Revisione dei concetti fondamentali dell analisi in frequenza

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Revisione dei concetti fondamentali dell analisi in frequenza"

Transcript

1 Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei segnali Opportune trasformazioni consentono di risolvere più agevolmente un problema grazie a procedimenti che risultano semplificati nel dominio trasformato: es. il prodotto (divisione) tra due numeri si trasforma in una somma (sottrazione) dei corrispondenti logaritmi Una opportuna trasformazione delle informazioni disponibili consente di mettere in evidenza aspetti difficili da cogliere nel dominio originale in relazione a problemi specifici Nel caso di una grandezza definita nel tempo possiamo avere interesse a rappresentarla in diversi domini: nel tempo o storia temporale: x(t) [es: per monitoraggio] in frequenza o spettro in frequenza: X(ω) [ es. per conoscere il contenuto energetico] in ampiezza o distribuzione di probabilità: P((x)) [ es. per determinare la rugosità delle superfici o i carichi di fatica] Interesse per il passaggio tra i domini tempo e frequenza 2 Rappresentazione dei segnali La funzione f ( t) = a cos( ωt + ϕ) ammette una rappresentazione sintetica basata su tre elementi: ampiezza a, pulsazione ω e fase ϕ Naturale pensare ad una rappresentazione equivalente in un dominio trasformato, nel quale il tempo lascia il posto alla frequenza: l informazione è in una forma che: non dipende dall evoluzione temporale del segnale; esprime esclusivamente caratteristiche intrinseche del segnale. Le informazioni a disposizione rimangono le stesse. Generalizzando l approccio, funzioni (segnali) elementari composte da contributi tonali (sinusoidali discreti) possono intuitivamente essere analizzati nel dominio delle frequenze. 3 1

2 Rappresentazione dei segnali La scelta del dominio dipende dalle analisi che si vogliono condurre sui dati acquisiti: fenomeni di difficile interpretazione in un dominio possono risultare chiari in uno differente. Es. sovrapposizione di più sinusoidi a formare un unica risposta. TRSFORMT Operazione matematica che opera il cambio di dominio senza perdita di informazioni. Una trasformata è detta biunivoca se permette il passaggio da un dominio ad un dominio B ed esiste un altra trasformata, detta inversa, che permette quello dal dominio B al dominio. 4 Serie di Fourier Un segnale è periodico se esiste un intervallo temporale T, il periodo del segnale, trascorso il quale la grandezza in esame si ripete uguale a sé stessa, cioè se soddisfa la relazione: f (t) = f (t + kt) con k = 1, 2, Un segnale di questa natura ammette una rappresentazione attraverso il noto sviluppo in Serie di Fourier: Forma reale f ( t) = a + an cos( nω t) + bn sin( nω t) n= 1 1 π an = f ( t)cos( nω t) dt 1 π 2π π a = f ( t) dt 2π π 1 π bn = f ( t)sin( nω t) dt 2π π Forma Complessa f ( t) 1 2π = n= bbiamo quindi uno strumento analitico per la gestione del problema: determinazione di ampiezza fase di tutte le armoniche che compongono il segnale (trasformazione); 5 ricostruzione della funzione (antitrasformazione). c e n jnωt π jnωt cn = f ( t) e dt π Serie di Fourier Caratteristiche: è una trasformata dal dominio del tempo al dominio della frequenza; si applica a funzioni continue (segnali analogici); si applica a segnali periodici nel tempo (quindi esclude quasi tutti i segnali reali); genera uno spettro di frequenze discreto; non ha applicazioni pratiche negli elaboratori a causa della forma integrale dei coefficienti. Necessari due sviluppi per avere: applicabilità ad una classe più ampia di segnali; utilizzabilità nell ambito di modelli discreti. 6 2

3 J.B. Fourier e l analisi in frequenza Dobbiamo al matematico francese Jean Baptiste Fourier ( ) la tecnica di scomposizione di un segnale nelle sue componenti armoniche grazie alla serie omonima e alla sua generalizzazione al continuo: l integrale di Fourier ttenzione all integrale come approccio più generale. 7 Integrale di Fourier L integrale di Fourier definisce la trasformazione più generale tra tempo e frequenza (Fourier la vedeva come trasformazione pura). Trasformata diretta: Il contenuto di informazioni passa inalterato attraverso questa trasformazione che pertanto è reversibile. Trasformata inversa: j 2π ft H ( f ) = h( t) e dt jωt H ( ω) = h( t) e dt j 2π ft h( t) = H ( f ) e df 1 jωt h( t) = H ( ω) e dω 2π Le funzioni coinvolte sono continue, complesse e infinite nel tempo ed in frequenza (- <t<, - < f< ). Nonostante la definizione (- < f< ), la rappresentazione tipica in frequenza è solo per valori positivi: ( f < ). 8 Frequenza Pulsazione Frequenza Pulsazione Integrale di Fourier Caratteristiche dell integrale di Fourier: si applica a funzioni continue nel dominio del tempo; genera funzioni continue nel dominio delle frequenze; se f(t) è reale (come nelle nostre applicazioni) vale la simmetria hermitiana: F(ω)=F*(-ω) (parte reale simmetrica e parte immaginaria antisimmetrica) si applica sia a funzioni periodiche che non periodiche; come la serie non può essere applicato direttamente alle logiche di un elaboratore. 9 3

4 La rappresentazione della trasformata di Fourier 1 La rappresentazione Per le funzioni reali la rappresentazione è univoca. Integrale e serie di Fourier, cioè il contenuto in frequenza, sono funzioni complesse, in senso matematico, della frequenza. Sono richieste adeguate modalità di visualizzazione per renderne apprezzabile il contenuto informativo. 11 La rappresentazione Parte reale/immaginaria vs frequenza 12 4

5 Rappresentazione di Nyquist Utilizzando lo schema dei fasori ogni armonica (frequenza, ampiezza e fase) può essere rappresentata da un punto nel piano Re-Im. Il diagramma con parte immaginaria vs parte reale prende il nome di diagramma di Nyquist. 13 Rappresentazione Spettrale Utilizzando lo schema dei fasori ogni armonica (frequenza, ampiezza e fase) può essere rappresentata su due diagrammi cartesiani con la frequenza in ascissa: ampiezza e fase. Sono detti diagrammi di Bode: G(f ) = Re(G(f )) 2 + Im(G(f )) 2 θ (f ) = tan 1 ( Im(G(f )) / Re(G(f ))) 14 Rappresentazione spettrale La rappresentazione spettrale può essere normalizzata, ad un valore di riferimento, e quindi avere valore unitario per una frequenza Tale rappresentazione viene usata anche per mostrare le funzioni di trasferimento di un sistema (FRF) L interpretazione del diagramma, in particolare riguardo alla lettura della scala delle ordinate, deve tenere conto del significato intrinseco di Spettro, cioè ampiezza del segnale, e FRF, cioè ampiezza del rapporto fra segnale d uscita e d ingresso 15 5

6 Rappresentazione spettrale Utilità della rappresentazione con scala logaritmica nel dominio della frequenza rispetto alla raffigurazione nel tempo, es. sistema rotante. ppena apprezzabile nella storia temporale la presenza delle armoniche superiori Evidenti le armoniche superiori e il loro rapporto con la frequenza fondamentale 16 Rappresentazione numerica Utilizzo del Bel (da lexander Bell suo ideatore) definito come logaritmo del rapporto tra il valore in esame ed uno di riferimento specifico. Più comunemente utilizzato il decimo di Bel: decibel (db). db di Potenza: 1 log W/Wref db di Segnale: 2 log V/Vref Effetto sulla rappresentazione db Rapporto db Rapporto di Potenza di Segnale /2-6 1/2-1 1/1-2 1/1-2 1/1-4 1/1 ttenzione: i db non sono operatori lineari, quindi non si sommano! La somma di due rumori da 9 db porta a 93 db in quanto devo prima calcolare le due ampiezze lineari, sommarle e poi ricalcolare i db della somma ottenuta! 17 Esempi notevoli di trasformate di Fourier 18 6

7 Esempi di trasformata Funzione co-sinusoidale di frequenza f e di ampiezza. h( t) = cos(2 π f t) H ( f ) = δ ( f f ) + δ ( f + f ) La trasformata è costituita da due picchi di ampiezza /2 posizionati alla frequenze ± f. 19 Esempi di trasformata Funzione scatola (Box Function): nulla all esterno dell intervallo T T, di valore G all interno e G/2 in T e T. H ( f ) = 2GT sin(2 πt f ) 2π T f G θ ( f ) = 2π T f 2GT La trasformata è una sinusoide smorzata (continua, infinita ad ampiezza decrescente); i punti di zero sono equispaziati, k / (2 T ),il primo è ad una frequenza pari all inverso della dimensione temporale della scatola. Interessante perché può essere interpretata come una finestra di misura che limita l osservazione del tempo ad un intervallo finito. Esempi di trasformata Funzione impulso, nulla su tutto il dominio e di valore in un punto, es. t =. h( t) = δ ( t t ) H ( f ) = La trasformata è una funzione continua, infinita e costante. Il contenuto armonico è uniformemente distribuito su tutto lo spettro delle frequenze, ogni frequenza partecipa con la stessa ampiezza Una forzante impulsiva (ideale) eccita l intero spettro delle frequenze. 21 7

8 Esempi di trasformata Funzione costante nel dominio temporale. h( t) = H ( f ) = δ ( f f ) La trasformata è una funzione «impulso» collocata a frequenza nulla. Il contenuto armonico è nullo su tutto lo spettro: la sola componente presente corrisponde ad un termine costante L ampiezza di tale termine è pari al valore medio della funzione. 22 Esempi di trasformata Serie di impulsi equispaziati di un intervallo temporale T e di ampiezza unitaria. La trasformata è una funzione discreta di delta equispaziate di un intervallo di frequenza e ampiezza 1/T. 23 Linearità della trasformata Costante Sinusoide Costante+sinusoide 24 8

9 Derivata di una funzione Uno degli elementi che determina l importanza dell integrale di Fourier è costituito dalla possibilità di manipolare analiticamente i modelli. Si può infatti dimostrare che esiste una relazione tra la trasformata di una variabile e della sua derivata: ( ) ( ) j ω t jωt H ω h t e dt H ( ω) = = h ( t) e dt Integriamo per parti: jωt jωt j t H ω ( ω) = h ( t) e dt = h( t) e h( t)( jω) e dt = Il primo termine è nullo per le condizioni di esistenza di X(ω), quindi: j t H ω ( ω) = jω h( t) e dt = jω H ( ω) H ( ω) = jω H ( ω) 25 Derivata di una funzione Le conseguenze nell analisi dei sistemi dinamici lineari sono ben note, il sistema dinamico: mx ( t) + kx( t) = p( t) in frequenza diventa 2 ( ω m + k) X ( f ) = P( f ) Equazione facilmente risolvibile: non occorre integrare le equazioni di differenziali di equilibrio dinamico ma semplicemente risolvere una serie di sistemi lineari a coefficienti complessi per l ampiezza del carico ad ogni frequenza di interesse. Inoltre il sistema dinamico lineare può essere riscritto con una relazione ingresso-uscita lineare in frequenza: X ( f ) = H ( f ) P( f ) vendo introdotto la funzione di trasferimento del sistema H(f), funzione complessa della frequenza oltre che delle caratteristiche del sistema: 1 H ( f ) = 2 ( ω m + k) 26 Derivata di una funzione La funzione di trasferimento non è che la risposta ad un ingresso unitario in frequenza Se: P( f ) = 1 allora: H ( f ) = X ( f, P( f ) = 1) Poiché abbiamo visto che P(f) unitario significa una forzante impulsiva nel dominio del tempo, allora la funzione di trasferimento di un sistema lineare coincide con la risposta impulsiva del sistema stesso. 27 9

10 Il funzionamento 33 Il funzionamento Elaborazione algebrica in notazione esponenziale: i fasori. h( t) = cos(2πft ) θ = 2πft h( t) = cosθ = 2 2 iθ iθ ( cosθ + isinθ + cosθ isinθ ) = ( e + e ) = v1 + v2 Una sinusoide può essere interpretata come la somma di due vettori controrotanti nel piano complesso. Quindi l integrando della trasformata di Fourier, per il caso della sinusoide, può essere scritto come: h( t) e = e + e e = e + e 2 2 ( ) ( ) i2 π ft i θ i θ i θ i( θ θ ) i( θ + θ ) 34 Il funzionamento Calcolando la trasformata per la frequenza f i2π ft l esponenziale corrisponde ad una rotazione H ( f ) = h( t) e dt all indietro delle componenti armoniche di h(t) pari all angolo spazzato, a partire dal tempo zero, da un segnale armonico di frequenza f θ = 2π ft Il generico segnale h(t) può o meno presentare un contenuto armonico alla frequenza f per la quale si sta calcolando la trasformata Caso f = f : l angolo spazzato dai vettori controtanti coincide sempre con la rotazione all indietro definita dall esponenziale per ogni istante di tempo il segnale viene quindi riportato alla propria fase iniziale l integrale porta all ampiezza del segnale a f 35 1

11 Il funzionamento Calcolando la trasformata per la frequenza l esponenziale corrisponde ad una rotazione = all indietro delle componenti armoniche di h(t) pari all angolo spazzato, a partire dal tempo zero, da un segnale armonico di frequenza f θ = 2π ft Il generico segnale h(t) può o meno presentare un contenuto armonico alla frequenza per la quale si f sta calcolando la trasformata Caso f f : l angolo spazzato dai vettori controtanti non è mai uguale alla rotazione all indietro dell esponenziale la rotazione riporta i vettori controrotanti allo zero del tempo con una fase non coerente con quella iniziale Il contenuto armonico, dato dall integrale, è quindi nullo. f i2π ft H ( f ) h( t) e dt 36 Da ricordare Significato fisico dell operazione trasformata. Capacità di gestire la serie di Fourier come forma digitale della trasformata. Tecniche di rappresentazione. Elementi utili per l utilizzo dei moduli Matlab per l analisi di Fourier Con gli approfondimenti: Estensione del concetto di media al dominio delle frequenza. Elementi per la gestione di contenuti armonici variabili nel tempo Da ricordare La trasformata di Fourier è un potente mezzo di analisi che permette di: risolvere un problema analiticamente più semplice di quello originale, in particolare consentendoci di costruire modelli completamente generali delle operazioni svolte per elaborare i segnali temporali; di evidenziare delle caratteristiche del segnale che non sarebbero palesi limitando lo studio al dominio del tempo: capacità di determinare la distribuzione dell energia lungo lo spettro; possibilità di individuare i segnali di piccola ampiezza anche a frequenze elevate ed in presenza di armoniche più ampie

12 Domande? 39 12

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Laboratorio di Elettrotecnica

Laboratorio di Elettrotecnica 1 Laboratorio di Elettrotecnica Rappresentazione armonica dei Segnali Prof. Pietro Burrascano - Università degli Studi di Perugia Polo Scientifico Didattico di Terni 2 SEGNALI: ANDAMENTI ( NEL TEMPO, NELLO

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici ELEMENTI DI PROBABILITA Media : migliore stima del valore vero in assenza di altre info. Aumentare il numero di misure permette di approssimare meglio il valor medio e quindi ridurre l influenza degli

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

ANALISI DI SEGNALI BIOLOGICI

ANALISI DI SEGNALI BIOLOGICI ANALISI DI SEGNALI BIOLOGICI A.Accardo accardo@units.it LM Neuroscienze A.A. 2010-11 Parte II 1 Analisi in frequenza di un segnale l analisi in frequenza di un segnale o analisi di Fourier descrive il

Dettagli

Introduzione. Classificazione delle non linearità

Introduzione. Classificazione delle non linearità Introduzione Accade spesso di dover studiare un sistema di controllo in cui sono presenti sottosistemi non lineari. Alcuni di tali sottosistemi sono descritti da equazioni differenziali non lineari, ad

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

TRASMISSIONE DATI SU RETE TELEFONICA. 1 Fondamenti Segnali e Trasmissione

TRASMISSIONE DATI SU RETE TELEFONICA. 1 Fondamenti Segnali e Trasmissione TRASMISSIONE DATI SU RETE TELEFONICA Fondamenti Segnali e Trasmissione Trasmissione dati su rete telefonica rete telefonica analogica ISP (Internet Service Provider) connesso alla WWW (World Wide Web)

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

1 Introduzione alla dinamica dei telai

1 Introduzione alla dinamica dei telai 1 Introduzione alla dinamica dei telai 1.1 Rigidezza di un telaio elementare Il telaio della figura 1.1 ha un piano solo e i telai che hanno un piano solo, sono chiamati, in questo testo, telai elementari.

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

Descrizione matematica della propagazione Consideriamo una funzione ξ = f(x) rappresenatata in figura.

Descrizione matematica della propagazione Consideriamo una funzione ξ = f(x) rappresenatata in figura. ONDE Quando suoniamo un campanello oppure accendiamo la radio, il suono è sentito in punti distanti. Il suono si trasmette attraverso l aria. Se siamo sulla spiaggia e una barca veloce passa ad una distanza

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno Parametri dei segnali periodici I segnali, periodici e non periodici, si suddividono in: bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem)

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Raccolta di Esercizi di Matematica Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Contenuti: 8-1. L ordine Algebrico delle Operazioni 8-2. Problemi sulle Percentuali 8-3. Le Forme Standard e Point-Slope

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Analisi dei sistemi nel dominio del tempo

Analisi dei sistemi nel dominio del tempo Appunti di Teoria dei Segnali a.a. 010/011 L.Verdoliva In questa sezione studieremo i sistemi tempo continuo e tempo discreto nel dominio del tempo. Li classificheremo in base alle loro proprietà e focalizzeremo

Dettagli

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G P

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Corso di laurea magistrale in Ingegneria delle Telecomunicazioni Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Trasmettitore

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

v in v out x c1 (t) Molt. di N.L. H(f) n

v in v out x c1 (t) Molt. di N.L. H(f) n Comunicazioni elettriche A - Prof. Giulio Colavolpe Compito n. 3 3.1 Lo schema di Fig. 1 è un modulatore FM (a banda larga). L oscillatore che genera la portante per il modulatore FM e per la conversione

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Appunti di Misure Elettriche Richiami vari Quantità elettriche corrente ampere elettroni

Appunti di Misure Elettriche Richiami vari Quantità elettriche corrente ampere elettroni Appunti di Misure Elettriche Richiami vari QUANTITÀ ELETTRICHE... 1 Corrente... 1 Tensione... 2 Resistenza... 3 Polarità... 3 Potenza... 4 CORRENTE ALTERNATA... 4 Generalità... 4 Valore efficace... 5 Valore

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Elementi di analisi delle reti elettriche. Sommario

Elementi di analisi delle reti elettriche. Sommario I.T.I.S. "Antonio Meucci" di Roma Elementi di analisi delle reti elettriche a cura del Prof. Mauro Perotti Anno Scolastico 2009-2010 Sommario 1. Note sulla simbologia...4 2. Il generatore (e l utilizzatore)

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Lo studio di unzione Ing. Alessandro Pochì Appunti di analisi Matematica per la Classe VD (a.s. 011/01) Schema generale per lo studio di una unzione Premessa Per Studio unzione si intende, generalmente,

Dettagli

Dispensa sulle funzioni trigonometriche

Dispensa sulle funzioni trigonometriche Sapienza Universita di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulle funzioni trigonometriche Paola Loreti e Cristina Pocci A. A. 00-0 Dispensa

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

F (x) = f(x) per ogni x I. Per esempio:

F (x) = f(x) per ogni x I. Per esempio: Funzioni Primitive (Integrali Indefiniti) (l.v.) Pur essendo un argomento che fa parte del Calcolo Differenziale, molti autori inseriscono funzioni primitive nel capitolo sul Calcolo Integrale, in quanto

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

Logaritmi ed esponenziali

Logaritmi ed esponenziali Logaritmi ed esponenziali definizioni, proprietà ITIS Feltrinelli anno scolastico 2007-2008 A cosa servono i logaritmi I logaritmi rendono possibile trasformare prodotti in somme, quozienti in differenze,

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

Fonica: Scheda 2. Il suono. Il rumore. (a cura di Pietro Di Mascolo)

Fonica: Scheda 2. Il suono. Il rumore. (a cura di Pietro Di Mascolo) Fonica: Scheda 2 (a cura di Pietro Di Mascolo) Il suono Possiamo definire il suono come una particolare sensazione percepita dall organo dell udito eccitato da un agente esterno. Esso ha origine dal movimento

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

I db, cosa sono e come si usano. Vediamo di chiarire le formule.

I db, cosa sono e come si usano. Vediamo di chiarire le formule. I db, cosa sono e come si usano. Il decibel è semplicemente una definizione; che la sua formulazione è arbitraria o, meglio, è definita per comodità e convenienza. La convenienza deriva dall osservazione

Dettagli

I sistemi di acquisizione dati

I sistemi di acquisizione dati I sistemi di acquisizione dati L'utilizzo dei computers, e dei PC in particolare, ha notevolmente aumentato la produttività delle attività sperimentali. Fenomeno fisico Sensore/ trasduttore Acquisizione

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Numeri complessi. x 2 = 1.

Numeri complessi. x 2 = 1. 1 Numeri complessi Nel corso dello studio della matematica si assiste ad una progressiva estensione del concetto di numero. Dall insieme degli interi naturali N si passa a quello degli interi relativi

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Politecnico di Bari Facoltà di Ingegneria

Politecnico di Bari Facoltà di Ingegneria Politecnico di Bari Facoltà di Ingegneria Dispensa per il Corso di Controlli Automatici I Uso del software di calcolo Matlab 4. per lo studio delle risposte nel tempo dei sistemi lineari tempoinvarianti

Dettagli

Analisi e controllo di uno scambiatore di calore

Analisi e controllo di uno scambiatore di calore Università degli Studi di Roma Tor Vergata FACOLTÀ DI INGNEGNERIA Corso di Laurea Magistrale in Ingegneria dell automazione Progetto per il corso di controllo dei processi Analisi e controllo di uno scambiatore

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

MODELLISTICA DINAMICA DI SISTEMI FISICI

MODELLISTICA DINAMICA DI SISTEMI FISICI CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm MODELLISTICA DINAMICA DI SISTEMI FISICI Ing. Federica Grossi Tel. 059 2056333

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli