Trasformazioni geometriche nel piano: dalle isometrie alle affinità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Trasformazioni geometriche nel piano: dalle isometrie alle affinità"

Transcript

1 Trasformazioni geometriche nel piano: dalle isometrie alle affinità Le trasformazioni geometriche In generale una trasformazione geometrica è una corrispondenza biunivoca del piano in sé, ossia associa ad un punto del piano uno ed un solo punto del piano stesso: t: P P'. Essendo la corrispondenza biunivoca, esiste sempre la trasformazione inversa t 1 : P' P y= f x, è In generale, data una trasformazione geometrica t, per trasformare un grafico di equazione necessario trovare le equazioni della trasformazione inversa t -1 ed eseguire le sostituzioni nell equazione data. Un punto è unito se è trasformato in se stesso (se ha per immagine se stesso). Una figura è unita se ha per immagine se stessa. N.B. I punti di una figura possono corrispondere ai punti della figura stessa, senza necessariamente essere punti uniti; se ad esempio in una retta ogni punto è unito, la retta si dice retta di punti uniti (o retta puntualmente unita) altrimenti si (non viceversa). dice semplicemente retta unita (o retta globalmente unita). Una retta di punti unita è anche retta unita P P Q Q La trasformazione che ad ogni punto associa se stesso si chiama identità; nell identità ogni punto è unito. Composizione di trasformazioni geometriche. Supponiamo di avere due o più trasformazioni e di volerle applicare una dopo l'altra. Questo vuol dire che dopo avere applicato la prima, applico la seconda alla figura ottenuta dalla prima trasformazione e così di seguito. Se ho due trasformazioni, prima applico ad esempio t 1 : P P' e poi t : P' P'' ; è come aver applicato la trasformazione composta t!t 1 : P P''. Generalmente, per la composizione di trasformazioni geometriche non vale la proprietà commutativa ( t 1!t t!t 1 ). Vale invece la proprietà associativa t 1!( t!t 3 ) = ( t 1!t )!t 3. Inoltre, per la definizione di trasformazione inversa, è vero che t!t 1 = t 1!t = i, si ottiene cioè l identità. Una trasformazione si dice involutoria se componendola con se stessa si ottiene l identità: t!t = i, ossia la trasformazione inversa coincide con quella di partenza. Elementi uniti. Per trovare i punti uniti basta porre x=x e y=y nell equazione della trasformazione; si ottiene un sistema lineare nelle due incognite x e y. A seconda dei casi si potrà avere una sola soluzione (un solo punto unito), infinite soluzioni (infiniti punti uniti, tutti appartenenti alla medesima retta che sarà una retta di punti uniti), nessuna soluzione (nessun punto unito). Per trovare le rette unite basta calcolare le equazioni della trasformazione inversa t -1 ed applicarle sulla generica retta di equazione y = mx+ q ed imporre che i coefficienti delle due rette siano identicamente uguali; bisogna però porre attenzione alle rette parallele all asse delle ordinate (la cui equazione non è compresa in quelle del tipo y = mx+ q) controllando il comportamento della trasformazione sulle rette del tipo x= h, analogamente a sopra. P=P Q=Q Retta di punti uniti ê Retta unita

2 Le isometrie Si dice isometria una trasformazione geometrica che conserva le distanze. Dati due punti A, B l'isometria fa ad essi corrispondere due punti A' e B' tali che AB = A' B '. Per isometria sono invarianti la congruenza di segmenti e di angoli pertanto le figure trasformate conservano la forma e la grandezza e dunque risultano congruenti a quelle date. Ci sono 5 tipi di isometria: traslazione, simmetria centrale, rotazione, simmetria assiale e glissosimmetria. P x; y e il suo Nel seguito sono indicate le equazioni nel piano cartesiano x0y, considerando corrispondente a seguito della trasformazione P ( x; y ) indicate anche mediante la notazione matriciale.. Le equazioni delle varie trasformazioni sono La traslazione x = x+ p x 1 0 x p Le equazioni sono del tipo: τ ossia = + con p e q costanti reali. La matrice = y + q y 0 1 y q della trasformazione è la matrice identità. Si dice anche che la traslazione trasforma i punti del piano. secondo il vettore v! p;q Proprietà fondamentali delle traslazioni. Si può dimostrare che una traslazione gode delle seguenti proprietà: una traslazione (diversa dall'identità) non ha né punti uniti né rette di punti uniti; sono rette unite tutte le rette parallele al vettore v! p;q, ossia quelle di coefficiente angolare q p ; componendo due traslazioni di vettori v! 1 e v! si ha ancora una traslazione di vettore v! 1 + v!. La simmetria centrale x = x x x 1 0 x x Le equazioni sono del tipo: s ossia = + = y y y 0 1 y y centro della simmetria ed il punto medio del segmento individuato da punti corrispondenti. dove ( ; ) x y è il Proprietà fondamentali delle simmetrie centrali. Si può dimostrare che una simmetria centrale gode delle seguenti proprietà: L unico punto unito della simmetria centrale è il centro; ogni retta passante per il centro è retta unita; È una trasformazione involutoria: componendola con se stessa si ottiene l identità. La simmetria rispetto all origine ne è un caso particolare; La simmetria centrale di centro O è uguale al composto di due simmetrie assiali aventi gli assi fra loro perpendicolari in O; Date due simmetrie centrali vettore v! """"""! = 1. Es. s 1 s! s 1 x = x y = y x = 1 ( x) = 1+ x y = 1 ( y) = 1+ y S 1 e, 1 ( 1;1) S, la trasformazione composta 1,v τ 1; 1, s T = S o S è una traslazione di x = 1 x y = 1 y 1 1, 1 ; 1!!!!!! " 1 = 1; 1 1 = 1 ; 1!!!!!! " 1 = 1; 1 =>

3 La rotazione Utilizzando la goniometria è possibile scrivere: P (x ;y ) x= OPcos β O β P(x;y) y = OPsin β essendo OP= OP' x = OP'cos( + β) = OP' coscos β sinsin β = xcos ysin y = OP'sin( + β) = OP' sincos β + cossin β = xsin + ycos Le equazioni della rotazione di un angolo (in senso antiorario) e di centro O sono allora: x = xcos ysin x cos sin x ρ0, o anche =. Osserva che det ( A ) = 1. = xsin + ycos y sin cos y 1 La rotazione inversa ρ 0, è la rotazione di centro O e angolo ; infatti le equazioni sono: 1 x= x cos + y sin x cos sin x cos sin 1 ρ 0, o anche = y= x sin + y dove A cos y sin cos y = è proprio sin cos cos sin la matrice inversa della matrice A =. sin cos 1 1 cos sin cos sin cos( ) sin ( + ) Osserva infatti che A = = = ; det ( A) sin cos sin cos sin ( ) cos ( ) riscrivendo i coefficienti della matrice considerando gli angoli opposti (ricorda che la funzione coseno è pari mentre la funzione seno è dispari!) si può concludere che la rotazione inversa ha lo stesso centro ma angolo. C x ; y allora le equazioni diventano Se il centro di rotazione di angolo è ( c c) x = ( x xc) cos ( y yc) sin+ xc c ρc, o anche = y = ( x x ) sin + ( y y ) cos + y x x cos sin x xc c c c y y. c sin cos y yc x = xcos ysin + p Se l equazione è scritta come ρc,, il centro della rotazione è determinabile come y = xsin + ycos + q unico punto unito della trasformazione. La trasformazione inversa di una rotazione di centro C e angolo è 1 ancora una rotazione di centro C ma con angolo, cioè la rotazione inversa di ρ C, risulta essere ρ. Proprietà fondamentali delle rotazioni. Si può dimostrare che una rotazione gode delle seguenti proprietà: se = 0 o = π, la rotazione risulta essere l identità; se = π o = π, la rotazione coincide con la simmetria centrale; componendo due rotazioni con lo stesso centro C di angoli 1 e si ha ancora una rotazione di centro C e angolo 1+ ; componendo due rotazioni di centri C 1 e C diversi si può ottenere una rotazione di diverso centro C e angolo 1+ oppure una traslazione. C,

4 La simmetria assiale Riportiamo le equazioni delle più comuni simmetrie assiali: rispetto all asse x x = x y = y rispetto all asse y rispetto a y=k ( asse x) x = x x = x y = y = k y atrici dei coefficienti delle simmetrie assiali più comuni: all asse x all asse y a y=k ( asse x) rispetto a x=h ( asse y) x = h x y = y a x=h ( asse y) rispetto a y=x x = y y = x a y=x rispetto a y=-x x = y y = x a y=-x In generale, due punti P e P si corrispondono in una simmetria assiale rispetto ad una retta r: y = mx+ q se e solo se r risulta essere l asse del segmento PP. Su questa definizione si basa il procedimento per determinare le equazioni della simmetria assiale rispetto ad una generica retta: y+ y x+ x 1 m = m +q (punto medio PP' r) x' = 1+ m x + m ossia 1+ m y mq 1+ m y y 1 = (retta PP' retta r) y' = m 1 m x x x m 1+ m 1+ m y + q 1+ m Con considerazioni di carattere goniometrico (*) e nel caso in cui la retta r, asse di r P (x ;y ) simmetria, passi per l origine, cioè r: y = mx, e formi un angolo di ampiezza con la direzione positiva dell asse delle ascisse, si può trovare che l equazione della P(x;y) x cos( ) sin ( ) x simmetria è, in forma matriciale: = y sin ( ) cos ( ; se è dato ) y direttamente l angolo che l asse di simmetria forma con l asse x nella matrice si mettono il coseno ed il seno dell angolo doppio e l equazione della simmetria rispetto a tale retta è presto determinata. (*) Ricordando m = tan e le formule parametriche razionali in funzione di t = tan : 1 t t cos =,sin = 1+ t 1+ t Proprietà fondamentali delle simmetrie assiali. I punti uniti sono i punti dell asse di simmetria (che è retta di punti uniti). Oltre all asse di simmetria, ogni retta perpendicolare all asse è retta unita; È una trasformazione involutoria: componendola con se stessa si ottiene l identità. La glissosimmetria (o antitraslazione) È definita come la composizione di una simmetria assiale con una traslazione di vettore parallelo all asse di simmetria. Si riconosce perché è un isometria indiretta senza punti uniti e l unica retta unita è l asse di simmetria.

5 Le isometrie sintesi finale x = ax+ by+ c Tutte le isometrie sono rappresentate da equazioni lineari del tipo. = ax + by + c a b Dal calcolo del determinante della matrice dei coefficienti A = si ha che esso vale sempre a b det ( A ) =± 1. Se det ( A ) = 1 si ha una ISOETRIA DIRETTA (traslazione o simmetria centrale o rotazione); se det ( A ) = 1 si ha una ISOETRIA INDIRETTA (simmetria assiale o glissosimmetria) Relativamente ai punti uniti: nella traslazione e nella glissosimmetria non ci sono punti uniti; nella simmetria centrale e nella rotazione c è un solo punto unito: il centro; nella simmetria assiale i punti uniti sono quelli dell asse di simmetria (ci sono punti uniti). Relativamente alle rette (globalmente) unite: nella traslazione sono quelle parallele al vettore che individua la traslazione stessa (ci sono rette unite); nella simmetria centrale sono quelle passanti per il centro (ci sono rette unite); nella rotazione non ci sono rette unite; nella simmetria assiale sono quelle perpendicolari all asse di simmetria (ci sono rette unite) mentre l asse di simmetria è retta di punti uniti; nella glissosimmetria l asse di simmetria è retta unita. Tabella che serve per riconoscere e classificare le varie isometrie: det A +1 TRASLAZIONE Trasformazione Punti Uniti Rette di punti uniti Rette Unite +1 SIETRIA CENTRALE Centro di simm. +1 ROTAZIONE Centro di rotaz. Rette // v r Rette per il Centro -1 SIETRIA ASSIALE Punti asse Asse di simm. Rette Asse -1 GLISSOSIETRIA Asse di simm.

Trasformazioni geometriche nel piano

Trasformazioni geometriche nel piano Trasformazioni geometriche nel piano Le trasformazioni geometriche In generale una trasformazione geometrica è una corrispondenza biunivoca del piano in sé, ossia associa ad un punto del piano uno ed un

Dettagli

TRASFORMAZIONI GEOMETRICHE

TRASFORMAZIONI GEOMETRICHE TRASFORMAZIONI GEOMETRICHE Def. Una trasformazione geometrica T tra i punti di un piano è una corrispondenza biunivoca che ad ogni punto P del piano associa uno e un solo punto P' appartenente al piano

Dettagli

Trasformazioni geometriche del piano. 3 marzo 2013

Trasformazioni geometriche del piano. 3 marzo 2013 Trasformazioni geometriche del piano 3 marzo 2013 1 Indice 1 Trasformazioni geometriche del piano 3 1.1 Affinità............................... 4 1.2 Isometrie.............................. 8 1.2.1 Simmetrie..........................

Dettagli

I I. è un affinità, avente la matrice della trasformazione uguale a: A 1 x A2. Proprietà invarianti

I I. è un affinità, avente la matrice della trasformazione uguale a: A 1 x A2. Proprietà invarianti TRAFORMAZON Una trasformazione (geometrica) è una funzione iunivoca fra i punti del piano. Un punto si dice unito rispetto ad una data trasformazione se il suo corrispondente è se stesso. Una retta si

Dettagli

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa.

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa. τ : P P' oppure P'=τ(P) P immagine di P trasformato di P secondo τ se α è una figura geometrica α =τ(α) è la figura geometrica trasformata x' = f (x, y) τ : y' = g(x, y) espressione analitica della trasformazione

Dettagli

Lezione 5 Geometria Analitica 1

Lezione 5 Geometria Analitica 1 Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla

Dettagli

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d q in forma matriciale: X A X B, cioè a c b d q Dove a A c b d è la matrice della trasformazione. Se

Dettagli

TRASFORMAZIONI GEOMETRICHE E FUNZIONI

TRASFORMAZIONI GEOMETRICHE E FUNZIONI TRASFORMAZIONI GEOMETRICHE E FUNZIONI La trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti di un piano; è indicata con t ed è un applicazione del piano in se che trasforma

Dettagli

Trasformazioni geometriche

Trasformazioni geometriche Trasformazioni geometriche Generalità sulle trasformazioni geometriche Una trasformazione geometrica è una corrispondenza biunivoca, quindi una funzione, che associa a un punto P del piano in un punto

Dettagli

Isometrie. Tipi di isometrie

Isometrie. Tipi di isometrie Isoetrie Una Isoetria è una corrispondenza biunivoca del piano in sé che conserva le distanze. : 1) Una retta viene trasforata in una retta, un segento in un segento congruente, un cerchio in un cerchio

Dettagli

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario.

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario. Capitolo 4 Le rotazioni 4.1 Richiami di teoria E' opportuno ricordare che, dato un angolo orientato ao ˆ b, si usa la convenzione di prendere come verso positivo quello antiorario e come verso negativo

Dettagli

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 )

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Testo 1: Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Lavoro di gruppo T1: discuti assieme ai tuoi compagni il significato di quanto hai letto

Dettagli

La composizione di isometrie

La composizione di isometrie La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano

Dettagli

C C B B. Fig. C4.1 Isometria.

C C B B. Fig. C4.1 Isometria. 4. Isometrie 4.1 Definizione di isometria Date due figure congruenti è possibile passare da una all altra con una trasformazione. Una trasformazione geometrica in un piano è una funzione biunivoca che

Dettagli

TRASFORMAZIONI LINEARI SUL PIANO

TRASFORMAZIONI LINEARI SUL PIANO TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d in forma matriciale: X A X B, cioè a c b d Dove a A c b d è la matrice della trasformazione. Se il

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. Un isometria è perciò una trasformazione geometrica che conserva la distanza tra due punti. onsideriamo alcune particolari trasformazioni isometriche. 2.1.1. Traslazioni hiamiamo vettore un segmento sul

Dettagli

NOTE sulle ISOMETRIE a cura di Sara Bacci e Gabriele Cecchin III F 04/11/09

NOTE sulle ISOMETRIE a cura di Sara Bacci e Gabriele Cecchin III F 04/11/09 NOTE sulle ISOMETRIE a cura di Sara Bacci e Gabriele Cecchin III F 04/11/09 Introduzione Prima di analizzare le isometrie è necessario fare una breve introduzione. Bisogna innanzitutto ricordare che due

Dettagli

Trasformazioni - II. Classificazione delle trasformazioni in R 3. Rotazioni in R 3. Lezione 6 Maggio Lezione 6 maggio 2003

Trasformazioni - II. Classificazione delle trasformazioni in R 3. Rotazioni in R 3. Lezione 6 Maggio Lezione 6 maggio 2003 Corso di Laurea in Disegno Industriale Corso di Metodi Numerici per il Design Lezione 6 maggio Trasformazioni - II F. Caliò Classificazione delle trasformazioni in R (TITOLO) Rotazioni in R (TITOLO) Rotazione

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VI: soluzioni 5 novembre 2009 1 Geometria del piano e prodotto scalare Richiami. Il prodotto scalare di due vettori del piano v,

Dettagli

Negli esercizi che seguono ci sono alcune cose da specificare:

Negli esercizi che seguono ci sono alcune cose da specificare: DISCLAIMER Negli esercizi che seguono ci sono alcune cose da specificare: ) voi dovete interpretare i simboli V e A (R) sempre come R. Questo oggetto sarà chiamato alle volte piano affine e alle volte

Dettagli

Simmetrie Ad ogni simmetria delle Natura corrisponde una quantità conservata (Emmy Noether).

Simmetrie Ad ogni simmetria delle Natura corrisponde una quantità conservata (Emmy Noether). Simmetrie Ad ogni simmetria delle Natura corrisponde una quantità conservata (Emmy Noether). Simmetria centrale DEF. Sia P( x, y ) un punto del piano cartesiano e sia C( x, y ) il centro di simmetria.

Dettagli

17 LE TRASFORMAZIONI GEOMETRICHE

17 LE TRASFORMAZIONI GEOMETRICHE 17 L TRSFORMZIONI GOMTRIH TST I FIN PITOLO 1 Nella trasformazione di equazioni: x' x y 1 y' x y al punto corrisponde: ; 0 ' 3; 4. ' 3;. ' ; 3. ' 1; 4. ' 4; 1. Quale delle seguenti affermazioni è falsa?

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

(f g)(x) = f(g(x)), (f (g h))(x) = f(g(h(x))) = ((f g) h)(x).

(f g)(x) = f(g(x)), (f (g h))(x) = f(g(h(x))) = ((f g) h)(x). Trasformazioni geometriche di R In questo paragrafo studiamo alcune trasformazioni geometriche del piano R Per trasformazioni si intendono sempre delle applicazioni bigettive f : R R Le trasformazioni

Dettagli

x1 + 1 x T p. x 2

x1 + 1 x T p. x 2 Geometria e Algebra Trasformazioni del piano Soluzioni Siano p e q i Trovare le formule per la traslazione T p ii Calcolare T p T p iii Calcolare T p T p iv Calcolare T q T p T p T q Sol i Si ha ii iii

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI Corso di Geometria, a.a. 009-010 Ing. Informatica e Automatica Esercizi VI 5 novembre 009 Leggere i Capitoli 1-18, 0-4 del libro di testo. Tralasciare il Capitolo 19 (Sottospazi affini). 1 Geometria del

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Capitolo 2. Cenni di geometria analitica nel piano

Capitolo 2. Cenni di geometria analitica nel piano Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea

Dettagli

Elementi di teoria delle trasformazioni

Elementi di teoria delle trasformazioni Elementi di teoria delle trasformazioni LA STRUTTURA DI GRUPPO La struttura di gruppo Un gruppo è un insieme G in cui è definita una operazione ("leggere tondino") inoltre c a,b 2 G allora a b 2 G d 1

Dettagli

Esame di Stato di Liceo Scientifico P.N.I. a.s Sessione Ordinaria 23 giugno 2005 Q1 Q2 Q3 Questionario

Esame di Stato di Liceo Scientifico P.N.I. a.s Sessione Ordinaria 23 giugno 2005 Q1 Q2 Q3 Questionario 1 Esame di Stato di Liceo Scientifico P.N.I. a.s. 004-00 Sessione Ordinaria 3 giugno 00 Q1 Q Q3 Questionario Q1- Si dimostri che il lato del decagono regolare inscritto in un cerchio è la sezione aurea

Dettagli

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE INTRODUZIONE L ellisse fa parte di un insieme di curve (circonferenza, parabola, iperbole) chiamate coniche, perché si possono

Dettagli

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2 Formulario Componenti di un vettore di estremi A(x 1, y 1 e B(x 2, y 2 B A = AB = (x2 x 1 i + (y 2 y 1 j Distanza tra due punti A(x 1, y 1 e B(x 2, y 2 : AB = (x 2 x 1 2 + (y 2 y 1 2 Coordinate del punto

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

3. Isometrie di R 2. In questo paragrafo studiamo le isometrie del piano R 2. Ricordiamo che le isometrie sono delle trasformazioni che conservano le

3. Isometrie di R 2. In questo paragrafo studiamo le isometrie del piano R 2. Ricordiamo che le isometrie sono delle trasformazioni che conservano le 3. Isometrie di R. In questo paragrafo studiamo le isometrie del piano R. Ricordiamo che le isometrie sono delle trasformazioni che conservano le distanze fra coppie di punti, ossia delle applicazioni

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Geometria. Geometria euclidea e geometrie non euclidee

Geometria. Geometria euclidea e geometrie non euclidee Geometria Paolo Montanari Appunti di Matematica Geometria 1 Geometria euclidea e geometrie non euclidee La geometria euclidea è un sistema matematico attribuito al matematico alessandrino Euclide, che

Dettagli

x = t y = t z = t 3 1 A = B = 1 2

x = t y = t z = t 3 1 A = B = 1 2 11/1/05 Teoria: Enunciare e discutere il teorema di Lagrange. Esercizio 1. Determinare l equazione cartesiana del piano passante per P 0 = (1,, 1) e contenente i vettori u = (,, ) e v = (1, 5, 4). Risposta

Dettagli

Geometria BAER Canale I Esercizi 12

Geometria BAER Canale I Esercizi 12 Geometria BAER Canale I Esercizi Esercizio. x = 0 x = Date le rette r : y = t e s : y = t, si verifichi che sono sghembe e si scrivano le equazioni z = t z = t parametriche di una retta r ortogonale ed

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

Affinità. Isometrie. Simmetria assiale

Affinità. Isometrie. Simmetria assiale Si definisce sietria assiale rispetto ad una retta r l affinità Sr che lascia uniti i punti P di r e che trasfora ogni punto P appartenente ad r nel punto P tale che r sia l asse del segento PP'. Oltre

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Compito A Corso del Prof.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Compito A Corso del Prof. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. 202-203 PROVA SCRITTA DI GEOMETRIA DEL 8-02-3 Compito A Corso del Prof. Manlio BORDONI Esercizio. Sia W il sottospazio vettoriale di R 4 generato dai vettori

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT 1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo

Dettagli

Isometrie e cambiamenti di riferimento

Isometrie e cambiamenti di riferimento Isometrie e cambiamenti di riferimento Isometrie Le isometrie sono trasformazioni del piano o dello spazio che conservano angoli e distanze. Esempi sono le rotazioni del piano, le riflessioni in una retta

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile/Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile/Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile/Architettura Primo Appello del corso di Geometria 2 Docente F. Flamini, Roma, 22/02/2007 SVOLGIMENTO COMPITO I APPELLO

Dettagli

Gli insiemi, la logica

Gli insiemi, la logica Gli insiemi, la logica 1 Dato l insieme A = {x N : x < 5}, quale delle seguenti affermazioni è falsa: (a) 1 A (b) 5 / A (c) 2 A (d) A (e) {1, } A 2 Sono dati gli insiemi A = {, 5, 7, 9} e B = {5, 7} Quali

Dettagli

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1 Matematica 2. e quadratiche Giuseppe Vittucci Marzetti 1 Corso di laurea in Scienze dell Organizzazione Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di Milano-Bicocca A.A. 2018-19

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il

Dettagli

Il punto di intersezione degli assi coordinati prende il nome di origine O degli assi

Il punto di intersezione degli assi coordinati prende il nome di origine O degli assi GEOMETRIA ANALITICA PIANO CARTESIANO Ad ogni punto P del piano corrisponde una coppia di numeri sugli assi cartesiani. La coppia di numeri che indichiamo con (x,) prendono il nome di coordinate cartesiane

Dettagli

Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI

Universita degli Studi di Roma - Tor Vergata - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI R. Docente: Prof. F. Flamini Esercizi Riepilogativi Svolti Esercizio

Dettagli

Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune

Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune Capitolo 1 Richiami sulle funzioni 1.1 Richiami di teoria Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune nozioni sulle funzioni e sui vettori. Per tale motivo in

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE Lezione 8 3/11/2017 LE TRASFORMAZIONI GEOMETRICHE Narciso di Caravaggio I sette tipi di fregi TRASFORMARE Ogni giorno facciamo esperienza di trasformazioni nello spazio: ci si sposta nello spazio si

Dettagli

SIMMETRIE NEL PIANO CARTESIANO

SIMMETRIE NEL PIANO CARTESIANO Simmetrie nel piano cartesiano - Marzo 011 SIMMETRIE NEL PIANO CARTESIANO SIMMETRIE RISPETTO AGLI ASSI CARTESIANI ASSE X: P ( x,y ) a P1 ( x, y ) ; punto medio: M1 ( x,0) ASSE Y: P ( x,y ) a P ( x, y ),

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza

Dettagli

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO GEOMETRI NLITIC 1 IL PINO CRTESINO Il piano cartesiano è costituito da due rette orientate e tra loro perpendicolari chiamate assi cartesiani, generalmente una orizzontale e l altra verticale, sulle quali

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

Corso di Matematica II

Corso di Matematica II Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica

Dettagli

CONOSCENZE e COMPETENZE per MATEMATICA

CONOSCENZE e COMPETENZE per MATEMATICA e COMPETENZE per MATEMATICA LA MISURA DELLE GRANDEZZE GEOMETRICHE E LE GRANDEZZE PROPORZIONALI definizione di classe di grandezze geometriche; conoscere le classi geometriche: lunghezze, ampiezze, aree;

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

Un approccio costruttivo alle trasformazioni geometriche del piano

Un approccio costruttivo alle trasformazioni geometriche del piano Un approccio costruttivo alle trasformazioni geometriche del piano Le cosiddette trasformazioni geometriche elementari del piano sono corrispondenze bigettive, del piano su se stesso, caratterizzate dalla

Dettagli

Teoria in sintesi 10. Teoria in sintesi 14

Teoria in sintesi 10. Teoria in sintesi 14 Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche

Dettagli

SCHEDA OBIETTIVI MINIMI. Materia:MATEMATICA

SCHEDA OBIETTIVI MINIMI. Materia:MATEMATICA Pag. 1 di 5 SCHEDA OBIETTIVI MINIMI Materia:MATEMATICA Classi QUARTA A e QUARTA B Spec.: LICEO DELLE SCIENZE APPLICATE a.s: 2016 / 2017 4 3 2 1 Presidente di dipartimento 0 DOC DS Maria Grazia Gillone

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

0 < x 3. A1 1 [7 punti] Determinare le eventuali soluzioni del seguente sistema di congruenze: x 2 mod 5 2x 1 mod 3. x 21 mod 7

0 < x 3. A1 1 [7 punti] Determinare le eventuali soluzioni del seguente sistema di congruenze: x 2 mod 5 2x 1 mod 3. x 21 mod 7 Dipartimento di Matematica e Informatica Anno Accademico 017-018 Corso di Laurea in Informatica L-31 Prova scritta di Matematica Discreta 1 CFU 5 Settembre 018 A1 1 [7 punti] Determinare le eventuali soluzioni

Dettagli

Gli insiemi, la logica

Gli insiemi, la logica Gli insiemi, la logica 1 Dato l insieme A = {x N : x < 5}, quale delle seguenti affermazioni è falsa: (a) 1 A (b) 5 / A (c) A (d) A risp (e) {1, } A Sono dati gli insiemi A = {, 5, 7, 9} e B = {5, 7} Quali

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1 Introduzione Nella computer grafica, gli oggetti geometrici sono definiti a partire da un certo numero di elementi di base chiamati primitive grafiche Possono essere punti, rette e segmenti, curve, superfici

Dettagli

Nucleo 1: Equazioni e disequazioni algebriche; generalità sulle funzioni

Nucleo 1: Equazioni e disequazioni algebriche; generalità sulle funzioni LIEO SIENTIFIO STATALE E. FERMI BOLOGNA Moduli didattici di Matematica per alunni in ingresso da altre scuole Programma di Matematica per la lasse TERZA Nucleo 1: Equazioni e disequazioni algebriche; generalità

Dettagli

Geometria BAER Canale I Esercizi 11

Geometria BAER Canale I Esercizi 11 Geometria BAER Canale I Esercizi Esercizio. Scrivere la matrice delle seguenti trasformazioni ortogonali del piano (a Proiezione ortogonale sulla retta x + y = 0 (b Rotazione di π/4 seguita da riflessione

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE 1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Soluzioni esercizi complementari

Soluzioni esercizi complementari Soluzioni esercizi complementari Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17 x, y Z xry x y X, Y sottoinsiemi di un insieme

Dettagli

SOMMARIO I SISTEMI LINEARI CAPITOLO 13 CAPITOLO 14 I RADICALI CAPITOLO 15 LE OPERAZIONI CON I RADICALI III. Riepilogo: Metodi di risoluzione 704

SOMMARIO I SISTEMI LINEARI CAPITOLO 13 CAPITOLO 14 I RADICALI CAPITOLO 15 LE OPERAZIONI CON I RADICALI III. Riepilogo: Metodi di risoluzione 704 SOMMARIO T E CAPITOLO 13 3 video ( Metodo di riduzione Metodo di Cramer Un problema con tre incognite) e inoltre 9 animazioni I SISTEMI LINEARI 1 I sistemi di due equazioni in due incognite 670 688 2 Il

Dettagli

punti uniti rette di punti uniti rette unite qual è la trasformazione inversa

punti uniti rette di punti uniti rette unite qual è la trasformazione inversa 3) Dì quali sono i punti uniti, le rette di punti uniti, le rette unite di una a) simmetria centrale b) simmetria assiale c) traslazione d) rotazione e) omotetia Simmetria centrale: si ha un solo punto

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VII: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VII: soluzioni Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VII: soluzioni 12 novembre 2009 1 Geometria dello spazio Esercizio 1 Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2

Dettagli

Esercizi Riepilogativi Svolti

Esercizi Riepilogativi Svolti Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile-Architettura e dell Edilizia SPAZI EUCLIDEI. TRASFORMAZIONI. ORIENTAZIONI. FORMULE DI GEOMETRIA IN R. Docente:

Dettagli

Ore annue: 132 MODULO 1

Ore annue: 132 MODULO 1 Liceo B. Russell VIA IV NOVEMBRE 35, 38023 CLES Indirizzo: Liceo Linguistico CLASSI 2 e Programmazione Didattica Disciplina: Ore annue: 132 Matematica Settembre ottobre MODULO 1 novembre Disequazioni numeriche

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GONIOMETRIA E TRIGONOMETRIA Dr. Erasmo Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice

Dettagli

Liceo Scientifico Severi salerno

Liceo Scientifico Severi salerno Liceo Scientifico Severi salerno VERIFICA ORALE MATEMATICA Docente: Pappalardo Vincenzo Data: /0/09 Classe: B. Determina per quali valori del parametro k le seguenti equazioni rappresentano una affinità:

Dettagli

RADIANTI E CIRCONFERENZA GONIOMETRICA

RADIANTI E CIRCONFERENZA GONIOMETRICA CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GONIOMETRIA E TRIGONOMETRIA Prof. Erasmo Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo

Dettagli

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

Esercizi Riepilogativi Svolti. = 1 = Or(v, w) Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. - PROVA SCRITTA DI GEOMETRIA DEL -- Corsi dei Proff. M. BORDONI, A. FOSCHI Esercizio. E data l applicazione lineare L : R 4 R 3 definita dalla matrice A = 3

Dettagli

( ) 2. Determina il resto della divisione fra il polinomio P ( x) 2 2x. 3. Per quale valore del parametro m il polinomio P(

( ) 2. Determina il resto della divisione fra il polinomio P ( x) 2 2x. 3. Per quale valore del parametro m il polinomio P( ALGEBRA E ANALITICA. Determina il resto della divisione fra il polinomio P ( ) e il binomio D ( ). [ R ( ) ] + + + ( ) Detto D() il polinomio divisore, Q() il polinomio quoziente, R() il resto, il polinomio

Dettagli

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry)

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) SISTEMA DI RIFERIMENTO NELLO SPAZIO La geometria analitica dello spazio è molto simile alla geometria analitica del piano. Per questo motivo le formule sono

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE INTRODUZIONE L iperbole fa parte di un insieme di curve (circonferenza, parabola, ellisse) chiamate coniche, perché si possono

Dettagli

TRASFORMAZIONI GEOMETRICHE: RICHIAMI, ESERCIZI ED APPROFONDIMENTI

TRASFORMAZIONI GEOMETRICHE: RICHIAMI, ESERCIZI ED APPROFONDIMENTI TRASFORMAZIONI GEOMETRICHE: RICHIAMI, ESERCIZI ED APPROFONDIMENTI Appunti presi dalle lezioni del Prof. Liceo Scientifico di Castiglion Fiorentino (Classe B) February 1, 008 1 TRASFORMAZIONI Consideriamo

Dettagli

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il

Dettagli

Soluzioni foglio 6. Pietro Mercuri. 24 ottobre 2018

Soluzioni foglio 6. Pietro Mercuri. 24 ottobre 2018 Soluzioni foglio 6 Pietro Mercuri 4 ottobre 018 Esercizio 1 Dati i punti A, B e P nel piano cartesiano (indicato anche con R ) si determini l equazione della retta r passante per i punti A e B, si verifichi

Dettagli

x 4 4 e il binomio x 2.

x 4 4 e il binomio x 2. ALGEBRA E ANALITICA. Determina il resto della divisione fra il polinomio P ( ) e il binomio D ( ). [ R ( ) ] Detto D() il polinomio divisore, Q() il polinomio quoziente, R() il resto, il polinomio P()

Dettagli

1 L omotetia. i punti O, A e A siano allineati

1 L omotetia. i punti O, A e A siano allineati 1 L omotetia DEFINIZIONE. Dato un punto O ed un numero reale k, si dice omotetia di centro O e rapporto k, quella trasformazione del piano che associa ad ogni punto A il corrispondente punto A tale che

Dettagli