Esercizi sull Association Analysis

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi sull Association Analysis"

Transcript

1 Data Mining: Esercizi sull Association Analysis 1 Esercizi sull Association Analysis 1. Si consideri il mining di association rule da un dataset T di transazioni, rispetto a delle soglie minsup e minconf. Si chiamino standard le regole estratte secondo il framework tradizionale. Una regola standard r : X Y è detta anche essenziale se X = 1 oppure per ogni X X, con X, confidenza(x Y (X X ) < confidenza(r). (a) Si consideri un dataset T con le seguenti 5 transazioni: (ABCD), (ABCE), (ABC), (ABE), (BCD). Usando minsup=0.5 e minconf=0.5, trovare una regola standard X Y con X > 1 che non sia essenziale. (b) Di quali regole standard non essenziali una regola essenziale può essere considerata rappresentante? (c) Per un generico dataset T, si consideri una regola standard r : X Y con confidenza c minconf. Si supponga che per un certo item a X valga che supporto(x) = supporto({a}). (i) Dimostrare che per un qualsiasi itemset X X, con a X, si ha che confidenza(x Y (X X )) = c. (ii) In base al risultato del punto (i), dimostrare che se X = m, esistono in T Ω (2 m ) regole standard non essenziali. (a) L itemset ABC ha supporto 3/5 > 0.5. Le regole A BC e AB C hanno entrambe confidenza 3/4 > 0.5, quindi la seconda di esse è standard ma non essenziale. (b) Una regola essenziale r : X Y con confidenza c può essere considerata rappresentante di tutte le regole r : X Y (X X ), con X X che hanno confidenza(r ) = confidenza(r). Infatti, relativamente a queste regole X è l itemset minimale la cui presenza in una transazione implica la presenza di X Y con confidenza c. (c) (i) Sia X X, con a X. Dalla antimonotonicità del supporto si ha che supporto({a}) supporto(x ) supporto(x). Ma poiché per ipotesi supporto(x) = supporto({a}), allora deve valere che supporto(x ) = supporto(x), e quindi confidenza(x (X Y ) X ) = supporto(x Y ) supporto(x ) = supporto(x Y ) supporto(x) = c.

2 Data Mining: Esercizi sull Association Analysis 2 (ii) Dal punto precedente si deduce che tutte le 2 m 1 regole del tipo X Y (X X ), con a X X, sono standard con lo stesso supporto e la stessa confidenza c di r, ma l unica essenziale è quella con X = {a}. 2. Sia T un dataset di transazioni sull insieme di item I. Per ogni i I sia s i il supporto dell itemset {i}. Per ogni itemset X I sia max(x) = max{s i : i X}. Si definisca la misura µ(x) = Supporto(X). max(x) (Si noti che µ coincide con l h-confidence definita a lezione.) (a) Si dimostri che µ( ) è una misura antimonotona. (b) Data una regola associativa r : X Y, provare che Confidenza(r) µ(x Y ). (c) Data una soglia minmu (0, 1), sia F k l insieme di itemset X di lunghezza k tali che µ(x) minmu, per ogni k 1. Fissato k > 1, e definito C k = {X {i} : (X F k 1 ) (i I X) (s i max(x))}, dimostrare che F k C k. (a) Si considerino due itemset X, Y I con X Y. Per l antimonotonicità del supporto si ha che Supporto(X) Supporto(Y ), ed è facile vedere che max(y ) max(x). Quindi µ(x) = Supporto(X) max(x) Supporto(Y ) max(x) Supporto(Y ) max(y ) = µ(y ) (b) È facile vedere che Supporto(X) max(x) max(x Y ). Di consegeunza Confindenza(r) = Supporto(X Y ) Supporto(X) Supporto(X Y ) max(x Y ) = µ(x Y ) (c) Sia X = {i 1, i 2,..., i k } un itemset di lunghezza k con µ(x) minmu, e sia s ik = max(x). Per l antimonotonicità di µ( ) provata precedentemente, si ha che X = {i 1, i 2,..., i k 1 } X è tale per cui µ(x ) µ(x) minmu, e quindi X F k 1. Inoltre vale che s ik max(x ). Quindi l itmeset X = X {i k } fa parte di C k.

3 Data Mining: Esercizi sull Association Analysis 3 3. Si consideri un dataset T di transazioni sull insieme di item I. Per un itemset X si definisca T X come l insieme di transazioni che contengono X, e si definisca Chiusura(X) = t T X t. Dimostrare le seguenti proprietà: (a) Supporto(Chiusura(X)) = Supporto(X); (b) Chiusura(X) è un itemset chiuso; (c) Se X è chiuso, allora X = Chiusura(X). Per comodità di notazione, definiamo Y = Chiusura(X). (a) È facile vedere che X Y e quindi, per l antimonotonicità del supporto, si ha che Supporto(X) Supporto(Y ). Inoltre, dato che Y è contenuto per definizione in tutte le transazioni di T X, si ha che Supporto(Y ) T X / T = Supporto(X). Ne consegue che Supporto(Y ) = Supporto(X). (b) Per assurdo, supponiamo che Y non sia un itemset chiuso e, quindi, che esista un item a Y tale che Y {a} abbia lo stesso supporto di Y. Allora, sfruttando quanto provato nel punto precedente, possiamo affermare che X Y Y {a}, e che Supporto(X) = Supporto(Y ) = Supporto(Y {a}). Ne consegue che T X = T Y = T Y {a}. Ciò implica che l item a è presente in tutte le transazioni che contengono X, ovvero nella loro intersezione, e quindi, per definizione di chiusura, si ha che a Y, contraddicendo la scelta di a. (c) Supponiamo che X sia chiuso. Sappiamo già che X Y e che X e Y hanno lo stesso supporto. Se X fosse diverso da Y esisterebbe un sovrainsieme proprio di X che ha lo stesso suo supporto, e quindi X non sarebbe chiuso. 4. Si consideri un dataset T di transazioni sull insieme di item I. Per un itemset X si definisca T X come l insieme di transazioni che contengono X, e si ricordi che se X è chiuso allora vale che X = Chiusura(X) = t T X t. (a) Siano X, Y I due itemset chiusi e sia Z = X Y. Trovare una relazione che lega T Z a T X e T Y (motivando la risposta) e dimostrare che Z è chiuso. (b) Per un itemset X si definisca la seguente misura: µ(x) = max{confidenza(w X) : W I, W X = }. Dimostrare che µ( ) è antimonotona.

4 Data Mining: Esercizi sull Association Analysis 4 (a) Poichè Z è contenuto in una qualsiasi transazione di T X e in una qualsiasi transazione di T Y, si ha che T X T Y T Z. Se Z non fosse chiuso esisterebbe un item a Z tale che l itemset V = Z {a} avrebbe lo stesso supporto di Z e quindi sarebbe contenuto in tutte le transazioni che contengono Z. Quindi a sarebbe contenuto in tutte le transazioni di T X e in tutte le transazioni di T Y, e quindi poiché X = t T X t e Y = t T Y t, si avrebbe che a X e a Y e quindi a X Y = Z che contraddice la scelta di a. (b) Siano X, X due itemset con X X, e supponiamo che µ(x ) = max{confidenza(w X ) : W I, W X = } = Confidenza( W X ), per un qualche itemset W disgiunto da X. Chiaramente si ha che W è anche disgiunto da X e che µ(x) Confidenza( W X) = Supporto( W X) Supporto( W ) Quindi la misura è antimonotona. Supporto( W X ) Supporto( W ) = µ(x ). 5. Siano I 1 = {a 1, a 2,..., a n } e I 2 = {b 1, b 2,..., b m } due insiemi distinti di item, con n pari ed m log 2 n. Si consideri un dataset T = {t 1, t 2,..., t n } di n transazioni su I 1 I 2, dove I 1 t i I 1 I 2 per ogni 1 i n/2 t i I 2 per ogni n/2 < i n (a) Fare un esempio di un tale dataset T con n = 8 e m = 3, in cui non ci siano due transazioni uguali. (N.B. Per i punti successivi non usare questo particolare dataset ma uno arbitrario che soddisfi le ipotesi date.) (b) Dimostrare che rispetto a T esistono almeno 2 n 1 itemset non vuoti di supporto 1/2. (c) Sia X un itemset chiuso rispetto a T. Dimostrare che se X contiene almeno un item di I 1 allora deve contenere per forza tutto I 1. (d) Usare il punto precedente per dare un limite superiore al numero di itemset chiusi rispetto a T. (a) Esercizio. (b) Un qualsiasi X I 1 ha supporto 1/2. Esistono 2 n 1 sottoinsiemi non vuoti di I 1.

