conoscerà le metodologie di base per la costruzione di un modello matematico di un insieme di fenomeni [

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "conoscerà le metodologie di base per la costruzione di un modello matematico di un insieme di fenomeni ["

Transcript

1 Il testo che segue raccoglie le indicazioni nazionali per i vari licei... In grassetto è riportato ciò che è valido solo per il liceo scientifico mentre tra parentesi quadre ed in corsivo sono riportate le variazioni presenti nel testo del liceo classico. In giallo sono evidenziate talune espressioni che hanno destato qualche perplessità interpretativa! MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso del liceo scientifico lo studente conoscerà i concetti e i metodi elementari della matematica, sia interni alla disciplina in sé considerata, sia rilevanti per la descrizione e la previsione di fenomeni, in particolare del mondo fisico. Egli saprà inquadrare le varie teorie matematiche studiate nel contesto storico entro cui si sono sviluppate e ne comprenderà il significato concettuale. Lo studente avrà acquisito una visione storico-critica dei rapporti tra le tematiche principali del pensiero matematico e il contesto filosofico, scientifico e tecnologico. In particolare, avrà acquisito il senso e la portata dei tre principali momenti che caratterizzano la formazione del pensiero matematico: la matematica nella civiltà greca, il calcolo infinitesimale che nasce con la rivoluzione scientifica del Seicento e che porta alla matematizzazione del mondo fisico, la svolta che prende le mosse dal razionalismo illuministico e che conduce alla formazione della matematica moderna e a un nuovo processo di matematizzazione che investe nuovi campi (tecnologia, scienze sociali, economiche, biologiche) e che ha cambiato il volto della conoscenza scientifica. Di qui i gruppi di concetti e metodi che saranno obiettivo dello studio: 1) gli elementi della geometria euclidea del piano e dello spazio entro cui prendono forma i procedimenti caratteristici del pensiero matematico (definizioni, dimostrazioni, generalizzazioni, assiomatizzazioni); 2) gli elementi del calcolo algebrico, gli elementi della geometria analitica cartesiana, una buona conoscenza delle funzioni elementari dell analisi, le nozioni elementari del calcolo differenziale e integrale; [le funzioni elementari dell analisi e le prime nozioni del calcolo differenziale e integrale]; 3) gli strumenti matematici di base per lo studio dei fenomeni fisici, con particolare riguardo al calcolo vettoriale e alle equazioni differenziali, in particolare l equazione di Newton e le sue applicazioni elementari [un introduzione ai concetti matematici necessari per lo studio dei fenomeni fisici, con particolare riguardo al calcolo vettoriale e alle nozione di derivata]; 4) la conoscenza elementare di alcuni sviluppi della matematica moderna, in particolare degli elementi del calcolo delle probabilità e dell analisi statistica [un introduzione ai concetti di base del calcolo delle probabilità e dell analisi statistica]; 5) il concetto di modello matematico e un idea chiara della differenza tra la visione della matematizzazione caratteristica della fisica classica (corrispondenza univoca tra matematica e natura) e quello della modellistica (possibilità di rappresentare la stessa classe di fenomeni mediante differenti approcci); 6) costruzione e analisi di semplici modelli matematici di classi di fenomeni, anche utilizzando strumenti informatici per la descrizione e il calcolo; 7) una chiara visione delle caratteristiche dell approccio assiomatico nella sua forma moderna e delle sue specificità rispetto all approccio assiomatico della geometria euclidea classica; 8) una conoscenza del principio di induzione matematica e la capacità di saperlo applicare, avendo inoltre un idea chiara del significato filosofico di questo principio ( invarianza delle leggi del pensiero ), della sua diversità con l induzione fisica ( invarianza delle leggi dei fenomeni ) e di come esso costituisca un esempio elementare del carattere non strettamente deduttivo del ragionamento matematico. Questa articolazione di temi e di approcci costituirà la base per istituire collegamenti e confronti concettuali e di metodo con altre discipline come la fisica, le scienze naturali e sociali,

2 la filosofia e la storia. Al termine del percorso didattico lo studente avrà approfondito i procedimenti caratteristici del pensiero matematico (definizioni, dimostrazioni, generalizzazioni, formalizzazioni), conoscerà le metodologie di base per la costruzione di un modello matematico di un insieme di fenomeni [conoscerà le metodologie elementari per la costruzione di modelli matematici in casi molto semplici ma istruttivi, e saprà utilizzare strumenti informatici di rappresentazione geometrica e di calcolo], saprà applicare quanto appreso per la soluzione di problemi, anche utilizzando strumenti informatici di rappresentazione geometrica e di calcolo. Tali capacità operative saranno particolarmente accentuate nel percorso del liceo scientifico, con particolare riguardo per quel che riguarda la conoscenza del calcolo infinitesimale e dei metodi probabilistici di base [Nel liceo classico un attenzione particolare sara posta alle relazioni tra pensiero matematico e pensiero filosofico; nel liceo linguistico, al ruolo dell espressione linguistica nel ragionamento matematico; nel liceo musicale e coreutico, al ruolo delle strutture matematiche nel linguaggio musicale; nel liceo delle scienze umane, a una visione critica del ruolo della modellizzazione matematica nell analisi dei processi sociali]. Gli strumenti informatici oggi disponibili offrono contesti idonei per rappresentare e manipolare oggetti matematici. L'insegnamento della matematica offre numerose occasioni per acquisire familiarità con tali strumenti e per comprenderne il valore metodologico. Il percorso, quando ciò si rivelerà opportuno, favorirà l uso di questi strumenti, anche in vista del loro uso per il trattamento dei dati nelle altre discipline scientifiche. L uso degli strumenti informatici è una risorsa importante che sarà introdotta in modo critico, senza creare l illusione che essa sia un mezzo automatico di risoluzione di problemi e senza compromettere la necessaria acquisizione di capacità di calcolo mentale. L ampio spettro dei contenuti che saranno affrontati dallo studente richiederà che l insegnante sia consapevole della necessità di un buon impiego del tempo disponibile. Ferma restando l importanza dell acquisizione delle tecniche, verranno evitate dispersioni in tecnicismi ripetitivi o casistiche sterili che non contribuiscono in modo significativo alla comprensione dei problemi. L'approfondimento degli aspetti tecnici, sebbene maggiore nel liceo scientifico che in altri licei, non perderà mai di vista l obiettivo della comprensione in profondità degli aspetti concettuali della disciplina [L'approfondimento degli aspetti tecnici, in questi licei, sarà strettamente funzionale alla comprensione in profondità degli aspetti concettuali della disciplina]. L indicazione principale è: pochi concetti e metodi fondamentali, acquisiti in profondità. OBIETTIVI SPECIFICI DI APPRENDIMENTO PRIMO BIENNIO Aritmetica e algebra Il primo biennio sarà dedicato al passaggio dal calcolo aritmetico a quello algebrico. Lo studente svilupperà le sue capacità nel calcolo (mentale, con carta e penna, mediante strumenti) con i numeri interi, con i numeri razionali sia nella scrittura come frazione che nella rappresentazione decimale. In questo contesto saranno studiate le proprieta delle operazioni. Lo studio dell algoritmo euclideo per la determinazione del MCD permetterà di approfondire la conoscenza della struttura dei numeri interi e di un esempio importante di procedimento algoritmico. Lo studente acquisirà una conoscenza intuitiva dei numeri reali, con particolare riferimento alla loro rappresentazione geometrica su una retta. La dimostrazione dell irrazionalita di e di altri numeri sarà un importante occasione di approfondimento concettuale. Lo studio dei numeri irrazionali e delle espressioni in cui essi compaiono fornirà un esempio significativo di applicazione del calcolo algebrico e un occasione per affrontare il tema dell approssimazione. L acquisizione dei metodi di calcolo dei radicali non sarà accompagnata da eccessivi tecnicismi manipolatori. Lo studente apprenderà gli elementi di base del calcolo letterale, le proprieta dei polinomi e le

3 operazioni tra di essi [le piu semplici operazioni tra di essi]. Saprà fattorizzare semplici polinomi, saprà eseguire semplici casi di divisione con resto fra due polinomi, e ne approfondirà l analogia con la divisione fra numeri interi. Anche in questo l acquisizione della capacità calcolistica non comporterà tecnicismi eccessivi. Lo studente acquisirà la capacita di eseguire calcoli con le espressioni letterali sia per rappresentare un problema (mediante un equazione, disequazioni o sistemi) e risolverlo, sia per dimostrare risultati generali, in particolare in aritmetica. Studierà i concetti di vettore, di dipendenza e indipendenza lineare, di prodotto scalare e vettoriale nel piano e nello spazio nonché gli elementi del calcolo matriciale. Approfondirà inoltre la comprensione del ruolo fondamentale che i concetti dell algebra vettoriale e matriciale hanno nella fisica. Geometria Il primo biennio avrà come obiettivo la conoscenza dei fondamenti della geometria euclidea del piano. Verrà chiarita l importanza e il significato dei concetti di postulato, assioma, definizione, teorema, dimostrazione, con particolare riguardo al fatto che, a partire dagli Elementi di Euclide, essi hanno permeato lo sviluppo della matematica occidentale. In coerenza con il modo con cui si è presentato storicamente, l approccio euclideo non sarà ridotto a una formulazione puramente assiomatica. Al teorema di Pitagora sarà dedicata una particolare attenzione affinchè ne siano compresi sia gli aspetti geometrici che le implicazioni nella teoria dei numeri (introduzione dei numeri irrazionali) insistendo soprattutto sugli aspetti concettuali. Lo studente acquisirà la conoscenza delle principali trasformazioni geometriche (traslazioni, rotazioni, simmetrie, similitudini con particolare riguardo al teorema di Talete) e sarà in grado di riconoscere le principali proprietà invarianti. Inoltre studierà le proprietà fondamentali della circonferenza. La realizzazione di costruzioni geometriche elementari sarà effettuata sia mediante strumenti tradizionali (in particolare la riga e compasso, sottolineando il significato storico di questa metodologia nella geometria euclidea), sia mediante programmi informatici di geometria. Lo studente apprenderà a far uso del metodo delle coordinate cartesiane, in una prima fase limitandosi alla rappresentazione di punti, rette e fasci di rette nel piano e di proprietà come il parallelismo e la perpendicolarità. Lo studio delle funzioni quadratiche si accompagnerà alla rappresentazione geometrica delle coniche nel piano cartesiano. L intervento dell algebra nella rappresentazione degli oggetti geometrici non sarà disgiunto dall approfondimento della portata concettuale e tecnica di questa branca della matematica. Saranno inoltre studiate le funzioni circolari e le loro proprietà e relazioni elementari, i teoremi che permettono la risoluzione dei triangoli e il loro uso nell ambito di altre discipline, in particolare nella fisica. Relazioni e funzioni Obiettivo di studio sarà il linguaggio degli insiemi e delle funzioni (dominio, composizione, inversa, ecc.), anche per costruire semplici rappresentazioni di fenomeni e come primo passo all introduzione del concetto di modello matematico. In particolare, lo studente apprenderà a descrivere un problema con un equazione, una disequazione o un sistema di equazioni o disequazioni; a ottenere informazioni e ricavare le soluzioni di un modello matematico di fenomeni, anche in contesti di ricerca operativa o di teoria delle decisioni. Lo studio delle funzioni del tipo f(x) = ax + b, f(x) = ax 2 + bx + c e la rappresentazione delle rette e delle parabole nel piano cartesiano consentiranno di acquisire i concetti di soluzione delle equazioni di primo e secondo grado in una incognita, delle disequazioni associate e dei sistemi di equazioni lineari in due incognite, nonche le tecniche per la loro risoluzione grafica e algebrica. Lo studente studierà le funzioni f(x) = x, f(x) = a/x, le funzioni lineari a tratti, le funzioni circolari sia in un contesto strettamente matematico sia in funzione della rappresentazione e

4 soluzione di problemi applicativi [Lo studente studiera le funzioni del tipo f(x) = ax + b, f(x) = x, f(x) = a/x, f(x) = x 2 sia in termini strettamente matematici sia in funzione della descrizione e soluzione di problemi applicativi. Saprà studiare le soluzioni delle equazioni di primo grado in una incognita, delle disequazioni associate e dei sistemi di equazioni lineari in due incognite, e conoscerà le tecniche necessarie alla loro risoluzione grafica e algebrica.]. Apprenderà gli elementi della teoria della proporzionalità diretta e inversa. Il contemporaneo studio della fisica offrirà esempi di funzioni che saranno oggetto di una specifica trattazione matematica, e i risultati di questa trattazione serviranno ad approfondire la comprensione dei fenomeni fisici e delle relative teorie. Lo studente sarà in grado di passare agevolmente da un registro di rappresentazione a un altro (numerico, grafico, funzionale), anche utilizzando strumenti informatici per la rappresentazione dei dati. Dati e previsioni Lo studente sarà in grado di rappresentare e analizzare in diversi modi (anche utilizzando strumenti informatici) un insieme di dati, scegliendo le rappresentazioni piu idonee. Saprà distinguere tra caratteri qualitativi, quantitativi discreti e quantitativi continui, operare con distribuzioni di frequenze e rappresentarle. Saranno studiate le definizioni e le proprieta dei valori medi e delle misure di variabilità, nonchè l uso strumenti di calcolo (calcolatrice, foglio di calcolo) per analizzare raccolte di dati e serie statistiche. Lo studio sarà svolto il piu possibile in collegamento con le altre discipline anche in ambiti entro cui i dati siano raccolti direttamente dagli studenti. Lo studente sarà in grado di ricavare semplici inferenze dai diagrammi statistici. Egli [Lo studente] apprenderà la nozione di probabilità, con esempi tratti da contesti classici e con l introduzione di nozioni di statistica. Sarà approfondito in modo rigoroso il concetto di modello matematico, distinguendone la specificità concettuale e metodica rispetto all approccio della fisica classica. Elementi di informatica Lo studente diverrà familiare con gli strumenti informatici, al fine precipuo di rappresentare e manipolare oggetti matematici e studierà le modalità di rappresentazione dei dati elementari testuali e multimediali. Un tema fondamentale di studio sarà il concetto di algoritmo e l elaborazione di strategie di risoluzioni algoritmiche nel caso di problemi semplici e di facile modellizzazione; e, inoltre, il concetto di funzione calcolabile e di calcolabilità e alcuni semplici esempi relativi. SECONDO BIENNIO Aritmetica e algebra [Lo studente apprenderà a fattorizzare semplici polinomi, saprà eseguire semplici casi di divisione con resto fra due polinomi, e ne approfondirà l analogia con la divisione fra numeri interi. Apprenderà gli elementi dell algebra dei vettori (somma, moltiplicazione per scalare e prodotto scalare), e ne comprenderà il ruolo fondamentale nella fisica]. Lo studio della circonferenza e del cerchio, del numero π, e di contesti in cui compaiono crescite esponenziali con il numero e, permetteranno di approfondire la conoscenza dei numeri reali, con riguardo alla tematica dei numeri trascendenti. In questa occasione lo studente studierà la formalizzazione dei numeri reali anche come introduzione alla problematica dell infinito matematico (e alle sue connessioni con il pensiero filosofico) [Attraverso una prima conoscenza del problema della formalizzazione dei numeri reali lo studente si introdurra alla problematica dell infinito matematico e delle sue connessioni con il pensiero filosofico ]. Sarà anche affrontato il tema del calcolo approssimato, sia dal punto di vista teorico sia mediante l uso di strumenti di calcolo [Inoltre acquisirà i primi elementi del calcolo approssimato, sia dal punto di vista teorico sia mediante l uso di strumenti di calcolo]. Saranno studiate la definizione e le proprietà di calcolo dei numeri complessi, nella forma

5 algebrica, geometrica e trigonometrica. Geometria Le sezioni coniche saranno studiate sia da un punto di vista geometrico sintetico che analitico. Inoltre, lo studente approfondirà la comprensione della specificità dei due approcci (sintetico e analitico) allo studio della geometria. Studierà le proprieta della circonferenza e del cerchio e il problema della determinazione dell'area del cerchio, [.Apprendera le definizioni e le proprieta e relazioni elementari delle funzioni circolari, i teoremi che permettono la risoluzione dei triangoli e il loro uso nell ambito di altre discipline, in particolare nella fisica.] nonchè la nozione di luogo geometrico, con alcuni esempi significativi. [Studierà alcuni esempi significativi di luogo geometrico.] Lo studio della geometria proseguirà con l'estensione [Affrontera l estensione ] allo spazio di alcuni dei temi della geometria piana, anche al fine di sviluppare l intuizione geometrica. In particolare, saranno studiate [studierà]le posizioni reciproche di rette e piani nello spazio, il parallelismo e la perpendicolarita, nonchè le proprieta dei principali solidi geometrici (in particolare dei poliedri e dei solidi di rotazione). Relazioni e funzioni Un tema di studio sarà il problema del numero delle soluzioni delle equazioni polinomiali [Lo studente apprenderà lo studio delle funzioni quadratiche; a risolvere equazioni e disequazioni di secondo grado e rappresentare e risolvere problemi utilizzando equazioni di secondo grado ]. Lo studente acquisirà la conoscenza di semplici esempi di successioni numeriche, anche definite per ricorrenza, e sapra trattare situazioni in cui si presentano progressioni aritmetiche e geometriche. Approfondirà lo studio delle funzioni elementari dell analisi e, in particolare, delle funzioni esponenziale e logaritmo [Studierà le funzioni elementari dell analisi e dei loro grafici, in particolare le funzioni polinomiali, razionali, circolari, esponenziale e logaritmo ]. Sarà in grado di costruire [Apprenderà a costruire ] semplici modelli di crescita o decrescita esponenziale, nonchè di andamenti periodici, anche in rapporto con lo studio delle altre discipline; tutto ciò sia in un contesto discreto sia continuo. [Non sarà richiesta l'acquisizione di particolare abilità nella risoluzione di equazioni e disequazioni in cui compaiono queste funzioni, abilità che sarà limitata a casi semplici e significativi]. Infine, lo studente apprenderà ad analizzare sia graficamente che analiticamente le principali funzioni e saprà operare su funzioni composte e inverse. Un tema importante di studio sarà il concetto di velocità di variazione di un processo rappresentato mediante una funzione. Dati e previsioni Lo studente, in ambiti via via piu complessi, il cui studio sarà sviluppato il piu possibile in collegamento con le altre discipline e in cui i dati potranno essere raccolti direttamente dagli studenti, apprenderà a [ saprà] far uso delle distribuzioni doppie condizionate e marginali, dei concetti di deviazione standard, dipendenza, correlazione e regressione, e di campione. Studierà la probabilita condizionata e composta, la formula di Bayes e le sue applicazioni, nonchè gli elementi di base del calcolo combinatorio. In relazione con le nuove conoscenze acquisite approfondirà il concetto di modello matematico. QUINTO ANNO Nell anno finale lo studente approfondirà la comprensione del metodo assiomatico e la sua utilità concettuale e metodologica anche dal punto di vista della modellizzazione matematica. Gli esempi verranno tratti dal contesto dell aritmetica, della geometria euclidea o della probabilità ma è lasciata alla scelta dell insegnante la decisione di quale settore disciplinare privilegiare allo scopo. Geometria

6 L'introduzione delle coordinate cartesiane nello spazio permetterà allo studente di studiare dal punto di vista analitico rette, piani e sfere [Lo studente apprenderà i primi elementi di geometria analitica dello spazio e la rappresentazione analitica di rette, piani e sfere].. Relazioni e funzioni Lo studente proseguirà lo studio delle funzioni [Lo studente approfondirà lo studio delle funzioni]fondamentali dell analisi anche attraverso esempi tratti dalla fisica o da altre discipline. Acquisirà il concetto di limite di una successione e di una funzione e apprenderà a calcolare i limiti in casi semplici. Lo studente acquisirà i principali concetti del calcolo infinitesimale in particolare la continuità, la derivabilità e l integrabilità anche in relazione con le problematiche in cui sono nati (velocità istantanea in meccanica, tangente di una curva, calcolo di aree e volumi). Non sarà richiesto un particolare addestramento alle tecniche del calcolo, che si limiterà alla capacità di derivare le funzioni già note [già studiate], semplici prodotti, quozienti e composizioni di funzioni, le funzioni razionali e alla capacità di integrare funzioni polinomiali intere e altre funzioni elementari,nonchè a determinare aree e volumi in casi semplici. Altro importante tema di studio sarà il concetto di equazione differenziale, cosa si intenda con le sue soluzioni e le loro principali proprietà, nonchè alcuni esempi importanti e significativi di equazioni differenziali, con particolare riguardo per l equazione della dinamica di Newton. Si tratterà soprattutto di comprendere [L obiettivo principale sara soprattutto quello di comprendere] il ruolo del calcolo infinitesimale in quanto strumento concettuale fondamentale nella descrizione e nella modellizzazione di fenomeni fisici o di altra natura. Inoltre, lo studente acquisirà familiarità con l idea generale di ottimizzazione e con le sue applicazioni in numerosi ambiti [In particolare, si tratterà di approfondire l idea generale di ottimizzazione e le sue applicazioni in numerosi ambiti]. Dati e previsioni Lo studente apprenderà le caratteristiche di alcune distribuzioni discrete e continue di probabilità (come la distribuzione binomiale, la distribuzione normale, la distribuzione di Poisson) di probabilità (in particolare, la distribuzione binomiale e qualche esempio di distribuzione continua). In relazione con le nuove conoscenze acquisite, anche nell ambito delle relazioni della matematica con altre discipline, lo studente approfondirà [avrà ulteriormente approfondito] il concetto di modello matematico e svilupperà [sviluppato] la capacita di costruirne e analizzarne esempi.

MATEMATICA LINEE GENERALI E COMPETENZE

MATEMATICA LINEE GENERALI E COMPETENZE MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso dei licei classico, linguistico, musicale coreutico e della scienze umane lo studente conoscerà i concetti e i metodi elementari della matematica,

Dettagli

MATEMATICA LINEE GENERALI E COMPETENZE

MATEMATICA LINEE GENERALI E COMPETENZE MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso del liceo scientifico lo studente conoscerä i concetti e i metodi elementari della matematica, sia interni alla disciplina in så considerata,

Dettagli

LICEO CLASSICO, LICEO DELLE SCIENZE UMANE, LICEO MUSICALE E COREUTICO, LICEO LINGUISTICO MATEMATICA

LICEO CLASSICO, LICEO DELLE SCIENZE UMANE, LICEO MUSICALE E COREUTICO, LICEO LINGUISTICO MATEMATICA LICEO CLASSICO, LICEO DELLE SCIENZE UMANE, LICEO MUSICALE E COREUTICO, LICEO LINGUISTICO MATEMATICA PROFILO GENERALE E COMPETENZE Al termine del percorso liceale lo studente dovrà padroneggiare i principali

Dettagli

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA LICEO SCIENTIFICO MATEMATICA

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA LICEO SCIENTIFICO MATEMATICA LICEO SCIENTIFICO MATEMATICA PROFILO GENERALE E COMPETENZE Al termine del percorso liceale lo studente dovrà padroneggiare i principali concetti e metodi di base della matematica, sia aventi valore intrinseco

Dettagli

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA PROFILO GENERALE E COMPETENZE Al termine del percorso liceale lo studente dovrà padroneggiare i principali concetti e metodi di base della matematica,

Dettagli

LINEE GENERALI E COMPETENZE

LINEE GENERALI E COMPETENZE MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso del liceo scientifico lo studente conoscerà i concetti e i metodi elementari della matematica, sia interni alla disciplina in sé considerata,

Dettagli

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica Liceo Linguistico I.F.R.S. Marcelline Curriculum di Matematica Introduzione La matematica nel nostro Liceo Linguistico ha come obiettivo quello di far acquisire allo studente saperi e competenze che lo

Dettagli

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA Anno Scolastico 2014/15 LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA : MATEMATICA PRIMO BIENNIO L asse matematico ha l obiettivo di far acquisire allo studente saperi e competenze

Dettagli

DIPARTIMENTO DI MATEMATICA Liceo scientifico e liceo scientifico delle scienze applicate

DIPARTIMENTO DI MATEMATICA Liceo scientifico e liceo scientifico delle scienze applicate 1. Profilo generale DIPARTIMENTO DI MATEMATICA Liceo scientifico e liceo scientifico delle scienze applicate PRIMO BIENNIO L insegnamento di matematica nel primo biennio ha come finalità l acquisizione

Dettagli

DIPARTIMENTO DI MATEMATICA Liceo musicale

DIPARTIMENTO DI MATEMATICA Liceo musicale DIPARTIMENTO DI MATEMATICA Liceo musicale PRIMO BIENNIO 1. Profilo generale L insegnamento di matematica nel primo biennio ha come finalità l acquisizione dei concetti e dei metodi elementari della disciplina

Dettagli

ISTITUTO MAGISTRALE STATALE «G.B. VICO»

ISTITUTO MAGISTRALE STATALE «G.B. VICO» ISTITUTO MAGISTRALE STATALE «G.B. VICO» LICEO LINGUISTICO - LICEO SCIENZE UMANE - LICEO SCIENZE UMANE OP. ECONOMICO SOCIALE Dipartimento di matematica e fisica - scienze - scienze motorie Programmazione

Dettagli

MATEMATICA PRIMO BIENNIO LICEO DELLE SCIENZE UMANE

MATEMATICA PRIMO BIENNIO LICEO DELLE SCIENZE UMANE MATEMATICA PRIMO BIENNIO LICEO DELLE SCIENZE UMANE Profilo generale e competenze Al termine del percorso liceale lo studente dovrà padroneggiare i principali concetti e metodi di base della matematica,

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

LICEO STATALE G. COMI LICEO DELLE SCIENZE APPLICATE MATEMATICA MATEMATICA

LICEO STATALE G. COMI LICEO DELLE SCIENZE APPLICATE MATEMATICA MATEMATICA LICEO STATALE G. COMI LICEO DELLE SCIENZE APPLICATE MATEMATICA MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso del liceo scientifico lo studente conoscerà i concetti e i metodi elementari

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

Gruppo Liceo opzione Scienze Applicate

Gruppo Liceo opzione Scienze Applicate Gruppo Liceo opzione Scienze Applicate Giovanni Brancaccio, Manuela Cappello, Diego Catto Ronchino, Rosella Pasquali, Gianpietro Rausa, Giuseppe Zampieri, Laura Zucchi Analisi delle indicazioni di indirizzo

Dettagli

Competenze. -Saper semplificare le frazioni algebriche -Saper eseguire le operazioni con le frazioni algebriche

Competenze. -Saper semplificare le frazioni algebriche -Saper eseguire le operazioni con le frazioni algebriche Disciplina MATEMATICA Secondo biennio e anno conclusivo Liceo Economico sociale Classe terza Finalità Conoscenze Obiettivi minimi Finalità della matematica nel corso del secondo biennio è di proseguire

Dettagli

Ministero della Pubblica Istruzione Ufficio Scolastico Regionale per il Lazio

Ministero della Pubblica Istruzione Ufficio Scolastico Regionale per il Lazio Ministero della Pubblica Istruzione Ufficio Scolastico Regionale per il Lazio LICEO SCIENTIFICO STATALE GIUSEPPE PEANO 00142 Roma - Via Francesco Morandini, 38 - XIX Distretto DIPARTIMENTO di MATEMATICA,

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

per i seguenti Licei: - SCIENTIFICO - TECNOLOGICO OSA di Matematica

per i seguenti Licei: - SCIENTIFICO - TECNOLOGICO OSA di Matematica per i seguenti Licei: - SCIENTIFICO - TECNOLOGICO OSA di Matematica PRIMO BIENNIO Nucleo tematico di contenuto: Numeri e algoritmi. Gli insiemi dei numeri naturali, interi, razionali: rappresentazione,

Dettagli

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane) 1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche

Dettagli

CLASSE PRIMA LICEO LINGUISTICO

CLASSE PRIMA LICEO LINGUISTICO www.scientificoatripalda.gov.it PROGRAMMAZIONE EDUCATIVO DIDATTICA DI MATEMATICA CLASSE PRIMA LICEO LINGUISTICO ANNO SCOLASTICO 2015/2016 PARTE PRIMA PREMESSA La riforma del secondo ciclo d istruzione

Dettagli

La Matematica nella Scuola secondaria di II grado: Indicazioni nazionali/linee guida

La Matematica nella Scuola secondaria di II grado: Indicazioni nazionali/linee guida Università degli Studi di Ferrara TFA A049-A047-A048 - a.a. 2014-2015 Laboratorio pedagogico-didattico di matematica 10 febbraio 2015 La Matematica nella Scuola secondaria di II grado: Indicazioni nazionali/linee

Dettagli

LICEO SCIENTIFICO STATALE G. D. CASSINI

LICEO SCIENTIFICO STATALE G. D. CASSINI PROGRAMMAZIONE DI MATEMATICA CLASSI PRIME NUCLEI TEMATICI E METODOLOGIA. Nucleo 1 Nucleo 2 Nucleo 3 Nucleo 4 Nucleo 5 Ambiente di lavoro (in generale) e linguaggio della matematica Ambiente e linguaggio

Dettagli

<IN>formazione Matematica

<IN>formazione Matematica formazione Matematica materiale e riflessioni sulle Indicazioni nazionali per i nuovi Licei e sulle Linee guida per i nuovi Tecnici e i nuovi Professionali formazione Matematica materiale e riflessioni

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

PIANO DI LAVORO PERSONALE

PIANO DI LAVORO PERSONALE ISTITUTO STATALE di ISTRUZIONE SUPERIORE DI SAN DANIELE DEL FRIULI VINCENZO MANZINI CORSI DI STUDIO: Amministrazione, Finanza e Marketing/IGEA Costruzioni, Ambiente e Territorio/Geometri Liceo Linguistico/Linguistico

Dettagli

ASSE MATEMATICO. Competenze Abilità Conoscenze

ASSE MATEMATICO. Competenze Abilità Conoscenze Competenze di base a conclusione del I Biennio Confrontare ed analizzare figure geometriche del piano e dello spazio individuando invarianti e relazioni. Analizzare, correlare e rappresentare dati. Valutare

Dettagli

PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO

PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO CLASSE IC Classico ANNO SCOLASTICO 2012-2013 PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO Gli allievi, in generale, si dedicano allo studio della matematica e della fisica con diligenza

Dettagli

PIANO DI LAVORO ANNUALE DI MATEMATICA. Prof. Angelo Bozza

PIANO DI LAVORO ANNUALE DI MATEMATICA. Prof. Angelo Bozza LICEO SCIENTIFICO STATALE A. GRAMSCI - IVREA ANNO SCOLASTICO 2013-2014 CLASSE 1^F - S.A. PIANO DI LAVORO ANNUALE DI MATEMATICA Prof. Angelo Bozza FINALITA SPECIFICHE DELLA DISCIPLINA E DIDATTICI Le finalità

Dettagli

PROGRAMMAZIONE ANNUALE

PROGRAMMAZIONE ANNUALE Ministero dell Istruzione, dell Università e della Ricerca I.I.S. CATERINA CANIANA Via Polaresco 19 24129 Bergamo Tel:035 250547 035 253492 Fax:035 4328401 http://www.istitutocaniana.it email: canianaipssc@istitutocaniana.it

Dettagli

MINISTERO DELLA PUBBLICA ISTRUZIONE UFFICIO SCOLASTICO REGIONALE PER IL LAZIO. Programmazione Di Matematica e Complementi di Matematica

MINISTERO DELLA PUBBLICA ISTRUZIONE UFFICIO SCOLASTICO REGIONALE PER IL LAZIO. Programmazione Di Matematica e Complementi di Matematica MINISTERO DELLA PUBBLICA ISTRUZIONE UFFICIO SCOLASTICO REGIONALE PER IL LAZIO ISTITUTO TECNICO INDUSTRIALE LICEO SCIENTIFICO SCIENZE APPLICATE B. PASCAL Programmazione Di Matematica e Complementi di Matematica

Dettagli

Anno Scolastico 2014-2015. INDIRIZZO: Manutenzione e assistenza tecnica DISCIPLINA: MATEMATICA. CLASSI: Terza Quarta Quinta

Anno Scolastico 2014-2015. INDIRIZZO: Manutenzione e assistenza tecnica DISCIPLINA: MATEMATICA. CLASSI: Terza Quarta Quinta ISTITUTO PROFESSIONALE PER L INDUSTRIA E L ARTIGIANATO E. BERNARDI PADOVA Anno Scolastico 2014-2015 INDIRIZZO: Manutenzione e assistenza tecnica DISCIPLINA: MATEMATICA CLASSI: Terza Quarta Quinta Anno

Dettagli

PROGRAMMAZIONE di MATEMATICA CLASSE PRIMA

PROGRAMMAZIONE di MATEMATICA CLASSE PRIMA PROGRAMMAZIONE di MATEMATICA 1.NUMERI CLASSE PRIMA Comprende il significato Comprendere il significato Insiemi numerici NQZ Utilizzare le tecniche e le procedure del calcolo aritmetico e algebrico rappresentandole

Dettagli

PROGRAMMAZIONE DIDATTICA DISCIPLINARE. Indirizzo: ITC. Anno scolastico Materia Classi 2012 2013 MATEMATICA Terze

PROGRAMMAZIONE DIDATTICA DISCIPLINARE. Indirizzo: ITC. Anno scolastico Materia Classi 2012 2013 MATEMATICA Terze PROGRAMMAZIONE DIDATTICA DISCIPLINARE Indirizzo: ITC Anno scolastico Materia Classi 22 23 MATEMATICA Terze. Competenze al termine del percorso di studi Padroneggiare il linguaggio formale e i procedimenti

Dettagli

Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado

Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado Mete e coerenze formative Dalla scuola dell infanzia al biennio della scuola secondaria di II grado Area disciplinare: Area Matematica Finalità Educativa Acquisire gli alfabeti di base della cultura Disciplina

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia

Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia L'educazione matematica ha il compito di avviare l'alunno verso una maggiore consapevolezza e padronanza del pensiero

Dettagli

CLASSI PRIME Scienze Applicate 5 ORE

CLASSI PRIME Scienze Applicate 5 ORE CLASSI PRIME Scienze Applicate 5 ORE Settembre Ottobre Somministrazione di test di ingresso. Novembre dicembre Insiemi numerici Operazioni negli insiemi N, Q Operazioni negli insiemi Z, Q. Potenze con

Dettagli

DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE DIDATTICO METODOLOGICA ANNUALE DI MATEMATICA. CLASSI PRIME Anno scolastico 2015/2016

DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE DIDATTICO METODOLOGICA ANNUALE DI MATEMATICA. CLASSI PRIME Anno scolastico 2015/2016 DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE DIDATTICO METODOLOGICA ANNUALE DI MATEMATICA CLASSI PRIME Anno scolastico 2015/2016 Ore di lezione previste nell anno: 165 (n. 5 ore sett. x 33 settimane) 1. FINALITÀ

Dettagli

Programmazione per competenze del corso Matematica, Secondo biennio

Programmazione per competenze del corso Matematica, Secondo biennio Programmazione per del corso Matematica, Secondo biennio Competenze di area Traguardi per lo sviluppo delle degli elementi del calcolo algebrico algebriche di primo e secondo grado di grado superiore al

Dettagli

FRACCOLA DOMENICO IV A SCIENTIFICO MATEMATICA

FRACCOLA DOMENICO IV A SCIENTIFICO MATEMATICA MOD01P-ERGrev5 PROGRAMMAZIONE DISCIPLINARE A.S. 2013/014 Pag 1 di 8 Docente Classe Sezione Indirizzo Disciplina FRACCOLA DOMENICO IV A SCIENTIFICO MATEMATICA Composizione della classe Alunni ripetenti

Dettagli

Programmazione Matematica classe V A. Finalità

Programmazione Matematica classe V A. Finalità Finalità Acquisire una formazione culturale equilibrata in ambito scientifico; comprendere i nodi fondamentali dello sviluppo del pensiero scientifico, anche in una dimensione storica, e i nessi tra i

Dettagli

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3 livello A1 modulo A1.1 modulo A1.2 matematica livello A2 modulo A2.1 modulo A2.2 livello A insiemi e appartenenza interpretazione grafica nel piano traslazioni proprietà commutatività associatività elemento

Dettagli

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1 SEDE LEGALE: Via Roma, 125-04019 - Terracina (LT) - Tel. +39 0773 70 28 77 - +39 0773 87 08 98 - +39 331 18 22 487 SUCCURSALE: Via Roma, 116 - Tel. +39 0773 70 01 75 - +39 331 17 45 691 SUCCURSALE: Via

Dettagli

Liceo Marie Curie (Meda) Scientifico Classico Linguistico PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE

Liceo Marie Curie (Meda) Scientifico Classico Linguistico PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE Liceo Marie Curie (Meda) Scientifico Classico Linguistico PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE a.s. 2015/16 CLASSE 1DS Indirizzo di studio Liceo scientifico Docente Paola Carcano Disciplina Monte

Dettagli

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI Obiettivi del triennio: ; elaborando opportune soluzioni; 3) utilizzare le reti e gli strumenti informatici

Dettagli

Matematica PRIMO BIENNIO NUOVO ORDINAMENTO I.T.Ag Noverasco PIANO DI LAVORO ANNUALE

Matematica PRIMO BIENNIO NUOVO ORDINAMENTO I.T.Ag Noverasco PIANO DI LAVORO ANNUALE Istituto di Istruzione Superiore ITALO CALVINO telefono: 0257500115 via Guido Rossa 20089 ROZZANO MI fax: 0257500163 Sezione Associata: telefono: 025300901 via Karl Marx 4 - Noverasco - 20090 OPERA MI

Dettagli

DIPARTIMENTO SCIENTIFICO

DIPARTIMENTO SCIENTIFICO DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE PER COMPETENZE DI MATEMATICA CLASSI QUINTE Anno scolastico 2015/2016 Ore di lezione previste nell anno: 165 (n. 5 ore sett. x 33 settimane) 1. FINALITÀ DELL INSEGNAMENTO

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

VALLAURI L ASSE MATEMATICO

VALLAURI L ASSE MATEMATICO Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Via B. Peruzzi, 13 41012 CARPI (MO) VALLAURI www.vallauricarpi.it Tel. 059 691573 Fax 059 642074 vallauri@vallauricarpi.it

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA PROGRAMMA DI MATEMATICA 1. Finalità dell insegnamento L'insegnamento della matematica nel triennio di una scuola secondaria superiore amplia e prosegue quel processo di preparazione culturale e di promozione

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA PROFESSIONALE DOCENTI : CARAFFI ALESSANDRA, CORREGGI MARIA GRAZIA, FAZIO ANGELA,

Dettagli

ISTITUTO COMPRENSIVO DEL CHIESE

ISTITUTO COMPRENSIVO DEL CHIESE ISTITUTO COMPRENSIVO DEL CHIESE Piano di studio di istituto di Matematica Competenza 1 al termine del 4 biennio (seconda e terza media) Strumenti 1)Utilizzare con sicurezza le tecniche e le procedure del

Dettagli

SCUOLA SECONDARIA DI I GRADO

SCUOLA SECONDARIA DI I GRADO Operare in situazioni reali e/o disciplinari con tecniche e procedure di calcolo L alunno si muove con sicurezza nel calcolo anche con i numeri razionali, ne padroneggia le diverse e stima la grandezza

Dettagli

CLASSI PRIME tecnico 4 ORE

CLASSI PRIME tecnico 4 ORE PIANO ANNUALE a.s. 2012/2013 CLASSI PRIME tecnico 4 ORE Settembre Ottobre Novembre dicembre dicembre gennaio- 15 aprile 15 aprile 15 maggio Somministrazione di test di ingresso. Insiemi numerici Operazioni

Dettagli

MACROARGOMENTI--MATEMATICA Relativi alle classi prime e seconde degli indirizzi di :ordinamento, bilinguismo, indirizzo biologico e PNI.

MACROARGOMENTI--MATEMATICA Relativi alle classi prime e seconde degli indirizzi di :ordinamento, bilinguismo, indirizzo biologico e PNI. MACROARGOMENTI--MATEMATICA Relativi alle classi prime e seconde degli indirizzi di :ordinamento, bilinguismo, indirizzo biologico e PNI. Classi prime Gli insiemi con relative operazioni Operazioni ed espressioni

Dettagli

2. Matematica. V. Matematica e scienze sperimentali 143

2. Matematica. V. Matematica e scienze sperimentali 143 V. Matematica e scienze sperimentali 143 2. Matematica 2.1. Obiettivi generali della materia e incidenze su quelli dell area di studio «matematica e scienze sperimentali» L insegnamento della matematica

Dettagli

ISTITUTO STATALE ISTRUZIONE SUPERIORE ZENALE E BUTINONE

ISTITUTO STATALE ISTRUZIONE SUPERIORE ZENALE E BUTINONE pag.1 ISTITUTO STATALE ISTRUZIONE SUPERIORE ZENALE E BUTINONE Vale la pena di insegnare un argomento solo se si ritiene di poterlo approfondire ad un punto tale da poter formulare domande non banali con

Dettagli

Liceo classico Torquato Tasso

Liceo classico Torquato Tasso Liceo classico Torquato Tasso AREA DISCIPLINARE DI MATEMATICA E FISICA ANNO SCOLASTICO 2015/2016 Il presente documento, in linea con le indicazioni culturali del POF e con i criteri del collegio Docenti,

Dettagli

PIANO DI LAVORO PERSONALE MATERIA: MATEMATICA

PIANO DI LAVORO PERSONALE MATERIA: MATEMATICA OBIETTIVI GENERALI DELLA DISCIPLINA NEL BIENNIO Lo studio della matematica contribuisce alla crescita intellettuale e alla formazione critica degli studenti promuovendo: lo sviluppo di capacità sia intuitive

Dettagli

MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE COMUNI A TUTTI GLI INDICATORI

MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE COMUNI A TUTTI GLI INDICATORI INFANZIA I bambini esplorano continuamente la realtà e imparano a riflettere sulle proprie esperienze descrivendole, rappresentandole, riorganizzandole con diversi criteri. Pongono così le basi per la

Dettagli

COORDINAMENTO PER MATERIE SETTEMBRE 2014

COORDINAMENTO PER MATERIE SETTEMBRE 2014 Pagina 1 di 8 COORDINAMENTO PER MATERIE SETTEMBRE 2014 AREA DISCIPLINARE [ ] Biennio, Attività e Insegnamenti di area generale (Settore Tecnologico) [ ] Biennio, Attività e Insegnamenti obbligatori di

Dettagli

Liceo scientifico Albert Einstein. Anno scolastico 2009-2010. Classe V H. Lavoro svolto dalla prof.ssa Irene Galbiati. Materia: MATEMATICA

Liceo scientifico Albert Einstein. Anno scolastico 2009-2010. Classe V H. Lavoro svolto dalla prof.ssa Irene Galbiati. Materia: MATEMATICA Liceo scientifico Albert Einstein Anno scolastico 2009-2010 Classe V H Lavoro svolto dalla prof.ssa Irene Galbiati Materia: MATEMATICA PROGRAMMA DI MATEMATICA CLASSE V H Contenuti Ripasso dei prerequisiti

Dettagli

I.T.G. <<G.C.Gloriosi>> Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO RELAZIONE

I.T.G. <<G.C.Gloriosi>> Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO RELAZIONE I.T.G. Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO Prof. Lucia D Aniello, CLASSI 3 A, 4 A, 5 A GEOMETRI- SIRIO RELAZIONE Premesse La programmazione è stata redatta

Dettagli

Liceo Classico Scientifico Isaac NEWTON via Paleologi 22 - Chivasso

Liceo Classico Scientifico Isaac NEWTON via Paleologi 22 - Chivasso Liceo Classico Scientifico Isaac NEWTON via Paleologi 22 - Chivasso Mod. D01 Rev. 1 01.09.2011 Documento PIANO DI LAVORO DI DIPARTIMENTO Dipartimento MATEMATICA e FISICA - SCIENTIFICO Anno scolastico 2014-2015

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS VERSARI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo: LICEO SCIENTIFICO MATERIA: MATEMATICA ANNO SCOLASTICO: 2014-2015 PROF: MASSIMO BANFI

Dettagli

PIANO DI LAVORO A.S. 2013/14. Liceo SCIENTIFICO GOBETTI OMEGNA

PIANO DI LAVORO A.S. 2013/14. Liceo SCIENTIFICO GOBETTI OMEGNA PIANO DI LAVORO A.S. 2013/14 Liceo SCIENTIFICO GOBETTI OMEGNA Professoressa LILIANA PIZZI Disciplina MATEMATICA Classe PRIMA sezione B Data: 12 Ottobre 2013 A. LIVELLI DI PARTENZA TEST E/O GRIGLIE DI OSSERVAZIONE

Dettagli

PIANO DI LAVORO a.s. 2013-2014

PIANO DI LAVORO a.s. 2013-2014 PIANO DI LAVORO a.s. 2013-2014 1. obiettivi didattici 2. contenuti 3. metodi e strumenti 4. criteri di valutazione MATERIA: MATEMATICA APPLICATA CORSO: INTERO CORSO CLASSE PRIMA 1.OBIETTIVI DIDATTICI Gli

Dettagli

PROGRAMMAZIONE BIENNIO dei CORSI di MATEMATICA. Liceo Scientifico A. VOLTA di TORINO

PROGRAMMAZIONE BIENNIO dei CORSI di MATEMATICA. Liceo Scientifico A. VOLTA di TORINO PROGRAMMAZIONE BIENNIO dei CORSI di MATEMATICA Liceo Scientifico A. VOLTA di TORINO INDICAZIONI GENERALI L asse matematico /fisico La matematica e la fisica, accanto alle altre discipline del curricolo

Dettagli

COORDINAMENTO PER MATERIE SETTEMBRE 2013

COORDINAMENTO PER MATERIE SETTEMBRE 2013 Pagina 1 di 6 COORDINAMENTO PER MATERIE SETTEMBRE 2013 MATERIA DI NUOVA INTRODUZIONE PER EFFETTO DELLA RIFORMA AREA DISCIPLINARE [ ] Biennio, Attività e Insegnamenti di area generale (Settore Tecnologico)

Dettagli

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego CONVITTO NAZIONALE MARIA LUIGIA di Parma CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12 Disciplina : MATEMATICA Docente Prof.ssa Paola Perego COMPETENZE CONOSCENZE Funzione esponenziale e logaritmica

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. CLASSE quinta INDIRIZZO AFM-SIA-RIM-TUR UdA n. 1 Titolo: LE FUNZIONI DI DUE VARIABILI E L ECONOMIA Utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni

Dettagli

Indirizzo odontotecnico a.s. 2015/2016

Indirizzo odontotecnico a.s. 2015/2016 I.P.S.I.A E. DE AMICIS - ROMA PROGRAMMAZIONE DIDATTICA DI MATEMATICA Classe 5C Indirizzo odontotecnico a.s. 2015/2016 Prof. Rossano Rossi La programmazione è stata sviluppata seguendo le linee guida ministeriali

Dettagli

TORINO PIANO DI LAVORO DI MATEMATICA

TORINO PIANO DI LAVORO DI MATEMATICA Liceo Scientifico Statale Piero Gobetti TORINO PIANO DI LAVORO DI MATEMATICA a.s. 2015/2016 Classe IVB Prof. Genta Silvio TITOLO PIANO DI LAVORO ANNUALE OBIETTIVI TRASVERSALI Rispetto del regolamento d

Dettagli

Sallustio Bandini. Matematica. Istituto Tecnico Statale Programmatori Ragionieri Geometri Lingue Straniere

Sallustio Bandini. Matematica. Istituto Tecnico Statale Programmatori Ragionieri Geometri Lingue Straniere FINALITA DELL INSEGNAMENTO Sallustio Bandini Istituto Tecnico Statale Programmatori Ragionieri Geometri Lingue Straniere Agenzia Formativa Accreditata dalla Regione Toscana Matematica La Matematica, parte

Dettagli

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte Competenza chiave europea: MATEMATICA Scuola Primaria DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte TAB. A TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE al termine della Scuola Primaria

Dettagli

Piano di Lavoro di MATEMATICA. a cura del dipartimento di Matematica e Fisica QUINTO ANNO

Piano di Lavoro di MATEMATICA. a cura del dipartimento di Matematica e Fisica QUINTO ANNO Liceo Scientifico Istituto Tecnico Industriale ISTITUTO DI ISTRUZIONE SUPERIORE ALDO MORO Via Gallo Pecca n.4/6 10086 RIVAROLO CANAVESE Tel. 0124/45.45.11 Cod.Fisc. 85502120018 E-mail: segreteria@istitutomoro.it

Dettagli

Gli insegnamenti curriculari nei quattro assi: dei linguaggi, matematico, scientificotecnologico

Gli insegnamenti curriculari nei quattro assi: dei linguaggi, matematico, scientificotecnologico ALLEGATO1 Gli insegnamenti curriculari nei quattro assi: dei linguaggi, matematico, scientificotecnologico e storico-sociale. L asse dei linguaggi ha l obiettivo di far acquisire allo studente la padronanza

Dettagli

MATEMATICA SCUOLE DELL INFANZIA

MATEMATICA SCUOLE DELL INFANZIA MATEMATICA SCUOLE DELL INFANZIA CAMPO DI ESPERIENZA: LA CONOSCENZA DEL MONDO (ordine, misura, spazio, tempo, natura) È l'ambito relativo all'esplorazione, scoperta e prima sistematizzazione delle conoscenze

Dettagli

PROGRAMMA DI MATEMATICA CORSI DELL INDIRIZZO PROFESSIONALE. Classi prime: Operatore grafico

PROGRAMMA DI MATEMATICA CORSI DELL INDIRIZZO PROFESSIONALE. Classi prime: Operatore grafico PROGRAMMA DI MATEMATICA CORSI DELL INDIRIZZO PROFESSIONALE - classi accreditate alla formazione professionale regionale: Classi prime: Operatore grafico Modulo 1: I numeri con particolare riferimento alle

Dettagli

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO PROGRAMMAZIONE MODULARE MATEMATICA CL SECONDA INRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO MODULO 1 : Frazioni algebriche ed equazioni fratte C1, M1, M3 Determinare il campo

Dettagli

I programmi per il triennio degli istituti tecnici industriali per la meccanica

I programmi per il triennio degli istituti tecnici industriali per la meccanica I programmi per il triennio degli istituti tecnici industriali per la meccanica QUADRO ORARIO DI INDIRIZZO MECCANICO Discipline del piano di studi Ore sett. per anno di corso. 3 4 5 Prove di esame (a)

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica

PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica Modulo n. 1: Insiemi Collocazione temporale: settembre-dicembre Strategie didattiche: L insegnamento dei

Dettagli

ISTITUTO TECNICO DI STATO COMMERCIALE E PER GEOMETRI "Lodovico e Valentino Pasini" Via Tito Livio, 1-36015 Schio (VI)

ISTITUTO TECNICO DI STATO COMMERCIALE E PER GEOMETRI Lodovico e Valentino Pasini Via Tito Livio, 1-36015 Schio (VI) ISTITUTO TECNICO DI STATO COMMERCIALE E PER GEOMETRI "Lodovico e Valentino Pasini" Via Tito Livio, 1-36015 Schio (VI) Programmazione per l anno scolastico 2012/2013 Disciplina: MATEMATICA Biennio CLASSI

Dettagli

CLASSE 1ª Manutenzione e Assistenza Tecnica

CLASSE 1ª Manutenzione e Assistenza Tecnica CLASSE 1ª Manutenzione e Assistenza Tecnica Programma svolto di MATEMATICA Anno scolastico 2013/14 ELEMENTI DI RACCORDO CON LA SCUOLA MEDIA GLI INSIEMI CALCOLO LETTERALE GEOMETRIA - Ordinamento, proprietà,

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate

ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate PROGRAMMAZIONE DISCIPLINARE MATEMATICA CLASSE 3 AS ANNO SCOLASTICO 2013/2014

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

CURRICOLO DISCIPLINARE DI MATEMATICA

CURRICOLO DISCIPLINARE DI MATEMATICA A.S. 2014/2015 MINISTERO DELL ISTRUZIONE DELL UNIVERSITÀ E DELLA RICERCA Istituto Comprensivo Palena-Torricella Peligna Scuola dell Infanzia, Primaria e Secondaria di 1 grado Palena (CH) SCUOLA SECONDARIA

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Liceo scientifico statale «G.B. Morgagni» Programmazione di matematica - fisica a.s. 2014-2015

Liceo scientifico statale «G.B. Morgagni» Programmazione di matematica - fisica a.s. 2014-2015 Liceo scientifico statale «G.B. Morgagni» Programmazione di matematica - fisica a.s. 2014-2015 Insegnanti : Amatiste, Arte, Bianchi, Bistoncini, Bonamico, Crosta, Durante, Fabbiano, Fusciani, Giovannini,

Dettagli

ANNO SCOLASTICO 2015 2016. Piano di lavoro individuale

ANNO SCOLASTICO 2015 2016. Piano di lavoro individuale ANNO SCOLASTICO 2015 2016 Piano di lavoro individuale Classe: Materia: 4A ind. TURISMO Matematica Docente: CABERLOTTO GRAZIAMARIA Situazione di partenza della classe La classe è composta da 24 alunni di

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO

STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO CLASSE 1^ CONOSCENZE Insiemi numerici N, Z, Q, R; rappresentazioni, operazioni, ordinamento Espressioni algebriche; principali operazioni Equazioni

Dettagli

Istituto comprensivo Arbe Zara

Istituto comprensivo Arbe Zara Istituto comprensivo Arbe Zara Viale Zara,96 Milano Tel. 02/6080097 Scuola Secondaria di primo grado Falcone Borsellino Viale Sarca, 24 Milano Tel- 02/88448270 A.s 2015 /2016 Progettazione didattica della

Dettagli

Programmazione del dipartimento di MATEMATICA per il quinquennio

Programmazione del dipartimento di MATEMATICA per il quinquennio IPIA C. CORRENTI Programmazione del dipartimento di MATEMATICA per il quinquennio FINALITA DELL INSEGNAMENTO DELLA MATEMATICA Promuovere le facoltà intuitive e logiche Educare ai processi di astrazione

Dettagli

Istituto Professionale - Settore Industriale Indirizzo: Abbigliamento e Moda

Istituto Professionale - Settore Industriale Indirizzo: Abbigliamento e Moda Ministero dell Istruzione, dell Università e della Ricerca I.I.S. CATERINA CANIANA Via Polaresco 19 24129 Bergamo Tel: 035 250547 035 253492 Fax: 035 4328401 http://www.istitutocaniana.it email: canianaipssc@istitutocaniana.it

Dettagli

PIANO DI LAVORO ANNUALE DELLA DISCIPLINA MATEMATICA Classi 1^ LICEO SCIENTIFICO opzione SCIENZE APPLICATE A.S. 2014/15

PIANO DI LAVORO ANNUALE DELLA DISCIPLINA MATEMATICA Classi 1^ LICEO SCIENTIFICO opzione SCIENZE APPLICATE A.S. 2014/15 Istituto di Istruzione Secondaria Superiore ETTORE MAJORANA 24068 SERIATE (BG) Via Partigiani 1 -Tel. 035-297612 - Fax 035-301672 e-mail: majorana@ettoremajorana.gov.it - sito internet: www.ettoremajorana.gov.it

Dettagli

Matematica SECONDO BIENNIO NUOVO ORDINAMENTO I.T.Ag Noverasco PIANO DI LAVORO ANNUALE 2014/2015

Matematica SECONDO BIENNIO NUOVO ORDINAMENTO I.T.Ag Noverasco PIANO DI LAVORO ANNUALE 2014/2015 Istituto di Istruzione Superiore ITALO CALVINO telefono: 0257500115 via Guido Rossa 20089 ROZZANO MI fax: 0257500163 Sezione Associata: telefono: 025300901 via Karl Marx 4 - Noverasco - 20090 OPERA MI

Dettagli

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS Classe: 3 a B Informatica Docente: Gianni Lai PROGRAMMAZIONE DIDATTICA DISCIPLINARE MATEMATICA e COMPLEMENTI

Dettagli