Moti relativi. Cenni. Dott.ssa Elisabetta Bissaldi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Moti relativi. Cenni. Dott.ssa Elisabetta Bissaldi"

Transcript

1 Moti relativi Cenni Dott.ssa Elisabetta Bissaldi

2 Elisabetta Bissaldi (Politecnico di Bari) A.A In generale, la descrizione del moto dipende dal sistema di riferimento scelto Si consideri un sistema di riferimento S fisso con polo O, e un sistema di riferimento mobile S, con polo O. v O : velocità del sistema S rispetto a S Relazione tra le posizioni r ed r di un punto P misurate rispetto ai due sistemi r = OO + r TEOREMA DELLE VELOCITÀ RELATIVE Sistemi di riferimento v = v + v O + ω r v: velocità di P rispetto a S (velocità assoluta) v : velocità di P rispetto al sistema S (velocità relativa) ω: velocità angolare del sistema S rispetto al sistema S S O r S O OO r P

3 Elisabetta Bissaldi (Politecnico di Bari) A.A VELOCITÀ DI TRASCINAMENTO Sistemi di riferimento v t = v v = v O + ω r Dipende dai parametri del sistema mobile S rispetto al sistema fisso (v O, ω) e dalla posizione di P rispetto a S Casi particolari 1. Il sistema S NON RUOTA rispetto a quello fisso (ω = 0) o Moto di TRASCINAMENTO TRASLATORIO RETTILINEO tra i due sistemi v t = v O v = v + v O 2. Il sistema non si sposta rispetto a quello fisso (v O = 0), ma ruota o Moto di TRASCINAMENTO ROTATORIO v t = ω r v = v + ω r

4 Elisabetta Bissaldi (Politecnico di Bari) A.A TEOREMA DELLE ACCELERAZIONI RELATIVE a = a + a O + ω ω r + 2ω v = a + a t + a C a: accelerazione di P rispetto al sistema fisso S accelerazione assoluta a : accelerazione di P rispetto al sistema mobile S accelerazione relativa a O = dv O : accelerazione di S rispetto al sistema fisso S dt ACCELERAZIONE DI TRASCINAMENTO Sistemi di riferimento a t = a O + ω ω r Dipende dai parametri del sistema mobile S rispetto al sistema fisso e dalla posizione di P rispetto a S ACCELERAZIONE DI CORIOLIS a C = 2ω v Dipende dal moto di P rispetto al sistema mobile S (v )

5 Elisabetta Bissaldi (Politecnico di Bari) A.A Sistemi di riferimento inerziali I sistemi di riferimento inerziali sono quelli per i quali vale rigorosamente il principio d inerzia. Se un sistema di riferimento si muove rispetto ad uno inerziale con moto rettilineo uniforme si ha ω = 0 e a O = 0. Ne consegue che a = a o Le accelerazioni di un punto misurate nei due sistemi di riferimento sono uguali o Se a = 0 allora anche a = 0 anche il secondo sistema è inerziale Definito un sistema inerziale, tutti i sistemi in moto rettilineo uniforme rispetto al primo sono anch essi inerziali

6 Elisabetta Bissaldi (Politecnico di Bari) A.A Relatività Galileiana Conseguenza del risultato riguardante i sistemi di riferimento inerziali è che la seconda legge della Dinamica si esprime nella stessa maniera in tutti i sistemi di riferimento inerziali Se nel sistema S si misura a e si deduce che la forza agente è F = ma, nel sistema S si misura LA STESSA a e si deduce LA STESSA FORZA F o F in questi casi è detta FORZA VERA Non è possibile, a seguito di misure di meccanica, stabilire se uno dei sistemi di riferimento è in moto o in quiete Non ha senso il concetto di moto assoluto Si parla dunque di RELATIVITÀ GALILEIANA

7 Elisabetta Bissaldi (Politecnico di Bari) A.A Viceversa: Se la descrizione del moto è fatta in SISTEMI NON INERZIALI avremo che la forza vera F = ma ma Nel sistema mobile non inerziale, la legge della dinamica si ottiene moltiplicando per la massa m le precedenti equazioni per le accelerazioni ma = ma ma t ma C = F ma t ma C Per mantenere valida la legge della dinamica si devono aggiungere delle FORZE APPARENTI che sono proporzionali alla massa (per cui vengono anche dette FORZE INERZIALI. Tali Forze: Relatività Galileiana o NON sono dovute ad interazioni fondamentali, ma all uso di un sistema non inerziale o NON esistono o NON si devono considerare nei sistemi inerziali

8 Elisabetta Bissaldi (Politecnico di Bari) A.A Moto di trascinamento traslatorio rettilineo Moto di trascinamento traslatorio più semplice: quello rettilineo S si muove rispetto a S (inerziale) lungo una TRAIETTORIA RETTILINEA 1. Se a O = 0 anche S è inerziale 2. Se a O 0 S è NON inerziale 1. TRASFORMAZIONI GALILEIANE Assunzione: al tempo t = 0 le origini O e O coincidono r = r v O t v = v v O a = a

9 Elisabetta Bissaldi (Politecnico di Bari) A.A Esempio 5.1 Si consideri un punto materiale che viene lasciato cadere lungo l asse z da un altezza h, in un sistema di riferimento inerziale S. Cosa vede un osservatore in un sistema di riferimento inerziale S in movimento lungo l asse x rispetto ad S con velocità v O?

10 Elisabetta Bissaldi (Politecnico di Bari) A.A Moto di trascinamento traslatorio rettilineo 2. Caso con sistema di riferimento S NON inerziale. Adesso il sistema di riferimento è in movimento con un accelerazione costante a O = a t e velocità iniziale v in, ambedue parallele e concordi all asse x = x. FORMULE DI TRASFORMAZIONE r = r OO v = v v O a = a a 0

11 Elisabetta Bissaldi (Politecnico di Bari) A.A Esempio 5.2 Si consideri un sistema con origine O e asse z verticale solidale ad un ascensore che si muove lungo l asse z = z di un sistema inerziale con origine in O. L ascensore inizia a salire con accelerazione a t, parallela e concorde all asse z, descrive poi un moto uniforme e infine decelera con accelerazione a t, fino a fermarsi. Se nell ascensore si compiono esperimenti di caduta libera dei corpi, si valuti l accelerazione a misurata nelle tre fasi del moto.

12 Elisabetta Bissaldi (Politecnico di Bari) A.A Moto di trascinamento rotatorio uniforme Sistema di riferimento S in rotazione con ω = costante rispetto al sistema di riferimento inerziale S. Per semplicità si assumono a O = 0, v O = 0 e origini degli assi nei due sistemi di riferimento coincidenti (r = r ). Le relazioni di trasformazione diventano v = v ω r a = a ω ω r 2ω v La relazione tra forze diventa: F + F centr + F Cor = ma F centr = ω ω r FORZA CENTRIFUGA F Cor = 2ω v FORZA DI CORIOLIS

13 Elisabetta Bissaldi (Politecnico di Bari) A.A Un sistema di riferimento che si possa considerare inerziale è con origine nel centro di massa del Sistema Solare e con assi orientati verso le stelle lontane che si possono ragionevolmente ritenere fisse Di norma però tutte le descrizioni dei moti vengono date rispetto alla Terra, che non costituisce un sistema di riferimento inerziale o La Terra ruota intorno al proprio asse con periodo T = 24 h Velocità angolare di rotazione della Terra: ω = 2π T = rad/s o Si trascura l accelerazione centripeta dovuta al moto di rivoluzione della Terra attorno al Sole. Accelerazione di gravità misurata nel sistema terrestre (R = m) g = g 0 ω ω R 2ω v o g 0 : accelerazione di gravità nel sistema inerziale, dovuta all attrazione terrestre o Termini correttivi: Il moto rispetto alla Terra ω ω R : termine centrifugo, ortogonale all asse terrestre (~10 2 ) 2ω v : termine di Coriolis (v velocità del corpo nel sistema terrestre)

O + ω r (1) Due casi sono fondamentali (gli altri si possono pensare una sovrapposizione di questi due:

O + ω r (1) Due casi sono fondamentali (gli altri si possono pensare una sovrapposizione di questi due: 1 5.1-MOTI RELATIVI Parte I 5.1-Moti relativi-cap5 1 5.1-Moti relativi Teorema delle velocità relative Riprendiamo l impostazione tracciata nel paragrafo 2.6 (moti relativi 2-D) e consideriamo un sistema

Dettagli

P = r. o + r. O + ω r (1)

P = r. o + r. O + ω r (1) 1 5.1-MOTI RELATIVI Parte I 5.1-Moti relativi-cap5 1 5.1-Moti relativi Teorema delle velocità relative Riprendiamo l impostazione tracciata nel paragrafo 2.6 (moti relativi 2-D) e consideriamo un sistema

Dettagli

Il moto ed i sistemi di riferimento

Il moto ed i sistemi di riferimento Consideriamo il moto di un punto materiale riferito ad un sistema cartesiano S... che chiameremo fisso o assoluto e ad un sistema S che chiameremo mobile o relativo Il sistema S si può muovere perché si

Dettagli

Cinematica dei moti relativi

Cinematica dei moti relativi Cinematica dei moti relativi Carattere relativo del moto --> scelta sistema di riferimento Cercheremo le leggi di trasformazione classiche dei vettori v e a di uno stesso punto materiale tra due sistemi

Dettagli

Meccanica. 10. Pseudo-Forze. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 10. Pseudo-Forze.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 10. Pseudo-Forze http://campus.cib.unibo.it/2429/ Domenico Galli Dipartimento di Fisica e Astronomia 17 febbraio 2017 Traccia 1. Le Pseudo-Forze 2. Esempi 3. Pseudo-Forze nel Riferimento Terrestre

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

MECCANICA QUANTISTICA

MECCANICA QUANTISTICA La Meccanica MECCANICA: Studio del moto di un corpo in tutti i suoi aspetti. Si divide in: STATICA: Forze e Equilibrio. Studia delle condizioni per l equilibrio (corpi fermi). CINEMATICA: Descrizione il

Dettagli

Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy)

Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy) Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: 0000695216 Cognome e nome: (dati nascosti per tutela privacy) 1. Di quanto ruota in un giorno sidereo il piano di oscillazione del pendolo di

Dettagli

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali Forza gravitazionale e forza peso massa e peso, peso apparente Forze normali Moto circolare

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

LE FORZE E IL MOTO. Il moto lungo un piano inclinato

LE FORZE E IL MOTO. Il moto lungo un piano inclinato LE FORZE E IL MOTO Il moto lungo un piano inclinato Il moto di caduta lungo un piano inclinato un moto uniformemente accelerato in cui l accelerazione è diretta parallelamente al piano (verso il basso)

Dettagli

Anna M. Nobili: Lezioni Fisica 1 per Chimici a.a

Anna M. Nobili: Lezioni Fisica 1 per Chimici a.a Anna M. Nobili: Lezioni Fisica 1 per Chimici a.a. 2013-2014 26 Settembre 2013 Grandezze fisiche, dimensioni e unità di misura. Potenze di 10 e loro uso. 3 Ottobre 2013 Grandezze fisiche, dimensioni e

Dettagli

Meccanica. 11. Terzo Principio della Dinamica. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 11. Terzo Principio della Dinamica.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 11. Terzo Principio della Dinamica http://campus.cib.unibo.it/2430/ Domenico Galli Dipartimento di Fisica e Astronomia 22 febbraio 2017 Traccia 1. Terzo Principio della Dinamica 2. Centro di

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Statica e dinamica relativa Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

GRAVITAZIONE INTRODUZIONE ALLA FISICA 2. Dott.ssa Elisabetta Bissaldi

GRAVITAZIONE INTRODUZIONE ALLA FISICA 2. Dott.ssa Elisabetta Bissaldi GRAVITAZIONE INTRODUZIONE ALLA FISICA 2 Dott.ssa Elisabetta Bissaldi Corso di Fisica 2 Testi consigliati: MAZZOLDI NIGRO VOCI Elementi di FISICA Elettromagnetismo TIPLER MOSCA Corso di fisica 2 HALLIDAY

Dettagli

DINAMICA. La dinamica è un porte della fisica che studia le cause del movimento dei corpi.

DINAMICA. La dinamica è un porte della fisica che studia le cause del movimento dei corpi. DINAMICA La dinamica è un porte della fisica che studia le cause del movimento dei corpi. Per facilitare lo studio ci riferiamo al punto materiale definito come un punto dove è concentrata la massa del

Dettagli

Corso di Fisica generale

Corso di Fisica generale Corso di Fisica generale Liceo Scientifico Righi, Cesena Anno Scolastico 2014/15 3B Appunti sulla Dinamica: I Riccardo Fabbri 1 (Dispense ed esercizi su www.riccardofabbri.eu) Premessa Cinematica: è lo

Dettagli

SR P. G. Bracco - Appunti di Fisica Generale

SR P. G. Bracco - Appunti di Fisica Generale Moti relativi Nel trattare i moti bisogna definire il sistema di riferimento (SR) rispetto a cui si descrive il moto. A volte è più semplice usare un SR particolare (in moto rispetto ad un altro) ed è

Dettagli

Scritto di Analisi II e Meccanica razionale del

Scritto di Analisi II e Meccanica razionale del Scritto di Analisi II e Meccanica razionale del 19.1.212 Esercizio di meccanica razionale Una terna cartesiana Oxyz ruota con velocità angolare costante ω attorno all asse verticale Oy rispetto ad un riferimento

Dettagli

Anna M. Nobili: Lezioni Fisica 1 per Chimici a.a Settembre 2013

Anna M. Nobili: Lezioni Fisica 1 per Chimici a.a Settembre 2013 Anna M. Nobili: Lezioni Fisica 1 per Chimici a.a. 2013-2014 26 Settembre 2013 3 Ottobre 2013 10 Ottobre 2013 24 Ottobre 2013 31 Ottobre 2013 7 Novembre 2013 21 Novembre 2013 28 Novembre 2013 5

Dettagli

Laurea triennale in Ingegneria Elettronica Corso di Fisica Generale I

Laurea triennale in Ingegneria Elettronica Corso di Fisica Generale I Università degli Studi di Udine, A.A. 2018/2019 Laurea triennale in Ingegneria Elettronica Corso di Fisica Generale I (Modulo I) Prof.ssa Marina Cobal (Modulo II) Prof.ssa Barbara De Lotto https://thecobal.wordpress.com/fisica-i-ingegneria-elettronica-2017-2018/

Dettagli

Esercitazione di Meccanica Razionale 12 ottobre 2016 Laurea in Ingegneria Meccanica Latina

Esercitazione di Meccanica Razionale 12 ottobre 2016 Laurea in Ingegneria Meccanica Latina Esercitazione di Meccanica Razionale 12 ottobre 2016 Laurea in Ingegneria Meccanica Latina Quesito 1. Si considerino il riferimento fisso {O, e i } e quello mobile {O (t), e i (t)}; sia Γ(t) la matrice

Dettagli

Meccanica parte seconda: Perche' i corpi. si muovono? la Dinamica: studio delle Forze

Meccanica parte seconda: Perche' i corpi. si muovono? la Dinamica: studio delle Forze Meccanica parte seconda: Perche' i corpi si muovono? la Dinamica: studio delle Forze Il concetto di forza Le forze sono le cause del moto o meglio della sua variazione Se la velocita' e' costante o nulla

Dettagli

5a.Rotazione di un corpo rigido attorno ad un asse fisso

5a.Rotazione di un corpo rigido attorno ad un asse fisso 5a.Rotazione di un corpo rigido attorno ad un asse fisso Un corpo rigido è un corpo indeformabile: le distanze relative tra i punti materiali che lo costituiscono rimangono costanti. Il modello corpo rigido

Dettagli

Dinamica. Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa

Dinamica. Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa Dinamica Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa Cinematica Moto rettilineo uniforme s=s 0 +v(t-t 0 ) Moto uniformemente accelerato v=v 0 +a(t-t

Dettagli

Main training FISICA. Lorenzo Manganaro. Lezione 3 Cinematica

Main training FISICA. Lorenzo Manganaro. Lezione 3 Cinematica Main training 2017-2018 FISICA Lorenzo Manganaro Lezione 3 Cinematica 1. Introduzione e caratteri generali 2. Moti 1D 1. Moto uniformemente accelerato 2. Moto rettilineo uniforme 3. Moti 2D 1. Moto parabolico

Dettagli

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE ESERCIZI DI DINAMICA DEL PUNTO MATERIALE Per un pendolo semplice di lunghezza l=5 m, determinare a quale altezza può essere sollevata la massa m= g sapendo che il carico di rottura è T max =5 N. SOL.-

Dettagli

La teoria della Relatività Generale

La teoria della Relatività Generale Liceo Classico Seneca La teoria della Relatività Generale Prof. E. Modica La massa Dipendenza della massa dalla velocità Se un corpo di massa m è soggetto ad una forza costante F nella direzione della

Dettagli

Prova Parziale 2 Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che i

Prova Parziale 2 Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che i Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che il piano esercita sul blocco vale in modulo: F = 9.8 N F = 0.5 N F =

Dettagli

Dinamica. Giovanni Torrero maggio 2006

Dinamica. Giovanni Torrero maggio 2006 Dinamica Giovanni Torrero maggio 006 1 I sistemi di riferimento inerziali Nello studio della dinamica sono molto importanti i sistemi di riferimento rispetto ai quali vengono studiati i fenomeni. L esperienza

Dettagli

CORSO DI METEOROLOGIA GENERALE E AERONAUTICA 11 - La Forza di Coriolis

CORSO DI METEOROLOGIA GENERALE E AERONAUTICA 11 - La Forza di Coriolis CORSO DI METEOROLOGIA GENERALE E AERONAUTICA 11 - Dr. Marco Tadini meteorologo U.M.A. Home Page - Ufficio Meteorologico Aeroportuale www.ufficiometeo ufficiometeo.itit PREMESSE Leggi di Newton (Principi

Dettagli

FISICA. MECCANICA: Principio conservazione momento angolare. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. MECCANICA: Principio conservazione momento angolare. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA MECCANICA: Principio conservazione momento angolare Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica MOMENTO ANGOLARE Fino a questo punto abbiamo esaminato soltanto moti di traslazione.

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Sistemi

Dettagli

Esercizi da fare a casa

Esercizi da fare a casa apitolo 1 Esercizi da fare a casa 1.1 Premesse I seguenti esercizi sono risolubili nella seconda settimana di corso. Per quelli del primo gruppo le soluzioni si possono estrarre dal mio libro di Esercizi

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Lezione 2 Sistemi di riferimento

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

Dinamica. Obbiettivo: prevedere il moto dei corpi una volta note le condizioni iniziali e le interazioni con l'ambiente

Dinamica. Obbiettivo: prevedere il moto dei corpi una volta note le condizioni iniziali e le interazioni con l'ambiente Dinamica Obbiettivo: prevedere il moto dei corpi una volta note le condizioni iniziali e le interazioni con l'ambiente Tratteremo la Dinamica Classica, valida solo per corpi per i quali v

Dettagli

INDICE GRANDEZZE FISICHE

INDICE GRANDEZZE FISICHE INDICE CAPITOLO 1 GRANDEZZE FISICHE Compendio 1 1-1 Introduzione 2 1-2 Il metodo scientifico 2 1-3 Leggi della Fisica e Principi 4 1-4 I modelli in Fisica 7 1-5 Grandezze fisiche e loro misurazione 8 1-6

Dettagli

DINAMICA DEL PUNTO MATERIALE

DINAMICA DEL PUNTO MATERIALE DINAMICA DEL PUNTO MATERIALE DOWNLOAD Il pdf di questa lezione (0308a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 08/03/2012 I 3 PRINCIPI DELLA DINAMICA PRIMO PRINCIPIO Esiste una

Dettagli

Meccanica 17 giugno 2013

Meccanica 17 giugno 2013 Meccanica 17 giugno 2013 Problema 1 (1 punto) Un punto si muove nel piano y-x con legge oraria: Con x,y misurati in metri, t in secondi. a) Determinare i valori di y quando x=1 m; b) Determinare il modulo

Dettagli

Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A Soluzioni proposte per il Foglio di Esercizi n. 2

Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A Soluzioni proposte per il Foglio di Esercizi n. 2 Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A. 2004-2005 Soluzioni proposte per il Foglio di Esercizi n. 2 2.1. Il proiettile ed il sasso cadono lungo y per effetto della accelerazione di gravità

Dettagli

Relazioni fondamentali nella dinamica dei sistemi

Relazioni fondamentali nella dinamica dei sistemi Relazioni fondamentali nella dinamica dei sistemi L. P. 2 Maggio 2010 1. Quantità di moto e centro di massa Consideriamo un sistema S costituito da N punti materiali. Il punto i (i = 1,..., N) possiede

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

Dinamica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi

Dinamica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi Dinamica del punto ESERCIZI Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Si consideri un corpo di massa m posto alla base di un piano inclinato di un angolo θ,

Dettagli

Momento di una forza

Momento di una forza Momento di una forza Se è la forza che cambia il moto, cos è che cambia la rotazione? Momento, τ, di una forza, F : è un vettore definito come τ = r F. Il momento di una forza dipende dall origine e dal

Dettagli

MOTO RETTILINEO UNIFORMEMETE ACCELERATO

MOTO RETTILINEO UNIFORMEMETE ACCELERATO MOTO RETTILINEO UNIFORMEMETE ACCELERATO RETTILINEO UNIFORMEMENTE ACCELERATO E la velocita? a MEDIA = a ISTANTANEA Siano t 0 l istante di tempo in cui il corpo inizia ad accelerare v 0 la velocita all istante

Dettagli

3.Dinamica e forze. La dinamica è quella parte della meccanica che studia il moto di un corpo facendo riferimento alle cause esterne che lo generano.

3.Dinamica e forze. La dinamica è quella parte della meccanica che studia il moto di un corpo facendo riferimento alle cause esterne che lo generano. 3.Dinamica e forze La dinamica è quella parte della meccanica che studia il moto di un corpo facendo riferimento alle cause esterne che lo generano. Le due grandezze fondamentali che prendiamo in considerazione

Dettagli

Cinematica: descrizione del movimento del punto Come il punto si muove

Cinematica: descrizione del movimento del punto Come il punto si muove Cinematica: descrizione del movimento del punto Come il punto si muove Nota la traiettoria r=r(t), sappiamo cosa sono v e a istante per istante Oppure, nota a(t) istante per istante (e note le condizioni

Dettagli

Sistemi Rigidi. --> la posizione del CM rimane invariata rispetto a quella dei punti materiali

Sistemi Rigidi. --> la posizione del CM rimane invariata rispetto a quella dei punti materiali Sistemi Rigidi Sistema rigido --> corpo indeformabile (distanze costanti tra le coppie dei punti materiali costituenti) qualsiasi siano le forze esterne agenti su di esso --> in realtà tutti corpi sottoposti

Dettagli

Equilibrio dei corpi. Leggi di Newton e momento della forza, τ

Equilibrio dei corpi. Leggi di Newton e momento della forza, τ Equilibrio dei corpi Leggi di Newton e momento della forza, τ Corpi in equilibrio 1. Supponiamo di avere due forze di modulo uguale che agiscono lungo la stessa direzione, ma che siano rivolte in versi

Dettagli

Forza centrifuga. Funi e molle. Equazioni del moto

Forza centrifuga. Funi e molle. Equazioni del moto La forza è un particolare tipo di forza apparente, presente quando il sistema non inerziale (SNI) è in moto rototraslatorio rispetto ad un sistema di riferimento inerziale (SI). Nel moto rototraslatorio

Dettagli

MODELLI MATEMATICI PER LA MECCANICA CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE

MODELLI MATEMATICI PER LA MECCANICA CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE MODELLI MATEMATICI PER LA MECCANICA CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE Argomenti svolti nell A.A.2016-17 (03/10/2016) Introduzione al corso.spazi affini. Spazi vettoriali. Conseguenze delle ipotesi

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

DINAMICA (Leggi di Newton)

DINAMICA (Leggi di Newton) DINAMICA (Leggi di Newton) DINAMICA (Leggi di Newton) I PRINCIPI FONDAMENTALI DELLA DINAMICA (Leggi di Newton) I corpi interagiscono fra di loro mediante azioni, chiamate forze, che costituiscono le cause

Dettagli

Relatività. 1. Principio di relatività galileiana. 2. Esperimento di Mickelson-Morley. 3. Espansione dei tempi/contrazione delle

Relatività. 1. Principio di relatività galileiana. 2. Esperimento di Mickelson-Morley. 3. Espansione dei tempi/contrazione delle Relatività 1. Principio di relatività galileiana 2. Esperimento di Mickelson-Morley 3. Espansione dei tempi/contrazione delle lunghezze di corpi in moto 4. Massa e quantità di moto relativistiche 5. Energia

Dettagli

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R Esercizio 1 Un corpo puntiforme di massa m scivola lungo una pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. a) Determinare il valore

Dettagli

Dinamica del punto materiale parte seconda

Dinamica del punto materiale parte seconda Dinamica del punto materiale parte seconda a.a. 2017-2018 Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci Dinamica del punto materiale parte seconda a.a. 2017-2018 Testo di riferimento:

Dettagli

Numero progressivo: 46 Turno: 1 Fila: 2 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy)

Numero progressivo: 46 Turno: 1 Fila: 2 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy) Numero progressivo: 46 Turno: 1 Fila: 2 Posto: 1 Matricola: 0000754057 Cognome e nome: (dati nascosti per tutela privacy) 1. La somma delle forze applicate a un corpo rigido è nulla. Si può per questo

Dettagli

Relatività classica (o galileiana)

Relatività classica (o galileiana) Relatività classica (o galileiana) Relatività del moto e Sistemi di riferimento Tutti i moti sono relativi: non ha alcun senso affermare l'assoluta staticità di un sistema fisico. Come già sappiamo la

Dettagli

Esercitazioni del 09/06/2010

Esercitazioni del 09/06/2010 Esercitazioni del 09/06/2010 Problema 1) Un anello di massa m e di raggio r rotola, senza strisciare, partendo da fermo, lungo un piano inclinato di un angolo α=30 0. a) Determinare la legge del moto.

Dettagli

1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5

1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5 Indice 1 Cinematica del punto... 1 1.1 Componenti intrinseche di velocità e accelerazione... 3 1.2 Moto piano in coordinate polari... 5 2 Cinematica del corpo rigido... 9 2.1 Configurazioni rigide......

Dettagli

Cinematica del punto. Moto rettilineo. Dott.ssa Elisabetta Bissaldi

Cinematica del punto. Moto rettilineo. Dott.ssa Elisabetta Bissaldi Cinematica del punto Moto rettilineo Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 La meccanica Studia il MOTO DEI CORPI Spiega la relazione tra le CAUSE che generano

Dettagli

Registro di Meccanica /17 - F. Demontis 2

Registro di Meccanica /17 - F. Demontis 2 Registro delle lezioni di MECCANICA 1 Corso di Laurea in Matematica 8 CFU - A.A. 2016/2017 docente: Francesco Demontis ultimo aggiornamento: 9 giugno 2017 1. Venerdì 3/03/2017, 11 13. ore: 2(2) Presentazione

Dettagli

Liceo G.B. Vico Corsico A.S

Liceo G.B. Vico Corsico A.S Liceo G.B. Vico Corsico A.S. 2018-19 Programma svolto durante l anno scolastico Classe: Materia: Insegnante: Testo utilizzato: 3A Fisica Prof. Andrea Roselli Fabbri-Masini-Baccaglini Quantum vol 1 ed SEI

Dettagli

Soluzione del Secondo Esonero A.A , del 28/05/2013

Soluzione del Secondo Esonero A.A , del 28/05/2013 Soluzione del Secondo Esonero A.A. 01-013, del 8/05/013 Primo esercizio a) Sia v la velocità del secondo punto materiale subito dopo l urto, all inizio del tratto orizzontale con attrito. Tra il punto

Dettagli

Si occupa di dare un descrizione quantitativa degli aspetti geometrici e temporali del moto indipendentemente dalle cause che lo producono.

Si occupa di dare un descrizione quantitativa degli aspetti geometrici e temporali del moto indipendentemente dalle cause che lo producono. CINEMATICA DEL PUNTO MATERIALE I Si occupa di dare un descrizione quantitativa degli aspetti geometrici e temporali del moto indipendentemente dalle cause che lo producono. Il moto di un punto risulta

Dettagli

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018.

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018. Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018 Prova teorica - A Nome... N. Matricola... Ancona, 5 aprile 2018 1. Gradi di libertà di

Dettagli

CORNELIUS ESHER

CORNELIUS ESHER CORNELIUS ESHER CORNELIUS ESHER CORNELIUS ESHER GRADI DI LIBERTA Il numero di gradi di libertà di punto materiale è il numero di quantità indipendenti necessarie per determinare univocamente la sua posizione

Dettagli

Dinamica. Studio delle CAUSE del moto Cosa fa muovere un corpo? FORZA = ciò che modifica l atto di moto di un corpo. Atto di moto

Dinamica. Studio delle CAUSE del moto Cosa fa muovere un corpo? FORZA = ciò che modifica l atto di moto di un corpo. Atto di moto Dinamica Studio delle CAUSE del moto Cosa fa muovere un corpo? Atto di moto Traslatorio Rotatorio Rototraslatorio FORZA = ciò che modifica l atto di moto di un corpo 1 Un po di storia Storicamente (Aristotele)

Dettagli

x(t) = R 0 + R(t) dx(t) dt v(t) = = dr(t) dt Moto circolare uniforme Principi della dinamica

x(t) = R 0 + R(t) dx(t) dt v(t) = = dr(t) dt Moto circolare uniforme Principi della dinamica Il moto con velocità scalare costante si dice moto. La traiettoria è una circonferenza, caratterizzata dunque da un punto centrale e da un raggio, e giacente su un piano. Si tratta quindi di un moto bidimensionale.

Dettagli

Esercitazione N.3 Dinamica del corpo rigido

Esercitazione N.3 Dinamica del corpo rigido Esercitazione N.3 Dinamica del corpo rigido Questi esercizi sono sulle lezioni dalla 12 alla 18 Relativo alla lezione: Rotazioni rigide attorno ad un asse fisso Rotazioni rigide attorno ad un asse fisso

Dettagli

Dinamica dei sistemi di punti

Dinamica dei sistemi di punti Dinamica dei sistemi di punti Trattazione semplificata per i Licei The ascheroni CAD Team Federico Fabrizi Pietro Pennestrì www.geogebraitalia.org 16 dicembre 2012 1 Centro di massa Dato un sistema di

Dettagli

Equazioni di Eulero del corpo rigido.

Equazioni di Eulero del corpo rigido. Equazioni di Eulero del corpo rigido. In questa nota vogliamo scrivere e studiare le equazioni del moto di un corpo rigido libero, sottoposto alla sola forza di gravità. Ci occuperemo in particolare delle

Dettagli

VELOCITÀ MOTO RETTILINEO UNIFORME MOTO UNIFORMEMENTE ACCELERATO

VELOCITÀ MOTO RETTILINEO UNIFORME MOTO UNIFORMEMENTE ACCELERATO 1 VELOCITÀ 1. (Da Veterinaria 2010) In auto percorriamo un primo tratto in leggera discesa di 100 km alla velocità costante di 100 km/h, e un secondo tratto in salita di 100 km alla velocità costante di

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

Registro di Meccanica /17 - F. Demontis 2

Registro di Meccanica /17 - F. Demontis 2 Registro delle lezioni di MECCANICA 1 Corso di Laurea in Matematica 8 CFU - A.A. 2016/2017 docente: Francesco Demontis ultimo aggiornamento: May 19, 2017 1. Venerdì 3/03/2017, 11 13. ore: 2(2) Presentazione

Dettagli

I principi della dinamica come si insegnano e (soprattutto) cosa ci insegnano. mercoledì 4 febbraio 2015

I principi della dinamica come si insegnano e (soprattutto) cosa ci insegnano. mercoledì 4 febbraio 2015 I principi della dinamica come si insegnano e (soprattutto) cosa ci insegnano 1 Perché sono così importanti i tre principi della dinamica? 2 e prima di tutto, cosa dicono i principi della dinamica? 3 Il

Dettagli

Liceo Scientifico A. Einstein - Milano

Liceo Scientifico A. Einstein - Milano Liceo Scientifico A. Einstein - Milano COMPITI ESTIVI DI FISICA Anno scolastico 014-015 Classi 3 D 3 E 3 F Docente: F. Passeri Rifare i problemi dei compiti in classe assegnati durante l'anno. Per ogni

Dettagli

ESERCIZI DI RIEPILOGO

ESERCIZI DI RIEPILOGO ESERCIZI DI RIEPILOGO Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Esercizio R.1 Una spira rettangolare di lati a = 10 cm e b = 6 cm e di resistenza R = 10 Ω si muove con velocità costante

Dettagli

Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE

Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE Leggi della Dinamica Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE Fisica con Elementi di Matematica 1 Leggi della Dinamica Perché i corpi cambiano il loro

Dettagli

Grandezze cinematiche relative nel sistema L: r 12, v 12 a 12 e nel sistema del centro dimassa (C): r 12 ', v 12 ', e a 12 '

Grandezze cinematiche relative nel sistema L: r 12, v 12 a 12 e nel sistema del centro dimassa (C): r 12 ', v 12 ', e a 12 ' Sistemi di due particelle Problema dei due corpi: studio del moto relativo di due corpi supposti puntiformi sotto l azione della forza di interazione mutua. Esempio: moto (relativo) di due corpi celesti

Dettagli

Moti rotatori. Definizioni delle grandezze rotazionali

Moti rotatori. Definizioni delle grandezze rotazionali Moti rotatori Definizioni delle grandezze rotazionali Moti dei corpi rigidi n Un corpo rigido ha generalmente un moto complesso (vedi un bastone lanciato in aria). n In realtà qualunque moto può essere

Dettagli

Note a cura di M. Martellini e M. Zeni

Note a cura di M. Martellini e M. Zeni Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 4 Dinamica Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte da alcuni

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Cinematica dei moti piani

Cinematica dei moti piani Liceo Scientifico Isacco Newton - Roma Le lezioni multimediali di GeoGebra Italia Mappa Concettuale La Cinematica del Punto Cinematica del Punto Cinematica del punto Il punto nella Geometria Euclidea è

Dettagli

Registro di Meccanica /13 - F. Demontis 2

Registro di Meccanica /13 - F. Demontis 2 Registro delle lezioni di MECCANICA 1 Corso di Laurea in Matematica 8 CFU - A.A. 2013/2014 docente: Francesco Demontis ultimo aggiornamento: 21 maggio 2014 1. Lunedì 3/03/2014, 9 11. ore: 2(2) Presentazione

Dettagli

Modulo D Unità 1 I principi della dinamica. Il Primo principio della dinamica. La Dinamica. Il primo principio della dinamica

Modulo D Unità 1 I principi della dinamica. Il Primo principio della dinamica. La Dinamica. Il primo principio della dinamica Pagina 1 Il Primo principio della dinamica La Dinamica La dinamica studia il movimento dei corpi in relazione alle cause che lo determinano. La dinamica del punto materiale è costituita da tre principi:

Dettagli

1. Lunedì 1/10/2012, ore: 2(2) Presentazione del corso. Spazio e tempo in meccanica classica.

1. Lunedì 1/10/2012, ore: 2(2) Presentazione del corso. Spazio e tempo in meccanica classica. Registro delle lezioni di MECCANICA 2 Corso di Laurea in Matematica 8 CFU - A.A. 2012/2013 docente: Francesco Demontis ultimo aggiornamento: 20 dicembre 2012 1. Lunedì 1/10/2012, 11 13. ore: 2(2) Presentazione

Dettagli

F (t)dt = I. Urti tra corpi estesi. Statica

F (t)dt = I. Urti tra corpi estesi. Statica Analogamente a quanto visto nel caso di urto tra corpi puntiformi la dinamica degli urti tra può essere studiata attraverso i principi di conservazione. Distinguiamo tra situazione iniziale, prima dell

Dettagli

Gravità e moti orbitali. Lezione 3

Gravità e moti orbitali. Lezione 3 Gravità e moti orbitali Lezione 3 Sommario Brevi cenni storici. Le leggi di Keplero e le leggi di Newton. La forza di gravitazionale universale e le orbite dei pianeti. 2 L Universo Geocentrico La sfera

Dettagli

Il ve&ore forza. Leggi di Newton e momento della forza, τ

Il ve&ore forza. Leggi di Newton e momento della forza, τ Il ve&ore forza Leggi di Newton e momento della forza, τ La forza si sente Spingere, tirare, stringere, allargare, torcere, comprimere, allungare, etc.etc. sono tutti termini che richiamano l applicazione

Dettagli

Liceo Scientifico F. Lussana Bergamo Programma svolto di FISICA A.S. 2014/2015 Classe 3 A I Prof. Matteo Bonetti. Cinematica

Liceo Scientifico F. Lussana Bergamo Programma svolto di FISICA A.S. 2014/2015 Classe 3 A I Prof. Matteo Bonetti. Cinematica Liceo Scientifico F. Lussana Bergamo Programma svolto di FISICA A.S. 2014/2015 Classe 3 A I Prof. Matteo Bonetti Cinematica MODULO 1. LA DESCRIZIONE DEI MOTI RETTILINEI 1. Definizione di osservatore e

Dettagli

Una formulazione equivalente è Il moto di un singolo punto materiale isolato è rettilineo uniforme (o è fermo):

Una formulazione equivalente è Il moto di un singolo punto materiale isolato è rettilineo uniforme (o è fermo): I PRINCIPI DELLA MECCANICA In queste note i principi della dinamica vengono formulati utilizzando soltanto le definizioni di accelerazione e velocità istantanee della Cinematica. Le lettere in grassetto

Dettagli

IISS Enzo Ferrari, Roma. Plesso Vallauri, Liceo delle Scienze Applicate. Programma svolto

IISS Enzo Ferrari, Roma. Plesso Vallauri, Liceo delle Scienze Applicate. Programma svolto IISS Enzo Ferrari, Roma Plesso Vallauri, Liceo delle Scienze Applicate Programma svolto ANNO SCOLASTICO: 2015-2016 DISCIPLINA: FISICA CLASSE: 2ª F DOCENTE: MICHAEL ROTONDO Richiami sulle grandezze fisiche,

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

La fisica di Feynmann Meccanica

La fisica di Feynmann Meccanica La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio

Dettagli