5 Data Mining: Esercizi sull Association Analysis 5 (c) Sia X chiuso tale che X I 1 e sia T X l insieme delle transazioni che contengono X. Chiarmente T X {t 1, t 2,..., t n/2 }, e quindi ogni transazione che contiene X contiene anche tutto I 1. Ne consegue che Supporto(X) = Supporto(X I 1 ), e se X non contenesse tutto I 1 si avrebbe un superset di X, X I 1, con lo stesso supporto di X, contraddicendo l ipotesi di chiusura di X. (d) Partizioniamo l insieme di itemset chiusi in due gruppi: il gruppo A degli itemset chiusi che contengono item di I 1 ; e il gruppo B degli itemset chiusi che non contengono item di I 1. Dal punto precedente sappiamo che ciascun itemset in A deve contenere tutto I 1. Quindi gli itemset in A possono distinguersi solo in base agli item di I 2. Allora, due itemset nel gruppo A non possono contenere lo stesso sottoinsieme di item di I 2, e quindi ci possono essere al più 2 m itemset in A. Analogamente, due itemset nel gruppo B non possono contenere lo stesso sottoinsieme di item di I 2, e quindi ci possono essere al più 2 m 1 itemset in B (escludendo l itemset vuoto). Quindi gli itemset chiusi sono meno di 2 2 m = 2 m Sia dato un insieme I = {a 1, a 2,..., a n } {b 1, b 2,..., b n } di 2n item, e un dataset T = {t 1, t 2,..., t n } di n transazioni su I, dove t i = {a 1, a 2,... a n, b i } per 1 i n. Per minsup = 1/n, determinare il numero di itemset chiusi frequenti e il numero di itemset massimali. Sia A = {a 1, a 2,..., a n } e B = {b 1, b 2,..., b n }. Ogni sottoinsieme di A ha supporto 1, mentre ogni itemset formato da un sottoinsieme di A e un item di B ha supporto 1/n. Tutti gli altri itemset hanno supporto 0. In questo caso gli itemset chiusi frequenti sono n + 1, ovvero, l itemset A e tutti gli itemset del tipo A {b i }, per 1 i n. Tutti questi itemset, tranne A sono anche massimali, quindi il numero di itemset massimali è n. 7. Si consideri l algoritmo apriori per la determinazione degli itemset frequenti in un dataset D di transazioni su un insieme ordinato di item I. Per ogni k 1, sia F k, l insieme degli itemset frequenti di lunghezza k. Per ogni X F k, siano X[1], X[2],..., X[k] i suoi item in ordine crescente. Per k > 1, nell algoritmo si usa il metodo apriori-gen(f k 1 ) per generare itemset di lunghezza k candidati a essere frequenti. Si supponga di implementare apriori-gen(f k 1 ) come segue:

6 Data Mining: Esercizi sull Association Analysis 6 C k ; for each X F k 1 do for each (i F 1 ) do if (i > X[k 1]) then aggiungi X {i} a C k rimuovi da C k ogni candidato che contiene itemset di taglia k 1 non in F k 1 return C k Dimostrare che l insieme C k restituito coincide con quello restituito nella implementazione standard di apriori-gen. Sia C k l insieme di candidati restituiti dall implementazione standard di apriori-gen. Per dimostrare che C k = C k, dimostriamo le seguenti due relazioni: (1) C k C k ; e (2) C k C k. Dimostriamo C k C k. Sia Z C k, e quindi Z = X {i} per un qualche X F k 1 e i F 1, con i > X[k 1]. Definito Y = X[1 k 2] {i}, si vede che sia X che Y fanno parte di F k 1 e condividono un prefisso di lunghezza k 2. Quindi Z = X Y sarà inserito in C k nella fase di candidate generation dell implementazione standard e non potrà essere tolto nella successiva fase di candidate pruning dato che sopravvive alla identica fase di pruning dell implementazione data nell esercizio. Dimostriamo ora che C k C k. Sia Z C k. Allora deve essere che Z = X Y, dove X, Y F k 1, X Y, e X[1... k 2] = Y [1... k 2]. Senza perdita di generalità, assumiamo che X[k] < Y [k]. Allora, Z = X {Y [k]}. Dato che X F k 1 e, per l antimonotonicità del supporto, Y [k] F 1, si ha che Z viene aggiunto a C k nei due cicli for innestati dell implementazione data nell esercizio. Dato che Z C k significa che sopravvive alla fase di pruning dell implementazione standard, e quindi deve sopravvivere alla fase di pruning dell implementazione data nell esercizio. Ne consegue che Z C k. 8. Si consideri una sequenza S[0, n 1] di simboli sull alfabeto Σ. Un motivo per S è una sequenza X[0, k 1] su Σ, con k < n, e il suo supporto (assoluto) è Supporto(X) = {i : 0 i < n and S[i, i + k 1] = X}. Ad esempio, aab è un motivo per bcaabdeaabaab con supporto 3. (a) Dimostrare che per il supporto dei motivi vale una proprietà di antimonotonia. (b) Data una soglia minsup [1, n], e dato k 1, sia F k l insieme di motivi di lunghezza k frequenti (cioè con supporto almeno minsup). Dati X, Y F k tali che X[1, k 1] = Y [0, k 2] si definisca fusione(x, Y ) il motivo X[0]Y (ad es., abcd = fusione(abc,bcd)). Sia C k+1 = {fusione(x, Y ) : X, Y F k and X[1, k 1] = Y [0, k 2]}. Dimostrare che F k+1 C k+1.

7 Data Mining: Esercizi sull Association Analysis 7 (a) Sia X[0, k 1] una sequenza su Σ e X = X[l, r] una sua sottosequenza, con 0 l r < k. Si ha che per ogni indice i tale che S[i, i + k 1] = X allora S[i + l, i + r] = X. E quindi, Supporto(X ) Supporto(X). (b) Si consideri una sequenza Z[0, k] F k+1 arbitraria, e si definisca X = Z[0, k 1] e Y = Z[1, k]. Per l antimonotonicità del supporto illustrata nel punto precedente, si deve avere che X, Y F k. Poiché Z = fusione(x, Y ), allora Z C k+1.

Regole di Associazione

Regole di Associazione Metodologie per Sistemi Intelligenti Regole di Associazione Prof. Pier Luca Lanzi Laurea in Ingegneria Informatica Politecnico di Milano Polo regionale di Como Esempio Esempio Regole di Associazione Scopo

Dettagli

Mining Positive and Negative Association Rules:

Mining Positive and Negative Association Rules: Mining Positive and Negative Association Rules: An Approach for Confined Rules Alessandro Boca Alessandro Cislaghi Premesse Le regole di associazione positive considerano solo gli item coinvolti in una

Dettagli

Regole di Associazione: algoritmi

Regole di Associazione: algoritmi Regole di Associazione: algoritmi di Rosa Meo Regole di Associazione Originariamente proposte nella market basket analysis per rappresentare le regolarità di comportamento nell acquisto dei clienti. R.Agrawal,

Dettagli

Tecniche di DM: Link analysis e Association discovery

Tecniche di DM: Link analysis e Association discovery Tecniche di DM: Link analysis e Association discovery Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Architettura di un generico algoritmo di DM. 2 2 Regole di associazione:

Dettagli

Università di Pisa A.A. 2004-2005

Università di Pisa A.A. 2004-2005 Università di Pisa A.A. 2004-2005 Analisi dei dati ed estrazione di conoscenza Corso di Laurea Specialistica in Informatica per l Economia e per l Azienda Tecniche di Data Mining Corsi di Laurea Specialistica

Dettagli

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi:

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi: Corso PAS Anno 2014 Matematica e didattica 3 Correzione esercizi 1. Definizione. Sia n un fissato intero maggiore di 1. Dati due interi a, b si dice che a è congruo a b modulo n, e si scrive a b (mod n),

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

Algoritmi di Ricerca. Esempi di programmi Java

Algoritmi di Ricerca. Esempi di programmi Java Fondamenti di Informatica Algoritmi di Ricerca Esempi di programmi Java Fondamenti di Informatica - D. Talia - UNICAL 1 Ricerca in una sequenza di elementi Data una sequenza di elementi, occorre verificare

Dettagli

Raffinamento dello schema e forme normali. T. Catarci, M. Scannapieco, Corso di Basi di Dati, A.A. 2008/2009, Sapienza Università di Roma

Raffinamento dello schema e forme normali. T. Catarci, M. Scannapieco, Corso di Basi di Dati, A.A. 2008/2009, Sapienza Università di Roma Raffinamento dello schema e forme normali 1 Forme Normali Le forme normali consentono di valutare la qualità delle relazione Sono state proposte diverse forme normali che includono, in ordine di generalità:

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno NORMALIZZAZIONE DI SCHEMI RELAZIONALI Prof.ssa Rosalba Giugno PROBLEMA GENERALE La progettazione concettuale e logica produce uno schema relazionale che rappresenta la realta dei dati nella nostra applicazione.

Dettagli

Association mining Salvatore Orlando

Association mining Salvatore Orlando Association mining Salvatore Orlando 1 Cos è l association mining Identifica frequenze/collegamenti/correlazioni/causalità tra insiemi di item (articoli) in database transazionali Ogni transazione contiene

Dettagli

4.1 Modelli di calcolo analisi asintotica e ricorrenze

4.1 Modelli di calcolo analisi asintotica e ricorrenze 4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

Introduzione alle tecniche di Data Mining. Prof. Giovanni Giuffrida

Introduzione alle tecniche di Data Mining. Prof. Giovanni Giuffrida Introduzione alle tecniche di Data Mining Prof. Giovanni Giuffrida Programma Contenuti Introduzione al Data Mining Mining pattern frequenti, regole associative Alberi decisionali Clustering Esempio di

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it 18 marzo 2011 Problema basato su 10.5 del libro di testo La CINA (Compagnia Italiana per il Noleggio di Automobili) dispone di

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie TEORIA RELAZIONALE: INTRODUZIONE 1 Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano

Dettagli

INTRODUZIONE. Gli operatori della morfologia binaria sono operatori fra insiemi definiti a partire dell immagine binaria.

INTRODUZIONE. Gli operatori della morfologia binaria sono operatori fra insiemi definiti a partire dell immagine binaria. Capitolo 7 - Operatori Morfologici per Immagini Binarie INTRODUZIONE Gli operatori della morfologia binaria sono operatori fra insiemi definiti a partire dell immagine binaria. L immagine binaria, I, viene

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

PROGRAMMAZIONE AVANZATA JAVA E C. Massimiliano Redolfi. Lezione 7: Code, Stack, Liste PAJC. Ricerca. prof. Massimiliano Redolfi PAJC

PROGRAMMAZIONE AVANZATA JAVA E C. Massimiliano Redolfi. Lezione 7: Code, Stack, Liste PAJC. Ricerca. prof. Massimiliano Redolfi PAJC PROGRAMMAZIONE AVANZATA JAVA E C Massimiliano Redolfi Lezione 7: Code, Stack, Liste Ricerca 2 Ricerca Se dobbiamo cercare un elemento in un array possiamo trovarci in due situazioni Elementi non ordinati

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

Data Mining in SAP. Alessandro Ciaramella

Data Mining in SAP. Alessandro Ciaramella UNIVERSITÀ DI PISA Corsi di Laurea Specialistica in Ingegneria Informatica per la Gestione d Azienda e Ingegneria Informatica Data Mining in SAP A cura di: Alessandro Ciaramella La Business Intelligence

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Prodotto libero di gruppi

Prodotto libero di gruppi Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto

Dettagli

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado. Risposta A). Il triangolo ABC ha la stessa altezza del triangolo AOB ma base di lunghezza doppia (il diametro

Dettagli

1 Giochi a due, con informazione perfetta e somma zero

1 Giochi a due, con informazione perfetta e somma zero 1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una

Dettagli

Verifica parte IIA. Test (o analisi dinamica) Mancanza di continuità. Esempio

Verifica parte IIA. Test (o analisi dinamica) Mancanza di continuità. Esempio Test (o analisi dinamica) Verifica parte IIA Rif. Ghezzi et al. 6.3-6.3.3 Consiste nell osservare il comportamento del sistema in un certo numero di condizioni significative Non può (in generale) essere

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Docente: V. Lonati Progetto Il faccendiere valido per gli appelli di giugno e luglio 2012 1 Il problema Un faccendiere vuole depositare ingenti quantità di denaro

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Alberi binari di ricerca

Alberi binari di ricerca Alberi binari di ricerca Definizione Visita dell albero inorder Ricerca Ricerca minimo, massimo e successore. Inserimento ed eliminazione di un nodo Problema del bilanciamento dell albero Albero binario

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

1. I limiti delle funzioni.

1. I limiti delle funzioni. 1. I iti delle funzioni. 1.1. Considerazioni introduttive. La nozione di ite di una funzione reale di variabile reale costituisce una naturale generalizzazione della nozione di ite di una successione.

Dettagli

Sommario. 1 Codifica binaria delle informazioni. 2 Codifica binaria di informazioni di tipo numerico e aritmetica binaria

Sommario. 1 Codifica binaria delle informazioni. 2 Codifica binaria di informazioni di tipo numerico e aritmetica binaria Sommario Codifica delle informazioni 1 Codifica delle informazioni M. Favalli 2 Codifica di informazioni di tipo numerico e aritmetica Engineering Department in Ferrara 3 M. Favalli (ENDIF) Codici Reti

Dettagli

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche . Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi

Dettagli

1 Insiemi e terminologia

1 Insiemi e terminologia 1 Insiemi e terminologia Assumeremo come intuitiva la nozione di insieme e ne utilizzeremo il linguaggio come strumento per studiare collezioni di oggetti. Gli Insiemi sono generalmente indicati con le

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

APPENDICE NOZIONI BASE E VARIE

APPENDICE NOZIONI BASE E VARIE pag. 131 Appendice: Nozioni base e varie G. Gerla APPENDICE NOZIONI BASE E VARIE 1. Funzioni e relazioni di equivalenza Questi appunti sono rivolti a persone che abbiano già una conoscenza elementare della

Dettagli

Kangourou Italia Gara del 15 marzo 2007 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado

Kangourou Italia Gara del 15 marzo 2007 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado Testi_07.qxp 6-04-2007 2:07 Pagina 28 Kangourou Italia Gara del 5 marzo 2007 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. al N. 0 valgono 3 punti

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

2. Insiemi ed elementi di calcolo combinatorio

2. Insiemi ed elementi di calcolo combinatorio Dispense del corso di Ottimizzazione Combinatoria (IN440 2. Insiemi ed elementi di calcolo combinatorio Marco Liverani Università degli Studi Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

NUMERI E SUCCESSIONI

NUMERI E SUCCESSIONI NUMERI E SUCCESSIONI Giovanni Maria Troianiello 1 Notazioni insiemistiche. Numeri naturali, interi, razionali Notazioni insiemistiche Si sa cosa s intende quando si parla di insieme (o famiglia, o classe)

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 05 La rappresentazione dell informazione Carla Limongelli Ottobre 2011 http://www.dia.uniroma3.it/~java/fondinf/ La rappresentazione

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

4. Operazioni binarie, gruppi e campi.

4. Operazioni binarie, gruppi e campi. 1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in

Dettagli

f: AxB f(x)=y, f={ per ogni x in A esiste unica y in B f(x)=y} f={<1,2>, <2,3>, <3,3>} : {1,2,3} {1,2,3} f(1)=2, f(2)=3, f(3)=3

f: AxB f(x)=y, f={<x,y> per ogni x in A esiste unica y in B f(x)=y} f={<1,2>, <2,3>, <3,3>} : {1,2,3} {1,2,3} f(1)=2, f(2)=3, f(3)=3 Insieme delle parti di A : Funzione : insieme i cui elementi sono TUTTI i sottoinsiemi di A f: AxB f(x)=y, f={ per ogni x in A esiste unica y in B f(x)=y} f={, , } : {1,2,3} {1,2,3}

Dettagli

STRINGHE di un ALFABETO. Consideriamo un alfabeto di simboli V V è un insieme finito e non vuoto. Alfabeto della lingua inglese I={a,b,c,..

STRINGHE di un ALFABETO. Consideriamo un alfabeto di simboli V V è un insieme finito e non vuoto. Alfabeto della lingua inglese I={a,b,c,.. STRINGHE di un ALFABETO Consideriamo un alfabeto di simboli V V è un insieme finito e non vuoto Alfabeto binario A={0,1} Alfabeto della lingua inglese I={a,b,c,..z} Stringhe o parole Gli elementi di V

Dettagli

Dispense di Algebra 1 - Gruppi

Dispense di Algebra 1 - Gruppi Dispense di Algebra 1 - Gruppi Dikran Dikranjan e Maria Silvia Lucido Dipartimento di Matematica e Informatica Università di Udine via delle Scienze 200, I-33100 Udine gennaio 2005 L algébre est généreuse,

Dettagli

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( ) Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei

Dettagli

È fatta male? Perché? Come si può correggere?

È fatta male? Perché? Come si può correggere? UNA TABELLA N Inv Stanza Resp Oggetto Produttore Descrizione 1012 256 Ghelli Mac Mini Apple Personal Comp 1015 312 Albano Dell XPS M1330 Dell Notebook 2 GHZ 1034 256 Ghelli Dell XPS M1330 Dell Notebook

Dettagli

La programmazione con vincoli in breve. La programmazione con vincoli in breve

La programmazione con vincoli in breve. La programmazione con vincoli in breve Obbiettivi Introdurre la nozione di equivalenza di CSP. Dare una introduzione intuitiva dei metodi generali per la programmazione con vincoli. Introdurre il framework di base per la programmazione con

Dettagli

Esercizi Capitolo 14 - Algoritmi Greedy

Esercizi Capitolo 14 - Algoritmi Greedy Esercizi Capitolo 14 - Algoritmi Greedy Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare

Dettagli

Corso di Laurea in Matematica

Corso di Laurea in Matematica Corso di Laurea in Matematica Laboratorio di Informatica (a.a. 2002-03) Esercizi 1 Docente: Monica Nesi 1. Scrivere un programma in C che, dati in ingresso due numeri naturali, calcola il loro prodotto

Dettagli

Algoritmi di progettazione di basi di dati relazionali e altre dipendenze

Algoritmi di progettazione di basi di dati relazionali e altre dipendenze Algoritmi di progettazione di basi di dati relazionali e altre dipendenze Nel Capitolo 11 è stata illustrata la tecnica di progettazione relazionale top-down e i relativi concetti che risultano ampiamente

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Basi di Dati II. Qualità di schemi relazionali (2) Qualità di schemi relazionali. 1) Semantica degli attributi di una relazione

Basi di Dati II. Qualità di schemi relazionali (2) Qualità di schemi relazionali. 1) Semantica degli attributi di una relazione Basi di Dati II LE FASI DI PROGETTAZIONE DI UN DATABASE Indipendente dal DBMS Miniworld RACCOLTA ED ANALISI DEI REQUISITI 1 Lezione 1. Dipendenze funzionali e Normalizzazione di DB Relazionali Prof.ssa

Dettagli

TOPOLOGIA ALBERTO SARACCO

TOPOLOGIA ALBERTO SARACCO TOPOLOGIA ALBERTO SARACCO Abstract. Le presenti note saranno il più fedeli possibile a quanto detto a lezione. I testi consigliati sono Jänich [1], Kosniowski [2] e Singer- Thorpe [3]. Un ottimo libro

Dettagli

Corrispondenze e relazioni - Complementi

Corrispondenze e relazioni - Complementi PRODOTTO CARTESIANO Nell elencare gli elementi di un insieme, l ordine non ha alcuna importanza; ma ci sono situazioni in cui l ordine con cui si indicano gli elementi è fondamentale. La partita Milan

Dettagli

Laurea Specialistica in Informatica - Università di Ferrara 2008-2009 [1]

Laurea Specialistica in Informatica - Università di Ferrara 2008-2009 [1] Laurea Specialistica in Informatica - Università di Ferrara 2008-2009 [1] Macchine di Turing modello di calcolo introdotto dall ingegner Alan Turing nel 1936, per simulare il processo di calcolo umano

Dettagli

G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia

G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia Definizione 1.1 Relazione. Dati due insiemi A e B un sottoisieme R A B è detto una relazione binaria tra A e B. Se A = B allora

Dettagli

Analisi Statistica dei Dati Misurazione e gestione dei rischi a.a. 2007-2008

Analisi Statistica dei Dati Misurazione e gestione dei rischi a.a. 2007-2008 Analisi Statistica dei Dati Misurazione e gestione dei rischi a.a. 2007-2008 Dott. Chiara Cornalba Argomenti Market Basket Analysis: Odds Ratio e Regole associative 2 Posizionamento prodotti Tanto più

Dettagli

CAPITOLO 27 SCAMBIO DI MESSAGGI

CAPITOLO 27 SCAMBIO DI MESSAGGI CAPITOLO 27 SCAMBIO DI MESSAGGI SCAMBIO DI MESSAGGI Sia che si guardi al microkernel, sia a SMP, sia ai sistemi distribuiti, Quando i processi interagiscono fra loro, devono soddisfare due requisiti fondamentali:

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 39 Introduzione Come si è detto,

Dettagli

Relazioni insiemistiche

Relazioni insiemistiche G.Gorni 1993/94 Relazioni insiemistiche 1. Coppie ordinate. Se è vero che un insieme è un elenco di elementi, si può pensare di usarlo come strumento di registrazione. Si parte da. Se la prima informazione

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Alcuni Preliminari Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a! A e b! B. Es: dati A= {a,b,c} e B={,2,3}

Dettagli

Esercitazione 2 di verifica

Esercitazione 2 di verifica Architettura degli Elaboratori, 27-8 Esercitazione 2 di verifica Soluzione: mercoledì 24 ottobre Una unità di elaborazione U è così definita: Domanda 1 i) possiede al suo interno due componenti logici

Dettagli

APPLICAZIONI DELLA RICERCA OPERATIVA

APPLICAZIONI DELLA RICERCA OPERATIVA Università degli Studi della Calabria Laurea in Informatica A.A. 2004/2005 Appunti di supporto didattico al corso di APPLICAZIONI DELLA RICERCA OPERATIVA Indice 1 Introduzione alla teoria dello Scheduling

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Introduzione alla tecnica di Programmazione Dinamica

Introduzione alla tecnica di Programmazione Dinamica Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/37 Sommario della lezione Introduzione alla tecnica di Programmazione Dinamica Esempio di applicazione n. 1:

Dettagli

Parte I. Relazioni di ricorrenza

Parte I. Relazioni di ricorrenza Parte I Relazioni di ricorrenza 1 Capitolo 1 Relazioni di ricorrenza 1.1 Modelli Nel seguente capitolo studieremo le relazioni di ricorrenza. Ad esempio sono relazioni di ricorrenza a n = a n 1 + n, a

Dettagli

DOMINI A FATTORIZZAZIONE UNICA

DOMINI A FATTORIZZAZIONE UNICA DOMINI A FATTORIZZAZIONE UNICA CORSO DI ALGEBRA, A.A. 2012-2013 Nel seguito D indicherà sempre un dominio d integrità cioè un anello commutativo con unità privo di divisori dello zero. Indicheremo con

Dettagli

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano

Dettagli

E una notazione per descrivere gli algoritmi.

E una notazione per descrivere gli algoritmi. Linguaggio di Programmazione E una notazione per descrivere gli algoritmi. Programma:: e la rappresentazione di un algoritmo in un particolare linguaggio di programmazione. In generale, ogni linguaggio

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Le funzioni elementari. La struttura di R. Sottrazione e divisione

Le funzioni elementari. La struttura di R. Sottrazione e divisione Le funzioni elementari La struttura di R La struttura di R è definita dalle operazioni Addizione e moltiplicazione. Proprietà: Commutativa Associativa Distributiva dell addizione rispetto alla moltiplicazione

Dettagli

I tipi di dato astratti

I tipi di dato astratti I tipi di dato astratti.0 I tipi di dato astratti c Diego Calvanese Fondamenti di Informatica Corso di Laurea in Ingegneria Elettronica A.A. 001/00.0 0 I tipi di dato astratti La nozione di tipo di dato

Dettagli

Prob(CCCCCCCCCC) = 1 2 10

Prob(CCCCCCCCCC) = 1 2 10 12. Contenuto di Informazione Algoritmico (AIC) - 17/05/12 Vogliamo adesso introdurre una nozione di contenuto di informazione di una stringa infinita, prodotta da una sorgente di informazione, che non

Dettagli

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello

Dettagli

Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici

Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici Per ogni lezione, sintetizzare i circuiti combinatori o sequenziali che soddisfino le specifiche date e quindi implementarli e

Dettagli

Insiemi di livello e limiti in più variabili

Insiemi di livello e limiti in più variabili Insiemi di livello e iti in più variabili Insiemi di livello Si consideri una funzione f : A R, con A R n. Un modo per poter studiare il comportamento di una funzione in più variabili potrebbe essere quello

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS

CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS INTRODUZIONE Per conoscere la struttura di un grafo connesso è importante individuare nel grafo la distribuzione di certi punti detti cutpoints (punti

Dettagli

Linguaggi formali e compilazione

Linguaggi formali e compilazione Linguaggi formali e compilazione Corso di Laurea in Informatica A.A. 2015/2016 Linguaggi formali e compilazione Elementi generali Un parser generico di tipo procede operando una sequenza di riduzioni a

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli