Esercizi sull Association Analysis

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi sull Association Analysis"

Transcript

1 Data Mining: Esercizi sull Association Analysis 1 Esercizi sull Association Analysis 1. Si consideri il mining di association rule da un dataset T di transazioni, rispetto a delle soglie minsup e minconf. Si chiamino standard le regole estratte secondo il framework tradizionale. Una regola standard r : X Y è detta anche essenziale se X = 1 oppure per ogni X X, con X, confidenza(x Y (X X ) < confidenza(r). (a) Si consideri un dataset T con le seguenti 5 transazioni: (ABCD), (ABCE), (ABC), (ABE), (BCD). Usando minsup=0.5 e minconf=0.5, trovare una regola standard X Y con X > 1 che non sia essenziale. (b) Di quali regole standard non essenziali una regola essenziale può essere considerata rappresentante? (c) Per un generico dataset T, si consideri una regola standard r : X Y con confidenza c minconf. Si supponga che per un certo item a X valga che supporto(x) = supporto({a}). (i) Dimostrare che per un qualsiasi itemset X X, con a X, si ha che confidenza(x Y (X X )) = c. (ii) In base al risultato del punto (i), dimostrare che se X = m, esistono in T Ω (2 m ) regole standard non essenziali. (a) L itemset ABC ha supporto 3/5 > 0.5. Le regole A BC e AB C hanno entrambe confidenza 3/4 > 0.5, quindi la seconda di esse è standard ma non essenziale. (b) Una regola essenziale r : X Y con confidenza c può essere considerata rappresentante di tutte le regole r : X Y (X X ), con X X che hanno confidenza(r ) = confidenza(r). Infatti, relativamente a queste regole X è l itemset minimale la cui presenza in una transazione implica la presenza di X Y con confidenza c. (c) (i) Sia X X, con a X. Dalla antimonotonicità del supporto si ha che supporto({a}) supporto(x ) supporto(x). Ma poiché per ipotesi supporto(x) = supporto({a}), allora deve valere che supporto(x ) = supporto(x), e quindi confidenza(x (X Y ) X ) = supporto(x Y ) supporto(x ) = supporto(x Y ) supporto(x) = c.

2 Data Mining: Esercizi sull Association Analysis 2 (ii) Dal punto precedente si deduce che tutte le 2 m 1 regole del tipo X Y (X X ), con a X X, sono standard con lo stesso supporto e la stessa confidenza c di r, ma l unica essenziale è quella con X = {a}. 2. Sia T un dataset di transazioni sull insieme di item I. Per ogni i I sia s i il supporto dell itemset {i}. Per ogni itemset X I sia max(x) = max{s i : i X}. Si definisca la misura µ(x) = Supporto(X). max(x) (Si noti che µ coincide con l h-confidence definita a lezione.) (a) Si dimostri che µ( ) è una misura antimonotona. (b) Data una regola associativa r : X Y, provare che Confidenza(r) µ(x Y ). (c) Data una soglia minmu (0, 1), sia F k l insieme di itemset X di lunghezza k tali che µ(x) minmu, per ogni k 1. Fissato k > 1, e definito C k = {X {i} : (X F k 1 ) (i I X) (s i max(x))}, dimostrare che F k C k. (a) Si considerino due itemset X, Y I con X Y. Per l antimonotonicità del supporto si ha che Supporto(X) Supporto(Y ), ed è facile vedere che max(y ) max(x). Quindi µ(x) = Supporto(X) max(x) Supporto(Y ) max(x) Supporto(Y ) max(y ) = µ(y ) (b) È facile vedere che Supporto(X) max(x) max(x Y ). Di consegeunza Confindenza(r) = Supporto(X Y ) Supporto(X) Supporto(X Y ) max(x Y ) = µ(x Y ) (c) Sia X = {i 1, i 2,..., i k } un itemset di lunghezza k con µ(x) minmu, e sia s ik = max(x). Per l antimonotonicità di µ( ) provata precedentemente, si ha che X = {i 1, i 2,..., i k 1 } X è tale per cui µ(x ) µ(x) minmu, e quindi X F k 1. Inoltre vale che s ik max(x ). Quindi l itmeset X = X {i k } fa parte di C k.

3 Data Mining: Esercizi sull Association Analysis 3 3. Si consideri un dataset T di transazioni sull insieme di item I. Per un itemset X si definisca T X come l insieme di transazioni che contengono X, e si definisca Chiusura(X) = t T X t. Dimostrare le seguenti proprietà: (a) Supporto(Chiusura(X)) = Supporto(X); (b) Chiusura(X) è un itemset chiuso; (c) Se X è chiuso, allora X = Chiusura(X). Per comodità di notazione, definiamo Y = Chiusura(X). (a) È facile vedere che X Y e quindi, per l antimonotonicità del supporto, si ha che Supporto(X) Supporto(Y ). Inoltre, dato che Y è contenuto per definizione in tutte le transazioni di T X, si ha che Supporto(Y ) T X / T = Supporto(X). Ne consegue che Supporto(Y ) = Supporto(X). (b) Per assurdo, supponiamo che Y non sia un itemset chiuso e, quindi, che esista un item a Y tale che Y {a} abbia lo stesso supporto di Y. Allora, sfruttando quanto provato nel punto precedente, possiamo affermare che X Y Y {a}, e che Supporto(X) = Supporto(Y ) = Supporto(Y {a}). Ne consegue che T X = T Y = T Y {a}. Ciò implica che l item a è presente in tutte le transazioni che contengono X, ovvero nella loro intersezione, e quindi, per definizione di chiusura, si ha che a Y, contraddicendo la scelta di a. (c) Supponiamo che X sia chiuso. Sappiamo già che X Y e che X e Y hanno lo stesso supporto. Se X fosse diverso da Y esisterebbe un sovrainsieme proprio di X che ha lo stesso suo supporto, e quindi X non sarebbe chiuso. 4. Si consideri un dataset T di transazioni sull insieme di item I. Per un itemset X si definisca T X come l insieme di transazioni che contengono X, e si ricordi che se X è chiuso allora vale che X = Chiusura(X) = t T X t. (a) Siano X, Y I due itemset chiusi e sia Z = X Y. Trovare una relazione che lega T Z a T X e T Y (motivando la risposta) e dimostrare che Z è chiuso. (b) Per un itemset X si definisca la seguente misura: µ(x) = max{confidenza(w X) : W I, W X = }. Dimostrare che µ( ) è antimonotona.

4 Data Mining: Esercizi sull Association Analysis 4 (a) Poichè Z è contenuto in una qualsiasi transazione di T X e in una qualsiasi transazione di T Y, si ha che T X T Y T Z. Se Z non fosse chiuso esisterebbe un item a Z tale che l itemset V = Z {a} avrebbe lo stesso supporto di Z e quindi sarebbe contenuto in tutte le transazioni che contengono Z. Quindi a sarebbe contenuto in tutte le transazioni di T X e in tutte le transazioni di T Y, e quindi poiché X = t T X t e Y = t T Y t, si avrebbe che a X e a Y e quindi a X Y = Z che contraddice la scelta di a. (b) Siano X, X due itemset con X X, e supponiamo che µ(x ) = max{confidenza(w X ) : W I, W X = } = Confidenza( W X ), per un qualche itemset W disgiunto da X. Chiaramente si ha che W è anche disgiunto da X e che µ(x) Confidenza( W X) = Supporto( W X) Supporto( W ) Quindi la misura è antimonotona. Supporto( W X ) Supporto( W ) = µ(x ). 5. Siano I 1 = {a 1, a 2,..., a n } e I 2 = {b 1, b 2,..., b m } due insiemi distinti di item, con n pari ed m log 2 n. Si consideri un dataset T = {t 1, t 2,..., t n } di n transazioni su I 1 I 2, dove I 1 t i I 1 I 2 per ogni 1 i n/2 t i I 2 per ogni n/2 < i n (a) Fare un esempio di un tale dataset T con n = 8 e m = 3, in cui non ci siano due transazioni uguali. (N.B. Per i punti successivi non usare questo particolare dataset ma uno arbitrario che soddisfi le ipotesi date.) (b) Dimostrare che rispetto a T esistono almeno 2 n 1 itemset non vuoti di supporto 1/2. (c) Sia X un itemset chiuso rispetto a T. Dimostrare che se X contiene almeno un item di I 1 allora deve contenere per forza tutto I 1. (d) Usare il punto precedente per dare un limite superiore al numero di itemset chiusi rispetto a T. (a) Esercizio. (b) Un qualsiasi X I 1 ha supporto 1/2. Esistono 2 n 1 sottoinsiemi non vuoti di I 1.

5 Data Mining: Esercizi sull Association Analysis 5 (c) Sia X chiuso tale che X I 1 e sia T X l insieme delle transazioni che contengono X. Chiarmente T X {t 1, t 2,..., t n/2 }, e quindi ogni transazione che contiene X contiene anche tutto I 1. Ne consegue che Supporto(X) = Supporto(X I 1 ), e se X non contenesse tutto I 1 si avrebbe un superset di X, X I 1, con lo stesso supporto di X, contraddicendo l ipotesi di chiusura di X. (d) Partizioniamo l insieme di itemset chiusi in due gruppi: il gruppo A degli itemset chiusi che contengono item di I 1 ; e il gruppo B degli itemset chiusi che non contengono item di I 1. Dal punto precedente sappiamo che ciascun itemset in A deve contenere tutto I 1. Quindi gli itemset in A possono distinguersi solo in base agli item di I 2. Allora, due itemset nel gruppo A non possono contenere lo stesso sottoinsieme di item di I 2, e quindi ci possono essere al più 2 m itemset in A. Analogamente, due itemset nel gruppo B non possono contenere lo stesso sottoinsieme di item di I 2, e quindi ci possono essere al più 2 m 1 itemset in B (escludendo l itemset vuoto). Quindi gli itemset chiusi sono meno di 2 2 m = 2 m Sia dato un insieme I = {a 1, a 2,..., a n } {b 1, b 2,..., b n } di 2n item, e un dataset T = {t 1, t 2,..., t n } di n transazioni su I, dove t i = {a 1, a 2,... a n, b i } per 1 i n. Per minsup = 1/n, determinare il numero di itemset chiusi frequenti e il numero di itemset massimali. Sia A = {a 1, a 2,..., a n } e B = {b 1, b 2,..., b n }. Ogni sottoinsieme di A ha supporto 1, mentre ogni itemset formato da un sottoinsieme di A e un item di B ha supporto 1/n. Tutti gli altri itemset hanno supporto 0. In questo caso gli itemset chiusi frequenti sono n + 1, ovvero, l itemset A e tutti gli itemset del tipo A {b i }, per 1 i n. Tutti questi itemset, tranne A sono anche massimali, quindi il numero di itemset massimali è n. 7. Si consideri l algoritmo apriori per la determinazione degli itemset frequenti in un dataset D di transazioni su un insieme ordinato di item I. Per ogni k 1, sia F k, l insieme degli itemset frequenti di lunghezza k. Per ogni X F k, siano X[1], X[2],..., X[k] i suoi item in ordine crescente. Per k > 1, nell algoritmo si usa il metodo apriori-gen(f k 1 ) per generare itemset di lunghezza k candidati a essere frequenti. Si supponga di implementare apriori-gen(f k 1 ) come segue:

6 Data Mining: Esercizi sull Association Analysis 6 C k ; for each X F k 1 do for each (i F 1 ) do if (i > X[k 1]) then aggiungi X {i} a C k rimuovi da C k ogni candidato che contiene itemset di taglia k 1 non in F k 1 return C k Dimostrare che l insieme C k restituito coincide con quello restituito nella implementazione standard di apriori-gen. Sia C k l insieme di candidati restituiti dall implementazione standard di apriori-gen. Per dimostrare che C k = C k, dimostriamo le seguenti due relazioni: (1) C k C k ; e (2) C k C k. Dimostriamo C k C k. Sia Z C k, e quindi Z = X {i} per un qualche X F k 1 e i F 1, con i > X[k 1]. Definito Y = X[1 k 2] {i}, si vede che sia X che Y fanno parte di F k 1 e condividono un prefisso di lunghezza k 2. Quindi Z = X Y sarà inserito in C k nella fase di candidate generation dell implementazione standard e non potrà essere tolto nella successiva fase di candidate pruning dato che sopravvive alla identica fase di pruning dell implementazione data nell esercizio. Dimostriamo ora che C k C k. Sia Z C k. Allora deve essere che Z = X Y, dove X, Y F k 1, X Y, e X[1... k 2] = Y [1... k 2]. Senza perdita di generalità, assumiamo che X[k] < Y [k]. Allora, Z = X {Y [k]}. Dato che X F k 1 e, per l antimonotonicità del supporto, Y [k] F 1, si ha che Z viene aggiunto a C k nei due cicli for innestati dell implementazione data nell esercizio. Dato che Z C k significa che sopravvive alla fase di pruning dell implementazione standard, e quindi deve sopravvivere alla fase di pruning dell implementazione data nell esercizio. Ne consegue che Z C k. 8. Si consideri una sequenza S[0, n 1] di simboli sull alfabeto Σ. Un motivo per S è una sequenza X[0, k 1] su Σ, con k < n, e il suo supporto (assoluto) è Supporto(X) = {i : 0 i < n and S[i, i + k 1] = X}. Ad esempio, aab è un motivo per bcaabdeaabaab con supporto 3. (a) Dimostrare che per il supporto dei motivi vale una proprietà di antimonotonia. (b) Data una soglia minsup [1, n], e dato k 1, sia F k l insieme di motivi di lunghezza k frequenti (cioè con supporto almeno minsup). Dati X, Y F k tali che X[1, k 1] = Y [0, k 2] si definisca fusione(x, Y ) il motivo X[0]Y (ad es., abcd = fusione(abc,bcd)). Sia C k+1 = {fusione(x, Y ) : X, Y F k and X[1, k 1] = Y [0, k 2]}. Dimostrare che F k+1 C k+1.

7 Data Mining: Esercizi sull Association Analysis 7 (a) Sia X[0, k 1] una sequenza su Σ e X = X[l, r] una sua sottosequenza, con 0 l r < k. Si ha che per ogni indice i tale che S[i, i + k 1] = X allora S[i + l, i + r] = X. E quindi, Supporto(X ) Supporto(X). (b) Si consideri una sequenza Z[0, k] F k+1 arbitraria, e si definisca X = Z[0, k 1] e Y = Z[1, k]. Per l antimonotonicità del supporto illustrata nel punto precedente, si deve avere che X, Y F k. Poiché Z = fusione(x, Y ), allora Z C k+1.

Regole di Associazione

Regole di Associazione Metodologie per Sistemi Intelligenti Regole di Associazione Prof. Pier Luca Lanzi Laurea in Ingegneria Informatica Politecnico di Milano Polo regionale di Como Esempio Esempio Regole di Associazione Scopo

Dettagli

Mining Positive and Negative Association Rules:

Mining Positive and Negative Association Rules: Mining Positive and Negative Association Rules: An Approach for Confined Rules Alessandro Boca Alessandro Cislaghi Premesse Le regole di associazione positive considerano solo gli item coinvolti in una

Dettagli

CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS

CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS INTRODUZIONE Per conoscere la struttura di un grafo connesso è importante individuare nel grafo la distribuzione di certi punti detti cutpoints (punti

Dettagli

Algoritmi di Ricerca. Esempi di programmi Java

Algoritmi di Ricerca. Esempi di programmi Java Fondamenti di Informatica Algoritmi di Ricerca Esempi di programmi Java Fondamenti di Informatica - D. Talia - UNICAL 1 Ricerca in una sequenza di elementi Data una sequenza di elementi, occorre verificare

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

Raffinamento dello schema e forme normali. T. Catarci, M. Scannapieco, Corso di Basi di Dati, A.A. 2008/2009, Sapienza Università di Roma

Raffinamento dello schema e forme normali. T. Catarci, M. Scannapieco, Corso di Basi di Dati, A.A. 2008/2009, Sapienza Università di Roma Raffinamento dello schema e forme normali 1 Forme Normali Le forme normali consentono di valutare la qualità delle relazione Sono state proposte diverse forme normali che includono, in ordine di generalità:

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Prodotto libero di gruppi

Prodotto libero di gruppi Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto

Dettagli

1 Giochi a due, con informazione perfetta e somma zero

1 Giochi a due, con informazione perfetta e somma zero 1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una

Dettagli

Tecniche di DM: Link analysis e Association discovery

Tecniche di DM: Link analysis e Association discovery Tecniche di DM: Link analysis e Association discovery Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Architettura di un generico algoritmo di DM. 2 2 Regole di associazione:

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Regole di Associazione: algoritmi

Regole di Associazione: algoritmi Regole di Associazione: algoritmi di Rosa Meo Regole di Associazione Originariamente proposte nella market basket analysis per rappresentare le regolarità di comportamento nell acquisto dei clienti. R.Agrawal,

Dettagli

16.3.1 Alberi binari di ricerca

16.3.1 Alberi binari di ricerca 442 CAPITOLO 16. STRUTTURE DI DATI DINAMICHE root 7 5 11 2 8 13 10 Figura 16.11 Esempio di albero binario: ogni nodo contiene il dato da immagazzinare e tre puntatori che definiscono le sue relazioni di

Dettagli

Rappresentare i nessi logici con gli insiemi

Rappresentare i nessi logici con gli insiemi Rappresentare i nessi logici con gli insiemi È un operazione molto utile in quesiti come quello nell Esempio 1, in cui gruppi di persone o cose vengono distinti in base a delle loro proprietà. Un elemento

Dettagli

Università di Pisa A.A. 2004-2005

Università di Pisa A.A. 2004-2005 Università di Pisa A.A. 2004-2005 Analisi dei dati ed estrazione di conoscenza Corso di Laurea Specialistica in Informatica per l Economia e per l Azienda Tecniche di Data Mining Corsi di Laurea Specialistica

Dettagli

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado. Risposta A). Il triangolo ABC ha la stessa altezza del triangolo AOB ma base di lunghezza doppia (il diametro

Dettagli

4.1 Modelli di calcolo analisi asintotica e ricorrenze

4.1 Modelli di calcolo analisi asintotica e ricorrenze 4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi:

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi: Corso PAS Anno 2014 Matematica e didattica 3 Correzione esercizi 1. Definizione. Sia n un fissato intero maggiore di 1. Dati due interi a, b si dice che a è congruo a b modulo n, e si scrive a b (mod n),

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it 18 marzo 2011 Problema basato su 10.5 del libro di testo La CINA (Compagnia Italiana per il Noleggio di Automobili) dispone di

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie TEORIA RELAZIONALE: INTRODUZIONE 1 Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:...

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:... Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8 Cognome:................ Nome:................ Matricola:................ (Dare una dimostrazione esauriente di tutte le

Dettagli

Introduzione alla tecnica di Programmazione Dinamica

Introduzione alla tecnica di Programmazione Dinamica Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/37 Sommario della lezione Introduzione alla tecnica di Programmazione Dinamica Esempio di applicazione n. 1:

Dettagli

2) Codici univocamente decifrabili e codici a prefisso.

2) Codici univocamente decifrabili e codici a prefisso. Argomenti della Lezione ) Codici di sorgente 2) Codici univocamente decifrabili e codici a prefisso. 3) Disuguaglianza di Kraft 4) Primo Teorema di Shannon 5) Codifica di Huffman Codifica di sorgente Il

Dettagli

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno NORMALIZZAZIONE DI SCHEMI RELAZIONALI Prof.ssa Rosalba Giugno PROBLEMA GENERALE La progettazione concettuale e logica produce uno schema relazionale che rappresenta la realta dei dati nella nostra applicazione.

Dettagli

Verifica parte IIA. Test (o analisi dinamica) Mancanza di continuità. Esempio

Verifica parte IIA. Test (o analisi dinamica) Mancanza di continuità. Esempio Test (o analisi dinamica) Verifica parte IIA Rif. Ghezzi et al. 6.3-6.3.3 Consiste nell osservare il comportamento del sistema in un certo numero di condizioni significative Non può (in generale) essere

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 17 novembre 2010 Griglia delle risposte

Dettagli

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Dr Maria Federico Programmazione dinamica Solitamente usata per risolvere problemi di ottimizzazione il problema ammette

Dettagli

Corrispondenze e relazioni - Complementi

Corrispondenze e relazioni - Complementi PRODOTTO CARTESIANO Nell elencare gli elementi di un insieme, l ordine non ha alcuna importanza; ma ci sono situazioni in cui l ordine con cui si indicano gli elementi è fondamentale. La partita Milan

Dettagli

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano

Dettagli

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche . Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi

Dettagli

1 Insiemi e terminologia

1 Insiemi e terminologia 1 Insiemi e terminologia Assumeremo come intuitiva la nozione di insieme e ne utilizzeremo il linguaggio come strumento per studiare collezioni di oggetti. Gli Insiemi sono generalmente indicati con le

Dettagli

APPENDICE NOZIONI BASE E VARIE

APPENDICE NOZIONI BASE E VARIE pag. 131 Appendice: Nozioni base e varie G. Gerla APPENDICE NOZIONI BASE E VARIE 1. Funzioni e relazioni di equivalenza Questi appunti sono rivolti a persone che abbiano già una conoscenza elementare della

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

INTRODUZIONE. Gli operatori della morfologia binaria sono operatori fra insiemi definiti a partire dell immagine binaria.

INTRODUZIONE. Gli operatori della morfologia binaria sono operatori fra insiemi definiti a partire dell immagine binaria. Capitolo 7 - Operatori Morfologici per Immagini Binarie INTRODUZIONE Gli operatori della morfologia binaria sono operatori fra insiemi definiti a partire dell immagine binaria. L immagine binaria, I, viene

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Docente: V. Lonati Progetto Il faccendiere valido per gli appelli di giugno e luglio 2012 1 Il problema Un faccendiere vuole depositare ingenti quantità di denaro

Dettagli

Association mining Salvatore Orlando

Association mining Salvatore Orlando Association mining Salvatore Orlando 1 Cos è l association mining Identifica frequenze/collegamenti/correlazioni/causalità tra insiemi di item (articoli) in database transazionali Ogni transazione contiene

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

CLASSIFICAZIONE DEI CARATTERI

CLASSIFICAZIONE DEI CARATTERI CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

Alberi binari di ricerca

Alberi binari di ricerca Alberi binari di ricerca Definizione Visita dell albero inorder Ricerca Ricerca minimo, massimo e successore. Inserimento ed eliminazione di un nodo Problema del bilanciamento dell albero Albero binario

Dettagli

Parte I. Relazioni di ricorrenza

Parte I. Relazioni di ricorrenza Parte I Relazioni di ricorrenza 1 Capitolo 1 Relazioni di ricorrenza 1.1 Modelli Nel seguente capitolo studieremo le relazioni di ricorrenza. Ad esempio sono relazioni di ricorrenza a n = a n 1 + n, a

Dettagli

Sommario della lezione

Sommario della lezione Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/36 Sommario della lezione Ulteriori esempi di applicazione della Programmazione Dinamica Esempio di applicazione

Dettagli

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11 Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005 Docente: Ugo Vaccaro Lezione 11 In questa lezione vedremo alcune applicazioni della tecnica greedy al progetto di algoritmi on-line. Vediamo

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Note su quicksort per ASD 2010-11 (DRAFT)

Note su quicksort per ASD 2010-11 (DRAFT) Note su quicksort per ASD 010-11 (DRAFT) Nicola Rebagliati 7 dicembre 010 1 Quicksort L algoritmo di quicksort è uno degli algoritmi più veloci in pratica per il riordinamento basato su confronti. L idea

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( ) Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

Università degli Studi di Cassino Corso di Fondamenti di Informatica Puntatori. Anno Accademico 2010/2011 Francesco Tortorella

Università degli Studi di Cassino Corso di Fondamenti di Informatica Puntatori. Anno Accademico 2010/2011 Francesco Tortorella Corso di Informatica Puntatori Anno Accademico 2010/2011 Francesco Tortorella Variabili, registri ed indirizzi Abbiamo visto che la definizione di una variabile implica l allocazione (da parte del compilatore)

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

Esercizi Capitolo 14 - Algoritmi Greedy

Esercizi Capitolo 14 - Algoritmi Greedy Esercizi Capitolo 14 - Algoritmi Greedy Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello

Dettagli

LIVELLO STUDENT S1. S2. S3. S4. S5. S6.

LIVELLO STUDENT S1. S2. S3. S4. S5.  S6. LIVELLO STUDENT S1. (5 punti ) La figura mostra due quadrati uguali che hanno in comune esattamente un vertice. È possibile precisare la misura dell'angolo ABC? S2. (7 punti ) Negli usuali fogli (rettangolari)

Dettagli

Esercizio 1 Dato il gioco ({1, 2, 3}, v) con v funzione caratteristica tale che:

Esercizio 1 Dato il gioco ({1, 2, 3}, v) con v funzione caratteristica tale che: Teoria dei Giochi, Trento, 2004/05 c Fioravante Patrone 1 Teoria dei Giochi Corso di laurea specialistica: Decisioni economiche, impresa e responsabilità sociale, A.A. 2004/05 Soluzioni degli esercizi

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

ESERCIZI SVOLTI. 1) Dimostrare che l insieme. non è ricorsivo. Soluzione: Definiamo l insieme

ESERCIZI SVOLTI. 1) Dimostrare che l insieme. non è ricorsivo. Soluzione: Definiamo l insieme ESERCIZI SVOLTI 1) Dimostrare che l insieme Allora notiamo che π non è vuoto perché la funzione ovunque divergente appartiene all insieme avendo per dominio l insieme. Inoltre π non coincide con l insieme

Dettagli

Prestazioni CPU Corso di Calcolatori Elettronici A 2007/2008 Sito Web:http://prometeo.ing.unibs.it/quarella Prof. G. Quarella prof@quarella.

Prestazioni CPU Corso di Calcolatori Elettronici A 2007/2008 Sito Web:http://prometeo.ing.unibs.it/quarella Prof. G. Quarella prof@quarella. Prestazioni CPU Corso di Calcolatori Elettronici A 2007/2008 Sito Web:http://prometeo.ing.unibs.it/quarella Prof. G. Quarella prof@quarella.net Prestazioni Si valutano in maniera diversa a seconda dell

Dettagli

Rappresentazione di informazioni con un alfabeto finito

Rappresentazione di informazioni con un alfabeto finito Rappresentazione di informazioni con un alfabeto finito Sia A = { a 1,, a k } un insieme (alfabeto) di k simboli, detti anche lettere. Quante sono le sequenze composte da n simboli (anche ripetuti) di

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

Moto uniforme sul toro bidimensionale

Moto uniforme sul toro bidimensionale 4/3/06 Luigi Chierchia Moto uniforme sul toro bidimensionale 1. Il toro bidimensionale Denotiamo con R l insieme dei numeri reali e con Z l insieme dei numeri interi (con segno) {..., 2, 1, 0, 1, 2,...};

Dettagli

INdAM QUESITI A RISPOSTA MULTIPLA

INdAM QUESITI A RISPOSTA MULTIPLA INdAM Prova scritta per il concorso a 40 borse di studio, 2 borse aggiuntive e a 40 premi per l iscrizione ai Corsi di Laurea in Matematica, anno accademico 2011/2012. Piano Lauree Scientifiche. La prova

Dettagli

Sommario. 1 Codifica binaria delle informazioni. 2 Codifica binaria di informazioni di tipo numerico e aritmetica binaria

Sommario. 1 Codifica binaria delle informazioni. 2 Codifica binaria di informazioni di tipo numerico e aritmetica binaria Sommario Codifica delle informazioni 1 Codifica delle informazioni M. Favalli 2 Codifica di informazioni di tipo numerico e aritmetica Engineering Department in Ferrara 3 M. Favalli (ENDIF) Codici Reti

Dettagli

L Ultimo Teorema di Fermat per n = 3 e n = 4

L Ultimo Teorema di Fermat per n = 3 e n = 4 Università degli Studi di Cagliari Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica L Ultimo Teorema di Fermat per n = 3 e n = 4 Relatore Prof. Andrea Loi Tesi di Laurea

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Algoritmi e strutture di dati 2

Algoritmi e strutture di dati 2 Algoritmi e strutture di dati 2 Paola Vocca Lezione 7: Algoritmi on-line e analisi competitiva Algoritmo on-line Algoritmi on-line: le richieste vengono eseguite basandosi solo sulla conoscenza delle richieste

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici

Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici Per ogni lezione, sintetizzare i circuiti combinatori o sequenziali che soddisfino le specifiche date e quindi implementarli e

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

Due dimostrazioni alternative nella teoria di Ramsey

Due dimostrazioni alternative nella teoria di Ramsey Due dimostrazioni alternative nella teoria di Ramsey 28 Marzo 2007 Introduzione Teoria di Ramsey: sezione della matematica a metà tra la combinatoria e la teoria degli insiemi. La questione tipica è quella

Dettagli

Sistemi Operativi mod. B. Sistemi Operativi mod. B A B C A B C P 1 2 0 0 P 1 1 2 2 3 3 2 P 2 3 0 2 P 2 6 0 0 P 3 2 1 1 P 3 0 1 1 < P 1, >

Sistemi Operativi mod. B. Sistemi Operativi mod. B A B C A B C P 1 2 0 0 P 1 1 2 2 3 3 2 P 2 3 0 2 P 2 6 0 0 P 3 2 1 1 P 3 0 1 1 < P 1, > Algoritmo del banchiere Permette di gestire istanze multiple di una risorsa (a differenza dell algoritmo con grafo di allocazione risorse). Ciascun processo deve dichiarare a priori il massimo impiego

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali 01 - Grandezze scalari e grandezze vettoriali. Le grandezze fisiche, gli oggetti di cui si occupa la fisica, sono grandezze misurabili. Altri enti che non sono misurabili

Dettagli

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica Liceo Scientifico Statale P. Paleocapa, Rovigo XX Settimana della Cultura Scientifica e Tecnologica 19 marzo 2010 Sui concetti di definizione, teorema e dimostrazione in didattica della matematica Prof.

Dettagli