Parte I (introduzione)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Parte I (introduzione)"

Transcript

1 arte I (trodzoe) Espressoe dell ertezza d msra (UNI CEI 9) L ertezza rappreseta geerale dbbo. Il dbbo ra la valdtà del rsltato d a msrazoe vee espresso medate l ertezza d msra. Iertezza d msra arametro, assoato al rsltato d a msrazoe, he e aratterzza la dspersoe de valor ragoevolmete attrbbl al msrado. Il parametro pò essere o sarto tpo o la semampezza d tervallo avete lvello d fda stablto. L ertezza d msra, geerale, dpede da pù ompoet. Tale possoo essere valtate dalla dstrbzoe statsta de rsltat d sere d msrazo, altre soo valtate da dstrbzo d probabltà potzzate.

2 arte I (trodzoe) Espressoe dell ertezza d msra (UNI CEI 9) Il problema dell espressoe dell ertezza vee posto el 977 dal Comtato Iterazoale de es e delle Msre (CIM). L Uffo Iterazoale de es e delle Msre (BIM) prodsse qd el 980 la raomadazoe INC- ttolata Espressoe delle ertezze spermetal. Norma UNI CEI 9 Gda all espressoe dell ertezza d msra (ISO Gde to the epresso of ertaty measremet 995). 00_008_E.pdf La orma stablse le regole geeral per la valtazoe e l espressoe dell ertezza d msra.

3 arte I (trodzoe) Espressoe dell ertezza d msra (UNI CEI 9) Il metodo deale per la valtazoe dell ertezza del rsltato d a msrazoe deve essere:.uversale: l metodo deve essere applable a ttt tp d msrazoe e d dat gresso..iteramete oerete: l ertezza deve essere drettamete dervable dalle ompoet he v otrbsoo, dpedetemete dal modo qeste vegoo raggrppate. 3.Trasferble: l ertezza valtata per rsltato deve essere drettamete tlzzable ome ompoete ella valtazoe dell ertezza d altra msrazoe ella qale tervega l prmo rsltato.

4 arte I (trodzoe) Espressoe dell ertezza d msra (UNI CEI 9) Raomadazoe INC- (980) ) L ertezza del rsltato d a msrazoe osste geere svarate ompoet he possoo essere raggrppate de ategore a seoda del modo se e stma l valore mero: A. qelle valtate per mezzo d metod statst; B. qelle valtate medate altr metod.. ) Le ompoet apparteet alla ategora A soo aratterzzate dalle loro varaze stmate s.. 3) Le ompoet apparteet alla ategora B devoo essere aratterzzate da gradezze, terpretabl ome approssmazo delle varaze orrspodet.. 4) L ertezza omposta deve essere aratterzzata medate l valore mero he s ottee applado l metodo abtale per la omposzoe delle varaze.. 5) Qalora sa eessaro, moltplare l ertezza omposta per fattore, osì da otteere ertezza globale, l fattore moltplatvo deve essere dato.

5 arte I (trodzoe) Iertezze d tpo A e d tpo B U ertezza tpo d ategora A è otteta da a destà d probabltà dervata da a dstrbzoe d freqeza osservata. var() as sqrt(var()) as La varaza stmata sarà qesto aso la varaza stmata statstamete s, lo sarto tpo stmato è dqe s. v0; >> for :0000, vv(()-mea())^; ed >> vv/9999 v

6 arte I (trodzoe) Iertezze d tpo A e d tpo B U ertezza tpo d ategora B è otteta da a destà d probabltà potzzata slla base del grado d redeza del verfars d eveto. La varaza stmata sarà qesto aso alolata base alle formazo dspobl, lo sarto tpo stmato è σ. a -a 0.5/a [ ] a a a a a d a a a a a σ

7 arte I (trodzoe) Valtazoe dell ertezza tpo Modello della msrazoe U msrado Y vee geere determato medate altre N gradezze X,X,,X, tlzzado a relazoe fzoalef: Yf (X,X,,X ) La fzoe f potrebbe ahe rdrs alla fzoe dettà essere talmete omplata da o essere esprmble forma aalta. I valor delle gradezzex,x,,x e le rspettve ertezze possoo provere da msrazo drette (fr. Iertezza d ategora A), o possoo essere trodotte da fot estere (fr. ertezze d ategora B).

8 arte I (trodzoe) Valtazoe dell ertezza tpo Valtazoe d ategora A dell ertezza tpo DateosservazoX,k della gradezza d gressox, la mglore stma del valore atteso è la meda artmeta o valore medo X X, k k La varaza spermetale delle osservazo è: s ( ) ( ) X X X k N.B.: Se s tlzza el modello della msrazoe l valore medo oorre tlzzare la stma della varaza d tale valore: s, k ( ) s ( X ) X Tale qattà e la sa rade qadrata postva vegoo spesso hamat varaza d ategora A- ( ) - e ertezza tpo d ategoraa-( ).

9 arte I (trodzoe) Valtazoe dell ertezza tpo Valtazoe d ategora B dell ertezza tpo er gradezza d gresso X he o è stata stmata medate osservazo rpette, la varaza stmata ( ) e l ertezza tpo ( ) devoo essere valtate per mezzo delle formazo dspobl e rtete attedbl: dat d msrazo preedet; espereza o ooseza geerale del omportameto e delle propretà de materal e strmet d teresse; spefhe tehe del ostrttore; dat fort ertfat d taratra o altr; ertezze assegate a valor d rfermeto pres da maal ( ) e ( ), valtate qesto modo vegoo spesso hamate varaza d ategora B e ertezza tpo d ategora B.

10 arte I (trodzoe) Valtazoe dell ertezza tpo U pao d osservazo (e qalhe esempo) Ua stma d ategora B dell ertezza tpo pò rsltare pù attedble d a stma d ategora A della stessa ertezza. Cò pò aadere qado la stma d ategora A è basata s mero troppo lmtato d osservazo dpedet del msrado. E possble mbatters dharazo d ertezza he fao rfermeto a fssato lvello d fda. I tale aso l ertezza tpo pò essere stmata soltato se s sppoe ota ahe la fzoe d dstrbzoe assoata. ESEMIO : U resstore ampoe ha valore d essteza par a 0,00074 Ω ± 9 µω, dove l ertezza dharata dvda tervallo d fda del 99 %. Sppoedo he la dstrbzoe sa ormale s pò assmere le l ertezza tpo del resstore sa (R s )(9 µω)/,5850µω. ESEMIO : Abbamo gà vsto he, el aso d a dstrbzoe rettagolare smmetra d sem-ampezza a, la varaza vale ( )a /3.

11 arte I (trodzoe) Determazoe dell ertezza tpo omposta L ertezza tpo omposta rappreseta lo sarto tpo stmato assoato o la stma del rsltato della msrazoe y ed è dato o (y). La relazoe he lega l ertezza tpo degl gress ( ) o l ertezza tpo dell sta (y) è data dalla legge d propagazoe dell ertezza (da o ofodere o la legge d propagazoe degl error!).

12 arte I (trodzoe) Determazoe dell ertezza tpo omposta Gradezze d gresso o orrelate De varabl asal soo statstamete dpedet o o orrelate se la dstrbzoe d probabltà ogta è gale al prodotto delle de dstrbzo margal L ertezza tpo omposta è la rade qadrata postva della varaza omposta: f ( y) ( ) L ertezza tpo omposta aratterzza la dspersoe de valor ragoevolmete attrbbl al msrado Y. Casa ( ) è ertezza tpo valtata ome ertezza d ategora A o ome ertezza d ategora B.

13 arte I (trodzoe) Determazoe dell ertezza tpo omposta Gradezze d gresso o orrelate Ifatt. Svlppado sere d Taylor la fzoe f(.) attoro a valor attes E( )µ delle, e trasrado term d orde sperore, s ha: (y) ( ) f y µ y µ f ( ) ( ) y µ ( ) y µ f f f ( µ ) ( µ )( µ ) Il valore atteso de qadrat degl sostamet rspetto a valor med dat soo propro le varaze σ y e σ ; ( µ )( µ ) Il valore atteso E[ ]del prodotto msto è llo per le potes fatte.

14 arte I (trodzoe) Determazoe dell ertezza tpo omposta Gradezze d gresso o orrelate La legge d propagazoe dell ertezza pò essere espressa ome: ( y) [ ( )] ( y ) f I term (par alle dervate parzal della fzoef(.) rspetto alle varabl ) vegoo dett oeffet d sesbltà. Ess desrvoo ome la stma dell sta y vara al varare delle stme degl gress. I oeffet possoo essere alolat ahe spermetalmete - seza rorrere alla ooseza della fzoe f(.). S vara a varable d a qattà opporta e s msra la varazoe prodotta sll stay. ( y) ( )

15 arte I (trodzoe) Determazoe dell ertezza tpo omposta Gradezze d gresso o orrelate Se l modello della msrazoe è del tpo: p p Y k X X... dove gl espoet p soo mer ot o ertezza trasrable, allora l ertezza omposta assme la forma: N X p N N [ ( y) / y] [ p ( )/ ] Ovvero qesto aso è la varaza relatva omposta ad essere gale alla ombazoe leare delle varaze relatve stmate de sgol gress.

16 arte I (trodzoe) Determazoe dell ertezza tpo omposta Gradezze d gresso o orrelate ESEMIO: s vole alolare la poteza a radofreqeza dete s resstore ampoe (metodo bolometro). Esstoo ressteze grado d permettere msre fo a freqeze dell orde d 70 GHz. Ifatt, asseza e preseza dell rraggameto la ressteza s porterà a de temperatre dverse e qd la poteza assorbta varerà modo orrspodete. V ; R R 0 α R V ' R' ' ( t) R ( ( t t )) 0

17 7 arte I (trodzoe) Determazoe dell ertezza tpo omposta Gradezze d gresso o orrelate La determazoe dell ertezza omposta rhede la determazoe de oeffet : ( ) [ ] ( ) ( ) [ ] ( ) [ ] t t t t t t t R R V t t R V V o α α α α α

18 arte I (trodzoe) Determazoe dell ertezza tpo omposta Gradezze d gresso o orrelate L ertezza omposta del valore attrbto alla poteza sarà: ( ) ( ) ( ) ( ) ( ) t t R R V V o o α α ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] 4 3 t R V o α ( ) ( ) ( ) ( ). 4 3 ( ) ( ) ( ). '

19 arte I (trodzoe) Determazoe dell ertezza tpo omposta Gradezze d gresso orrelate L ertezza tpo omposta el aso d gradezze orrelate (o dpedet) è aora la rade qadrata postva della varaza omposta, qesta tttava assme la forma: ( ) ( ) ( ) f f f y, ( )., f f ( )( ) µ µ Ifatt, qesto aso o è pù leto spporre he sa llo l valore della ovaraza tra le varabl e, ovvero l valore E[ ].

20 arte I (trodzoe) Determazoe dell ertezza tpo omposta Gradezze d gresso orrelate Laovaraza assoata alle varabl e è espressoe qattatva della loro dpedeza mta ed è defta ome: ( X ) ( )( ) ( ), X X µ X X X p X, X dx dx ov µ La ovaraza stmata (X,X )(X,X ) s ottee da oppe dpedet d osservazo smltaee delle de varabl ome: (, ) ( )( ) k k k

21 arte I (trodzoe) Determazoe dell ertezza tpo omposta Gradezze d gresso orrelate S tlzza spesso l oeffete d orrelazoe ( ) ( ) ( ) ( ) r,, Esso è ompreso ell tervallo [-,] ed è llo se le varabl soo dpedet. La legge d propagazoe dell ertezza dveta allora: ( ) ( ) [ ] ( ) ( ) ( ) r y, Nel aso spealssmo ttt gl gress soo orrelat o oeffete d orrelazoe r(, )± la legge d propagazoe dell ertezza assme la forma: ( ) ( ) [ ] ( ) f y

22 arte I (trodzoe) Determazoe dell ertezza tpo omposta Gradezze d gresso orrelate Ahe per la ovaraza è possble avere a valtazoe d ategora A o d ategora B. A) Se de varabl d gresso X e X vegoo stmate alolado le mede, allora a stma d ategora A della ovaraza delle mede è: (, ) ( ) ( X )( ) k X X k X k B) Se s tlzzao le formazo dspobl slla varabltà orrelata delle gradezze d gresso X e X s ottee sa stma d ategora B delle della ovaraza delle de varabl.

23 arte I (trodzoe) Determazoe dell ertezza estesa L ertezza tpo omposta pò essere tlzzata versalmete per esprmere l ertezza d msra; tale applazo ommeral, dstral e ormatve, e là dove soo ovolte la srezza e la salte pbbla, è sovete eessaro dare a valtazoe qattatva dell ertezza he defsa tervallo toro al rsltato della msrazoe he s aspett ompredere a gra parte della dstrbzoe d valor he possoo essere ragoevolmete attrbt al msrado.

24 arte I (trodzoe) Determazoe dell ertezza estesa Se osderamo a dstrbzoe gassaa otteamo he gl tervall selt soo legat a lvell d ofdeza seodo la fgra rportata: Se, tttava osderamo a dstrbzoe rettagolare l lvello d ofdeza assoato all tervallo [(µ σ),( µσ)] è par a / 3 0, 577

25 arte I (trodzoe) Determazoe dell ertezza estesa La valtazoe qattatva spplemetare dell ertezza he forse tale tervallo è deomata ertezza estesa U. L ertezza estesa U vee otteta moltplado l ertezza tpo ampoe per fattore d opertra k U k ( y) Il valore del fattore d opertra dpede dalla porzoe p della dstrbzoe d probabltà he s vole ldere (ovvero dalla probabltà p he l valore del msrado ada tale tervallo). Il parametro p vee detto probabltà d opertra o lvello d fda. I geerale k è el ampo tra e 3.

26 arte I (trodzoe) Determazoe dell ertezza estesa Come determare la relazoe tra l lvello d fda desderato p e l fattore d opertrak? La orma desrve metodo semplfato per la determazoe del fattore d opertra basato slle seget osservazo: la stma d y è ravata da stme delle gradezze d gresso aratterzzate da dstrbzo be dvdate; le ertezze delle stme de parametr d gresso otrbsoo eqamete all ertezza omposta dell sta; L approssmazoe, mplta ella legge d propagazoe dell ertezza, è adegata; L ertezza omposta è pola.

27 arte I (trodzoe) Determazoe dell ertezza estesa I qeste rostaze, graze al Teorema del lmte etrale, s pò rteere ormale la dstrbzoe d probabltà he aratterzza l rsltato della msrazoe! I qesto aso, freqete ella prata, s pò rteere he k forsa tervallo d fda approssmatvamete del 95 per eto, k3 forsa tervallo d fda approssmatvamete del 99 per eto; L Appede G della Norma UNI CEI 9 forse a gda ompleta al trattameto de asrbell.

Lezioni del Corso di Fondamenti di Metrologia

Lezioni del Corso di Fondamenti di Metrologia Uverstà degl Std d Casso Facoltà d Igegera Lezo del Corso d Fodamet d Metrologa 3. L Icertezza d Msra Uverstà degl Std d Casso Corso d Fodamet d Metrologa Idce. Icertezza d Msra. Propagazoe delle Icertezze

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

UNI CEI ENV 13005 (GUIDA ALL ESPRESSIONE DELL INCERTEZZA DI MISURA)

UNI CEI ENV 13005 (GUIDA ALL ESPRESSIONE DELL INCERTEZZA DI MISURA) UI CEI EV 3005 (GUIDA ALL ESPRESSIOE DELL ICERTEZZA DI MISURA Uverstà degl Stud d Bresca Corso d Fodamet della Msurazoe A.A. 00-03 Apput a cura d Gorgo Cor 3835 UI CEI EV 3005 0. ITRODUZIOE 0. COCETTO

Dettagli

Incertezza di misura

Incertezza di misura Icertezza d msura Itroduzoe e rcham Come gà detto rsultat umerc ottebl dalle msurazo soo trsecamete caratterzzat da aleatoretà è duque sempre ecessaro stmare ua fasca d valor attrbubl come msura al msurado;

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Apparecchi di sollavamento. Classificazione apparecchi di sollevamento a

Apparecchi di sollavamento. Classificazione apparecchi di sollevamento a Appareh d sollavameto A moto otuo: Nastr trasportator Sollevator a tazze Forze d erza lmtate; trastor d avvameto e arresto poo rlevat A moto dsotuo: Gru a torre Forze d erza rlevat Classfazoe appareh d

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo Studo della dpedeza replogo Abbamo vsto due msure d assocazoe tra caratter: ) msure d assocazoe basate sull dpedeza dstrbuzoe ( χ, V d Cramer) possoo essere applcate a coppe d caratter qualuque (ache etrambe

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

Indagine Sperimentale di Calibrazione del Metodo Combinato SonReb

Indagine Sperimentale di Calibrazione del Metodo Combinato SonReb dage Spermetale d Calrazoe del Metodo Comato Soe Maurzo Lez, Dalo ersar, oerta Zamr 3 Premessa Nell amto delle prove o dstruttve utlzzal per l otrollo opera del alestruzzo trova da tempo mpego l metodo

Dettagli

Metodi e Modelli di Programmazione Lineare

Metodi e Modelli di Programmazione Lineare Metod e Modell d Programmazoe Leare Massmo Paolu (paolu@dst.uge.t) DIS Uverstà d Geova La Programmazoe Leare (LP) Modello d programmazoe matemata ma f() s.t. X R vettore delle varabl desoal X seme delle

Dettagli

RUMORE NEI RICEVITORI. Sia G(f) il guadagno del blocco funzionale che ha in ingresso una resistenza rumorosa a temperatura Ta. G(f) RUMORE IMPULSIVO

RUMORE NEI RICEVITORI. Sia G(f) il guadagno del blocco funzionale che ha in ingresso una resistenza rumorosa a temperatura Ta. G(f) RUMORE IMPULSIVO RUMORE EI RICEVITORI a ) l gadago del blocco zoale che ha gresso a ressteza rmorosa a temperatra Ta Ta R ) d La poteza scta ella bada d è d k Ta d ) + W t () d W t () è la destà spettrale del rmore geerato

Dettagli

Capitolo 2 Errori di misura: definizioni e trattamento

Capitolo 2 Errori di misura: definizioni e trattamento Captolo Error d msura: )Geeraltà defzo e trattameto I cocett d meda, varaza e devazoe stadard s utlzzao ormalmete per otteere formazo sulla botà d ua msura. I geerale, s assume come msura m della gradezza

Dettagli

Statistica degli estremi

Statistica degli estremi Statstca degl estrem Rcham d probabltà e statstca Il calcolo della probabltà d u eveto è drettamete coesso co: - la COOSCEZA ICOMPLETA dell eveto stesso; - l assuzoe d u RISCHIO, calcolato come la probabltà

Dettagli

Elementi di statistica descrittiva Parte III

Elementi di statistica descrittiva Parte III Problem coess co l so della meda - la meda pò sbre forte fleza de valor modal estrem del ( alc cas molto dfferet dagl altr dat osservat) - la meda pò o essere valore osservato - la meda è applcable solo

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Corso d Ifereza Statstca Eserctazo A.A. 009/0 ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Eserczo I cosumator d marmellata ua data popolazoe soo l 40%. Determare la probabltà che, per u campoe beroullao d =

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo COMPLEMENTI DI STATISTICA L. Greco, S. Naddeo INDICE. GENERALITA SULLA VERIFICA DI IPOTESI. Itroduzoe 4. I test d sgfcatvtà 5.3 Gl tervall d cofdeza 7.4 Le potes alteratve.5 La poteza del test 5.6 Il test

Dettagli

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Regressione e Correlazione

Regressione e Correlazione Regressoe e Correlazoe Probabltà e Statstca - Aals della Regressoe - a.a. 4/5 L aals della regressoe è ua tecca statstca per modellare e vestgare le relazo tra due (o pù) varabl. Nella tavola è rportata

Dettagli

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1 SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORO DI LAUREA IN ECONOMIA AZIENDALE Metod tatstc per le decso d mpresa (Note ddattche) Bruo Chadotto 7. Teora del test delle potes I questo captolo s affrota l problema della verfca d potes statstche

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

CAPITOLO 4. Struttura e potere di mercato

CAPITOLO 4. Struttura e potere di mercato CAPITOLO 4 Struttura e potere d merato 4.. Moopolo e potere d merato Quado ua mpresa può fluezare l prezzo he reve per l propro prodotto s de he ha u potere d moopolo, o potere d merato. U mpresa he ha

Dettagli

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica).

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica). Regressoe leare Il terme regressoe fu trodotto da Fracs Galto (8-9), atropologo (promotore dell eugeetca). I u suo famoso studo (877-885), Galto scoprì che, sebbee c fosse ua tedeza de getor alt ad avere

Dettagli

17. FATICA AD AMPIEZZA VARIABILE

17. FATICA AD AMPIEZZA VARIABILE 7. FIC D MPIEZZ VRIBILE G. Petrucc Lezo d Costruzoe d Macche Spesso compoet struttural soo soggett a store d carco elle qual ccl d fatca hao ampezza varable (fg.), ad esempo ccl co tesoe alterata a (o

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

Caso studio 10. Dipendenza in media. Esempio

Caso studio 10. Dipendenza in media. Esempio 09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore

Dettagli

L assorbimento e lo strippaggio

L assorbimento e lo strippaggio assorbmeto e lo strppaggo Coloa a stad d ulbro (coloa a patt Il calcolo d ua coloa d assorbmeto/strppaggo d questo tpo parte dal blaco d matera. Chamado e le portate d lqudo A e d gas C relatve a due compoet

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 La Legge de Grad Numer Cosderata ua sere d prove rpetute co p par alla probabltà d successo ua sgola prova, l rapporto tra l umero d success K ed l umero d prove tede a p quado tede ad fto: K P p ε per

Dettagli

Marco Riani - Analisi delle statistiche di vendita 1

Marco Riani - Analisi delle statistiche di vendita 1 ORARIO LEZIONI ANALISI DELLE STATISTICHE DI VENDITA Marco Ra mra@upr.t http://www.ra.t Mercoledì 3 aula Lauree Mercoledì 4 6 aula Lauree Govedì 3 Eserctazoe Semar? LIBRI DI TESTO Teora Ra M., Laur F. 8,

Dettagli

Attualizzazione. Attualizzazione

Attualizzazione. Attualizzazione Attualzzazoe Il problema erso alla captalzzazoe prede l ome d attualzzazoe Abbamo ua operazoe fazara elemetare e dato l motate M dobbamo determare l corrspodete captale zale C L'attualzzazoe è la operazoe

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

Vantaggi della stratificazione

Vantaggi della stratificazione Lez. 4 0/03/05 etd Statstc per l aret - F. Bartlucc Uverstà d Urb Vata della stratfcaze I prcpal vata del campamet stratfcat s: mlramet ell effceza del stmatre del ttale e della meda; pssbltà d stmare

Dettagli

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti Orgazzazoe del corso Elemet d Iformatca Prof. Alberto Brogg Dp. d Igegera dell Iformazoe Uverstà d Parma Teora: archtettura del calcolatore, elemet d formatca, algortm, lguagg, sstem operatv Laboratoro:

Dettagli

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1 Elemet d Matematca Fazara Redte e ammortamet Uverstà Partheope 1 S chama redta ua successoe d captal da rscuotere (o da pagare) a scadeze determate S chamao rate della redta sgol captal da rscuotere (o

Dettagli

per il controllo qualità in campo tessile ing. Piero Di Girolamo

per il controllo qualità in campo tessile ing. Piero Di Girolamo edtg project M.R. Oofro ELEMENTI DI STATISTICA per l cotrollo qualtà campo tessle g. Pero D Grolamo prefazoe PREFAZIONE I l cotrollo d qualtà el tessle-abbglameto, u sstema ecoomco globalzzato, che da

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV Uverstà degl Stud d Napol Partheope Facoltà d Sceze Motore a.a. 011/01 Statstca Lezoe IV E-mal: paolo.mazzocch@upartheope.t Webste: www.statmat.upartheope.t Fuzoe d regressoe Attraverso la fuzoe d regressoe

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

RISOLUZIONE ENO 10/2005 GUIDA PRATICA PER LA CONVALIDA, IL CONTROLLO QUALITÀ, E LA STIMA DELL INCERTEZZA DI UN METODO ALTERNATIVO DI ANALISI ENOLOGICA

RISOLUZIONE ENO 10/2005 GUIDA PRATICA PER LA CONVALIDA, IL CONTROLLO QUALITÀ, E LA STIMA DELL INCERTEZZA DI UN METODO ALTERNATIVO DI ANALISI ENOLOGICA RISOLUZIONE ENO 0/005 GUIDA PRATICA PER LA CONVALIDA, IL CONTROLLO QUALITÀ, E LA STIMA DELL INCERTEZZA DI UN METODO ALTERNATIVO DI ANALISI ENOLOGICA L ASSEMBLEA GENERALE, Vsto l artcolo paragrafo v dell

Dettagli

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI Dipartimeto di Sieze Eoomihe Uiversità di Veroa VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE Lezioi di Matematia per

Dettagli

LE MEDIE. Le Medie. Medie razionali. Medie di posizione

LE MEDIE. Le Medie. Medie razionali. Medie di posizione LE MEDIE RAZIONALI LE MEDIE Msure stetche trodotte per valutare aspett compless e global d ua dstrbuzoe d u feomeo X medate u solo umero reale costruto modo da dsperdere al mmo le formazo su dat orgar.

Dettagli

LA REGRESSIONE LINEARE SEMPLICE

LA REGRESSIONE LINEARE SEMPLICE LA REGRESSIONE LINEARE SEMPLICE L ANALISI DI REGRESSIONE La regressoe è volta alla rcerca d u modello atto a descrvere la relazoe esstete tra ua varable Dpedete e ua varable dpedete (regressoe semplce)

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili:

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili: Eserzo GAS IDEALI Dell osseo, sosto as deale o.4 ost, eole seodo lo osttto dalle seet trasorazo reersl: Coressoe sotera dallo stato ( 0.9 ar; 0.88 /) allo stato 2; trasorazoe soora da 2 a ( 2.5 ar); esasoe

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO. box. Scopo della modellazione black-box. Limitazioni dell approccio black-box

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO. box. Scopo della modellazione black-box. Limitazioni dell approccio black-box IGEGEIA E TECOLOGIE DEI SISTEMI DI COTOLLO bo Prof. Carlo oss DEIS - Uversà d Bologa Tel: 05 09300 emal: cross@des.bo. Scopo della modellazoe black-bo S vole realzzare modello d ssema a parre dalla sola

Dettagli

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014 Modell d Flusso e Applcazo: Adrea Scozzar a.a. 203-204 2 Il modello d Flusso d Costo Mmo: Problem d Flusso A u l V b c P S A ), ( m ) ( ) ( ), ( Problem rcoducbl a problem d Flusso Il problema del trasporto

Dettagli

Ciclo di convezione sulle pareti con intecapedine

Ciclo di convezione sulle pareti con intecapedine Clo d ovezoe sulle paret o teapede Dalla tabella delle odubltà terma s ha per l ara l more k, pertato l mglore solameto o la peggore odubltà terma. Putroppo s geerao orret ovettve, he qud trasmetto l alore

Dettagli

13 Valutazione dei modelli di simulazione

13 Valutazione dei modelli di simulazione 3 Valutazoe de modell d smulazoe I modell d smulazoe o sosttuscoo la coosceza, ma soo puttosto u mezzo per orgazzarla. Quado l modello è utlzzato per aalzzare u sstema attuado smulazo, è mportate capre

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

TEORIA DEI VALORI ESTREMI E APPLICAZIONI AL CALCOLO DEL VALUE AT RISK

TEORIA DEI VALORI ESTREMI E APPLICAZIONI AL CALCOLO DEL VALUE AT RISK UNIVERSITA DI URBINO FACOLTA DI ECONOMIA TEORIA DEI VALORI ESTREMI E APPLICAZIONI AL CALCOLO DEL VALUE AT RISK Giaa Figà-Talamaca Uiversità della Calabria Vale at Risk 1 Il Vale at Risk (Valore a Rischio

Dettagli

Esercitazione 5 del corso di Statistica (parte 1)

Esercitazione 5 del corso di Statistica (parte 1) Eserctazoe 5 del corso d Statstca (parte 1) Dott.ssa Paola Costat 8 Novembre 011 I alcue crcostaze s poe u maggor teresse sullo studo della varabltà tra le sgole utà statstche, puttosto che lo studo della

Dettagli

La valutazione dei credit derivatives. ed una sua applicazione a dati di mercato.

La valutazione dei credit derivatives. ed una sua applicazione a dati di mercato. La valutazoe de credt dervatves ed ua sua applcazoe a dat d mercato. a cura d Alessadro Matta. La valutazoe d credt dervatves..... Ipotes d base.....2 Strumet sgle-ame....2.3 Strumet mult-ame....4.4 Idc

Dettagli

Le medie. Medie. Medie analitiche. Medie di posizione. Marilena Pillati - Elementi di Statistica e Informatica (SVIC) "Le medie (I parte)"

Le medie. Medie. Medie analitiche. Medie di posizione. Marilena Pillati - Elementi di Statistica e Informatica (SVIC) Le medie (I parte) Marlea Pllat - Elemet d Statsta e Iformata (SVIC) "Le mede (I parte)" Le mede Soo msure stethe he osetoo l passaggo da ua pluraltà d formazo (le modaltà e le rspette frequeze) a ua sola modaltà Nella famgla

Dettagli

Obiettivi. Statistica. Variabili casuali. Spazio di probabilità. Introduzione

Obiettivi. Statistica. Variabili casuali. Spazio di probabilità. Introduzione Obettv Statstca Itroduzoe Scopo d quest lucd è d forre cocett base d statstca utl azeda per: la raccolta de dat, la progettazoe degl espermet, l terpretazoe de rsultat. Spazo d probabltà Spazo d probabltà:

Dettagli

Analisi di dati vettoriali. Direzioni e orientazioni

Analisi di dati vettoriali. Direzioni e orientazioni Aals d dat vettoral Drezo e oretazo I tal caso, dat soo msurat term d agol e spesso soo rfert al ord geografco (statstca crcolare) Soo rappresetat su ua crcofereza Dat d drezoe: flusso ua specfca drezoe,

Dettagli

6. LA CONCENTRAZIONE

6. LA CONCENTRAZIONE UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Corso d Laurea Sceze per l'ivestgazoe e la Scurezza 6. LA CONCENTRAZIONE Prof. Maurzo Pertchett Statstca

Dettagli

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek MISURE DI TENDENZA CENTRALE Pscometra 1 - Lezoe Lucd presetat a lezoe AA 000/001 dott. Corrado Caudek 1 Suppoamo d dsporre d u seme d msure e d cercare u solo valore che, meglo d cascu altro, sa grado

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI Uverstà degl Stud d Mlao Bcocca CdS ECOAMM Corso d Metod Statstc per l Ammstrazoe delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI 1. Carta d cotrollo per frazoe d o coform (carta U resposable d produzoe,

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

Voti Diploma Classico Scientifico Tecn. E Comm Altro

Voti Diploma Classico Scientifico Tecn. E Comm Altro 4 Data la seguete dstrbuzoe doppa de vot rportat ad u esame secodo l Dploma posseduto: Vot 8-3-5 6-8 9-30 Dploma Classco 8 4 5 Scetfco 5 7 7 5 Tec E Comm 8 0 0 Altro 3 a) s calcol la meda artmetca de vot

Dettagli

Capitolo 6 Gli indici di variabilità

Capitolo 6 Gli indici di variabilità Captolo 6 Gl dc d varabltà ommaro. Itroduzoe. -. Il campo d varazoe. - 3. La dffereza terquartle. - 4. Gl scostamet med. -. La varaza, lo scarto quadratco medo e la devaza. - 6. Le dffereze mede. - 7.

Dettagli

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3)

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3) Smmetra d ua dstrbuzoe d frequeze Ua dstrbuzoe s dce asmmetrca se o è possble dvduare (aalzzado u stogramma) u asse vertcale che tagl la dstrbuzoe due part specularmete ugual Idc d asmmetra Rferedoc a

Dettagli

Appunti di. Elaborazione dei dati sperimentali

Appunti di. Elaborazione dei dati sperimentali Apput d Elaboraoe de dat spermetal Corso d sca er cors d Laurea Igegera Uverstà d adova sura d ua gradea fsca Ua gradea fsca s rappreseta co uo (o pù) umer segut da ua utà d msura. Il umero che quatfca

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

Sono misure sintetiche che consentono il passaggio da una pluralità di informazioni a una sola modalità Nella famiglia delle medie si distinguono:

Sono misure sintetiche che consentono il passaggio da una pluralità di informazioni a una sola modalità Nella famiglia delle medie si distinguono: Marlea Pllat - Semar d Statsta (SVIC) "Le mede" Le mede Soo msure stethe he osetoo l passaggo da ua pluraltà d formazo a ua sola modaltà Nella famgla delle mede s dstguoo: mede lashe o d poszoe determate

Dettagli

Metodi di misura in corrente alternata monofase

Metodi di misura in corrente alternata monofase Uiversità degli Stdi di alermo Facoltà di gegeria etodi di misra i correte alterata moofase isre el settore elettrico isre i correte alterata, caso moofase isre i correte alterata, caso trifase Esempi:

Dettagli

Caso studio 12. Regressione. Esempio

Caso studio 12. Regressione. Esempio 6/4/7 Caso studo Per studare la curva d domada d u bee che sta per essere trodotto sul mercato, s rlevao dat rguardat l prezzo mposto e l umero d pezz vedut 7 put vedta plota, ell arco d ua settmaa. I

Dettagli

SIMULAZIONE DI SISTEMI CASUALI 1 parte. Variabili casuali e Distribuzioni di variabili casuali. Calcolo delle probabilità

SIMULAZIONE DI SISTEMI CASUALI 1 parte. Variabili casuali e Distribuzioni di variabili casuali. Calcolo delle probabilità SIMULAZIONE DI SISTEMI CASUALI parte Varabl casual e Dstrbuzo d varabl casual Calcolo delle probabltà Defzo Il calcolo delle probabltà tede a redere razoale l comportameto dell uomo d frote all certezza;

Dettagli

Modelli di Schedulazione

Modelli di Schedulazione EW Modell d Schedulazoe Idce Maccha Sgola Tepo d Copletaeto Totale Tepo d Copletaeto Totale Pesato Tepo d Rtardo Totale Maespa co set-up dpedete dalla sequeza Tepo d Copletaeto Totale co vcolo d precedeza

Dettagli

WORKING PAPER SERIES

WORKING PAPER SERIES DEPARTMENT OF ECONOMICS UNIVERSITY OF MILAN - BICOCCA WORKING PAPER SERIES Prce Cap e recpero d prodttvtà: sggerment dalla regolazone del settore Gas Massmo Beccarello No. 11 - March 1998 Dpartmento d

Dettagli

COMUNE DI MIRANO PROVINCIA DI VENEZIA REGOLAMENTO

COMUNE DI MIRANO PROVINCIA DI VENEZIA REGOLAMENTO COMUNE DI MIRANO PROVINCIA DI VENEZIA REGOLAMENTO PER LA COSTITUZIONE E LA RIPARTIZIONE DEL FONDO INTERNO DEL 2,00% DELL IMPORTO POSTO A BASE DI GARA DELLE OPERE E DEI LAVORI E DEL 30% DELLA TARIFFA PROFESSIONALE

Dettagli

COMPLEMENTI ALLE SERIE

COMPLEMENTI ALLE SERIE COMPLEMENTI ALLE SERIE. Serie a termii i sego efiitivamete ostate Per ompletezza rihiamo il riterio el rapporto e ella raie, seza imostrarli... Teorema (Criterio el rapporto). Sia a ua suessioe a termii

Dettagli

PROBLEMI INVERSI NELLA MECCANICA DEL

PROBLEMI INVERSI NELLA MECCANICA DEL UNIVERSITÀ DELLA CALABRIA DOTTORATO DI RICERCA IN MECCANICA COMPUTAZIONALE XX CICLO SETTORE SCIENTIFICO DISCIPLINARE ICAR-8 PROBLEMI INVERSI NELLA MECCANICA DEL DANNEGGIAMENTO Doato Guseppe Dssertazoe

Dettagli

Dott.ssa Marta Di Nicola

Dott.ssa Marta Di Nicola RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quado s cosderao due o pù caratter (varabl) s possoo esamare ache l tpo e l'testà delle relazo che sussstoo tra loro. http://www.bostatstca.uch.tt Nel caso cu per

Dettagli

DIPARTIMENTO DI ECONOMIA

DIPARTIMENTO DI ECONOMIA UNIVERITÀ POLITECNICA DELLE ARCHE DIPARTIENTO DI ECONOIA IL CAP: IL CAO DELL ITALIA GIUEPPE RICCIARDO LAONICA QUADERNO DI RICERCA. 56 arzo 006 Comtato scetfco: Reato Balducc arco Crvell arco Gallegat Alberto

Dettagli

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA The last step of reaso s to ackowledge that there s a fty of thgs that go beyod t. B. Pascal La Statstca ha come scopo la coosceza quattatva de feome collettv.

Dettagli

Sensori Segnali Rumore - Prof. S. Cova - appello 22/06/2011 P1-1

Sensori Segnali Rumore - Prof. S. Cova - appello 22/06/2011 P1-1 ensor egnal Rumore - ro.. Cova - appello /06/011 1-1 ROBLEM 1 Quadro de dat egnale otto: rettangolare a durata T 00 µs; otenza ; lunghezza d onda λ 1 800 nm oppure λ 60 nm. p--n otododo n lo: oeente d

Dettagli

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility Ecooma degl termedar fazar Lors Nadott, Claudo Porzo, Daele Prevat Copyrght 00 The McGraw-Hll Compaes srl Approfodmeto 4.3w La msurazoe del rscho (a cura d Atoo Meles Uverstà Partheope) La volatltà storca,

Dettagli

QUANTIFICAZIONE DELL INCERTEZZA NELLE MISURE CHIMICO - FISICHE

QUANTIFICAZIONE DELL INCERTEZZA NELLE MISURE CHIMICO - FISICHE QUNTIFICZIONE DELL INCERTEZZ NELLE MISURE CHIMICO - FISICHE Reato orromei- Dipartimeto di Chimica Geerale ed Iorgaica, Chimica alitica, Chimica Fisica settembre 006 SOMMRIO Icertezza di a misra Calcolo

Dettagli

Università della Calabria

Università della Calabria Uverstà della Calabra FACOLTA DI INGEGNERIA Corso d Laurea Igegera per l Ambete e l Terrtoro CORSO DI IDROLOGIA Ig. Daela Bod SCHEDA DIDATTICA N 5 ISOIETE E TOPOIETI A.A. 20-2 Calcolo della precptazoe

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO Laboratoro d Fsca I: laurea Ottca e Optoetra Msura d ua ressteza co l etodo OLTMPEOMETICO descrzoe s sura ua ressteza utlzzado u voltetro e u llaperoetro sfruttado la relazoe : Per coduttor ohc è dpedete

Dettagli

Esercizi di Statistica per gli studenti di Scienze Politiche, Università di Firenze

Esercizi di Statistica per gli studenti di Scienze Politiche, Università di Firenze Esercz d Statstca per gl studet d Sceze Poltche, Uverstà d Freze Esercz svolt da ua selezoe d compt degl Esam scrtt d Statstca del 999 e del 000 VERSIONE PROVVISORIA APRILE 00 A cura d L. Matroe F.Meall

Dettagli

Costi di Entrata e Struttura del Mercato. Economia Industriale Università Bicocca A.A. 2012-2013 Christian Garavaglia

Costi di Entrata e Struttura del Mercato. Economia Industriale Università Bicocca A.A. 2012-2013 Christian Garavaglia Cost d Etrt e truttur del Merto Eoom Idustrle Uverstà Bo A.A. 2012-2013 Chrst Grvgl Cotesto e oett For bbmo lzzto l fuzometo d u merto olgopolsto osderdo ome dto l umero d mprese opert el merto. D os dpede

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORSO DI LAUREA I ECOOMIA AZIEDALE Metod Statstc per le decso d mpresa (ote ddattche) Bruo Chadotto 4 STATISTICA DESCRITTIVA I questo captolo s rtrovao espost, ua prospettva emprca, molt de cocett trodott

Dettagli

Manuale di Estimo Vittorio Gallerani, Giacomo Zanni, Davide Viaggi Copyright 2004 The McGraw-Hill Companies srl

Manuale di Estimo Vittorio Gallerani, Giacomo Zanni, Davide Viaggi Copyright 2004 The McGraw-Hill Companies srl Mauale d Estmo ttoro Gallera, Gacomo Za, Davde agg Copyrght 24 The McGraw-Hll Compaes srl Caso 5 Stma d u agrumeto d 3 ha ubcato ella paa d Cataa. 1. Cofermeto dell carco e uesto d stma... 2 2. Descrzoe

Dettagli

0.1 CARATTERISTICHE ESSENZIALI DEL RUMORE

0.1 CARATTERISTICHE ESSENZIALI DEL RUMORE UMOE EETTO Og segale elettrco presete u crcuto oltre a quello desderato s può dere rumore. Ua mportate eccezoe a questa dezoe soo prodott d dstorsoe prodott u crcuto o leare per cu la ostra attezoe è lmtata

Dettagli

Il disegno campionario per l indagine sul turismo delle isole Eolie. O. Giambalvo A.M. Milito

Il disegno campionario per l indagine sul turismo delle isole Eolie. O. Giambalvo A.M. Milito Il dsego campoaro per l dage sul tursmo delle sole Eole O. Gambalvo A.M. Mlto Struttura della presetazoe Obettv L dage campoara Le potes d lavoro L dage plota Il dsego campoaro Stratega campoara Alcu Rsultat

Dettagli

TRATTAMENTO STATISTICO DEI DATI ANALITICI

TRATTAMENTO STATISTICO DEI DATI ANALITICI TRATTAMENTO STATISTICO DEI DATI ANALITICI Nell aals chmca u aalsta effettua u umero lmtato d prove e cosdera la meda de rsultat otteut per poter arrvare a determare o l valore VERO d ua determata gradezza

Dettagli