa lezione sarai in grado di:

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

STUDIO DEL SEGNO DI UNA FUNZIONE

STUDIO DEL SEGNO DI UNA FUNZIONE STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,

Dettagli

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue: CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Lo studio di unzione Ing. Alessandro Pochì Appunti di analisi Matematica per la Classe VD (a.s. 011/01) Schema generale per lo studio di una unzione Premessa Per Studio unzione si intende, generalmente,

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0229408552

Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0229408552 Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0940855 La funzione: y = cos x DEFINIZIONE Si dice funzione coseno di un angolo nel cerchio trigonometrico, la

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Appunti e generalità sulle funzioni reali di variabili reali.

Appunti e generalità sulle funzioni reali di variabili reali. Appunti e generalità sulle funzioni reali di variabili reali. Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti

Dettagli

Funzioni e loro grafici

Funzioni e loro grafici Funzioni e loro grafici Dicesi funzione y=f(x) della variabile x una legge qualsiasi che faccia corrispondere ad ogni valore di x, scelto in un certo insieme, detto dominio, uno ed uno solo valore di y

Dettagli

B9. Equazioni di grado superiore al secondo

B9. Equazioni di grado superiore al secondo B9. Equazioni di grado superiore al secondo Le equazioni di terzo grado hanno una, due o tre soluzioni, risolvibili algebricamente con formule molto più complesse di quelle dell equazione di secondo grado.

Dettagli

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

4. Strutture algebriche. Relazioni

4. Strutture algebriche. Relazioni Relazioni Sia R una relazione definita su un insieme A (cioè R A A). R si dice riflessiva se a A : ara R si dice simmetrica se a, b A : arb = bra R si dice antisimmetrica se a, b A : arb bra = a = b R

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi Elementi di teoria degli insiemi 1 Insiemi e loro elementi 11 Sottoinsiemi Insieme vuoto Abbiamo già osservato che ogni numero naturale è anche razionale assoluto o, in altre parole, che l insieme dei

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem)

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Raccolta di Esercizi di Matematica Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Contenuti: 8-1. L ordine Algebrico delle Operazioni 8-2. Problemi sulle Percentuali 8-3. Le Forme Standard e Point-Slope

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE")

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC DERIVE) F U N Z I O N I E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE") I N D I C E Funzioni...pag. 2 Funzioni del tipo = Kx... 4 Funzioni crescenti e decrescenti...10

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

Verica di Matematica su dominio e segno di una funzione [COMPITO 1]

Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Esercizio 1. Determinare il dominio delle seguenti funzioni: 1. y = 16 x ;. y = e 1 x +4 + x + x + 1; 3. y = 10 x x 3 4x +3x; 4. y =

Dettagli

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009 ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali v.scudero www.vincenzoscudero.it novembre 009 1 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione)

Dettagli

Metodi risolutivi per le disequazioni algebriche

Metodi risolutivi per le disequazioni algebriche Metodi risolutivi per le disequazioni algebriche v.scudero Una disequazioni algebrica si presenta in una delle quattro forme seguenti: () P( () P( (3) P( () P( essendo P( un polinomio in. Noi studieremo

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

Manuale blu di matematica

Manuale blu di matematica Massimo Bergamini Anna Trifone Graziella Barozzi Manuale blu di matematica 4 Modulo Funzioni e limiti Zanichelli Simboli matematici simbolo significato simbolo significato Relazioni numeriche = uguale!

Dettagli

Considerazioni preliminari sul dominio

Considerazioni preliminari sul dominio L'argomento di cui ci occupiamo in questa lezione è un must nello studio dell'analisi Matematica: vogliamo proporre una guida completa sul dominio di funzioni reali di variabile reale, e mostrare quali

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO

PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO 9 PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO Il capitolo che sta per iniziare presenta alcuni argomenti dall aspetto un po arido. Tuttavia, nelle facoltà

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = +

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = + FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO Si chiama funzione lineare (o funzione affine) una funzione del tipo = + dove m e q sono numeri reali fissati. Il grafico di tale funzione è una retta, di cui

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

In base alla definizione di limite, la definizione di continuità può essere data come segue:

In base alla definizione di limite, la definizione di continuità può essere data come segue: Def. Sia f una funzione a valori reali definita in un intervallo I (itato o ilitato) e sia un punto interno all intervallo I. Si dice che f è continua nel punto se: ( )= ( ) Una funzione f è continua in

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Liceo Scientifico G. Galilei Trebisacce

Liceo Scientifico G. Galilei Trebisacce Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2011-2012 Prova di Matematica : Relazioni + Geometria Alunno: Classe: 1 C 05.06.2012 prof. Mimmo Corrado 1. Dati gli insiemi =2,3,5,7 e =2,4,6, rappresenta

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE

POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE IMMATRICOLAZIONI AL PRIMO ANNO DEI CORSI DI LAUREA TRIENNA- LI IN INGEGNERIA DEL POLITECNICO DI BARI - A.A. 2015/2016 Sommario REGOLAMENTO TEST DI AMMISSIONE...

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli