2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima."

Transcript

1 2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 3. Fra tutti i cilindri a base rotonda inscritti in una sfera, determinare quello di volume massimo. 4. Dimostrare che per ogni x, y 0 si ha (x + y) p 2 p 1 (x p + y p ) se p 1, (x + y) p x p + y p se 0 p Provare che: (i) x e 1/x > 1 x > 0; (ii) 2 sin x + tan x > 3x x 0, π/2[; 2x (iii) 2 x > tan x x 0, 2[; 2 (iv) 0 arctan x x x 2 x2 1 + x 2 x R. 6. Provare che se f : [a, b R è derivabile ed ha un massimo (minimo) relativo nell estremo a, allora f (a) 0 (f (a) 0). Enunciare l analogo risultato nel caso in cui f ha un massimo (minimo) relativo nell estremo b Forme quadratiche Nel caso delle funzioni di più variabili, le condizioni perché un punto x 0 sia di massimo o di minimo relativo per una funzione f sono opportune generalizzazioni di quelle del teorema 4.9.4, e coinvolgono, in luogo di f e di f, il gradiente di f e la matrice Hessiana (cioè la matrice delle derivate seconde) di f nel punto x 0 ; per enunciare tali condizioni, è però necessario uno studio preliminare delle cosiddette forme quadratiche in R m. Data una matrice A = {a ij }, m m, reale e simmetrica, la funzione Φ : R m R definita da Φ(v) = Av, v m = a ij v i v j, v R m, 315

2 è detta forma quadratica associata ad A. Una forma quadratica è dunque un polinomio di secondo grado in m variabili, privo di termini di grado inferiore; viceversa, un qualunque polinomio di questo tipo è una forma quadratica la cui matrice associata A = {a ij } è univocamente determinata dai coefficienti del polinomio (esercizio ). In particolare, risulta Φ(tv) = t 2 Φ(v) t R, v R m, cosicché Φ è una funzione omogenea di grado 2 (esercizio 4.4.3). ovviamente, si ha Φ C (R m ); verifichiamo che risulta Inoltre, Φ(v) = 2Av v R m. In effetti, indicato con δ ij il generico elemento della matrice identità I (cosicché δ ij = 0 se i j e δ ij = 1 se i = j), se k = 1, 2,..., m si ha per ogni v R m : ( ) D k Φ(v) = a ij D k (v i v j ) = a ij δik v j + v i δ jk = = a kj v j + a ik v i = a kj v j + a jk v j = 2 Definizione Una forma quadratica Φ : R m R si dice: a jk v j = 2(Av) k. definita positiva, se Φ(v) > 0 per ogni v R m \ {0}; definita negativa, se Φ(v) < 0 per ogni v R m \ {0}; semidefinita positiva, se Φ(v) 0 per ogni v R m ; semidefinita negativa, se Φ(v) 0 per ogni v R m ; indefinita, se Φ assume sia valori positivi che negativi. Esempi Poniamo [ 1 0 A 1 = 0 1 [ 1 0 A 4 = 0 0, A 2 =, A 5 = [ [ , [ 0 0, A 3 = 0 1,

3 e indichiamo con Φ 1, Φ 2, Φ 3, Φ 4 e Φ 5 le forme quadratiche corrispondenti: Φ 1 (x, y) = x 2 + y 2, Φ 2 (x, y) = x 2 y 2, Φ 3 (x, y) = y 2, Φ 4 (x, y) = x 2, Φ 5 (x, y) = x 2 + y 2. Allora Φ 1 è definita positiva, Φ 2 è definita negativa, Φ 3 è semidefinita positiva, Φ 4 è semidefinita negativa, Φ 5 è indefinita. Qualunque sia la matrice A reale e simmetrica, la forma quadratica associata ad A, essendo una funzione di classe C, per il teorema di Weierstrass assume massimo M 0 e minimo m 0 sulla frontiera Γ della palla unitaria di R m, la quale è un insieme compatto. Esistono dunque v 0, w 0 Γ tali che m 0 = Φ(v 0 ) Φ(v) Φ(w 0 ) = M 0 v Γ. Dato che Φ è una funzione omogenea di grado 2, possiamo scrivere ( ) v Φ(v) = Φ v R m \ {0}, v m e di conseguenza si ottiene m 0 Φ(v) M 0 v R m. Ricordiamo ora che un numero complesso λ si dice autovalore per la matrice A se esiste un vettore x C m \ {0} (detto autovettore relativo all autovalore λ) tale che Ax = λx. Dato che tale equazione vettoriale è un sistema lineare omogeneo nelle incognite x 1,..., x m, l esistenza di una sua soluzione x 0, ossia il fatto che λ sia autovalore per la matrice A, equivale alla condizione det(a λi) = 0. Quindi gli autovalori di A sono le m soluzioni (in C, ciascuna contata con la sua molteplicità) dell equazione det(a λi) = 0. Si vede facilmente, però, che se A è reale e simmetrica tutti i suoi autovalori sono reali: infatti se Ax = λx con x C m \ {0}, allora moltiplicando scalarmente per x (rispetto al prodotto scalare di C m ) si ha, essendo A reale e simmetrica: λ x 2 m = Ax, x m = x.a x m = x, Ax m = Ax, x m, ove A = {b ij } è la matrice i cui elementi sono b ij = a ji. In particolare Ax, x m è un numero reale e quindi λ = Ax,x m è reale. Si noti che, di x 2 m conseguenza, l autovettore x appartiene a R m, dato che il sistema Ax = λx è a coefficienti reali. 317

4 Proposizione Sia A una matrice m m reale e simmetrica e sia Φ la forma quadratica associata ad A. I numeri m 0 = Φ(v 0 ) = min Γ Φ e M 0 = Φ(w 0 ) = max Γ Φ, ove Γ = {v R m : v m = 1}, sono rispettivamente il minimo ed il massimo autovalore di A. In particolare si ha m 0 Φ(v) M 0 v R m. Dimostrazione Consideriamo la funzione F : R m \ {0} R definita da In virtù dell omogeneità di Φ, si ha F (v) = Φ(v) m 0 = F (v 0 ) F (v) F (w 0 ) = M 0 v R m \ {0}. Dall esercizio segue che F (v 0 ) = F (w 0 ) = 0; d altra parte se k = 1,..., m si ha per ogni v R m \ {0}: D k F (v) = D kφ(v) Φ(v)D k v 4 m = 2 (Av)k Φ(v) 2vk v 4 m. = = 2 ( (Av) k F (v)v k), ossia F (v) = 2 (Av F (v)v) v R m \ {0}. Dunque, ricordando che v 0, w 0 Γ, 0 = 1 2 F (v 0 ) = Av 0 F (v 0 )v 0 = Av 0 m 0 v 0, 0 = 1 2 F (w 0 ) = Aw 0 F (w 0 )w 0 = Aw 0 M 0 w 0. Ciò prova che m 0, M 0 sono autovalori di A. Resta da far vedere che se λ è autovalore di A risulta m 0 λ M 0 : sia u 0 R m \{0} tale che Au 0 = λu 0 ; moltiplicando scalarmente per u 0 otteniamo e pertanto Dato che u 0 0, ne segue la tesi. Φ(u 0 ) = Au 0, u 0 m = λ u 0 2 m m 0 u 0 2 m Φ(u 0 ) = λ u 0 2 m M 0 u 0 2 m. 318

5 Corollario La forma quadratica Φ, generata da una matrice reale e simmetrica A, è: definita positiva, se e solo se tutti gli autovalori di A sono positivi; definita negativa, se e solo se tutti gli autovalori di A sono negativi; semidefinita positiva, se e solo se tutti gli autovalori di A sono non negativi; semidefinita negativa, se e solo se tutti gli autovalori di A sono non positivi; indefinita, se e solo se A ha sia autovalori positivi, sia autovalori negativi. Dimostrazione Se Φ è definita positiva, si ha Φ(v) > 0 per ogni v R m \ {0}; in particolare m 0 = min Γ Φ è positivo, e quindi tutti gli autovalori di A, che per la proposizione sono non inferiori a m 0, sono positivi. Viceversa, se tutti gli autovalori di A sono positivi, il minimo m 0 della forma quadratica Φ su Γ è positivo in quanto, sempre per la proposizione , m 0 è un autovalore di A. Per omogeneità, si ha allora Φ(v) m 0 > 0 per ogni v R m \ {0}, ossia Φ è definita positiva. Discorso analogo per le altre proprietà. Osservazione Una forma quadratica è semidefinita positiva e non definita positiva se e solo se il minimo autovalore di A è esattamente 0. Similmente, una forma quadratica è semidefinita negativa e non definita negativa se e solo se il massimo autovalore di A è esattamente 0. Due criteri pratici per stabilire la natura di una forma quadratica senza calcolare gli autovalori della matrice (impresa difficoltosa quando m > 2) sono descritti negli esercizi e Esercizi Sia A = {a ij } una matrice m m, sia v C m. Provare che Av m A v m, ove A = a ij 2. [Traccia: utilizzare la disuguaglianza di Cauchy-Schwarz. 319

6 [ a b 2. Sia A = b c ad A: Si provi che: con a, b, c R, e sia Φ la forma quadratica associata Φ(x, y) = ax 2 + 2bxy + cy 2. (i) Φ è definita positiva se e solo se ac b 2 > 0, a > 0, c > 0; (ii) Φ è definita negativa se e solo se ac b 2 > 0, a < 0, c < 0; (iii) Φ è semidefinita positiva se e solo se ac b 2 0, a 0, c 0; (iv) Φ è semidefinita negativa se e solo se ac b 2 0, a 0, c 0; (v) Φ è indefinita se e solo se ac b 2 < Sia A una matrice m m reale e simmetrica, siano λ 1,..., λ m i suoi autovalori (non necessariamente tutti distinti). Si provi che: (i) risulta ( 1) m det(a λi) = ove a 1 = a 3 = m (λ λ i ) = λ m + λ i, a 2 = 1 i<j<h m 1 i<j m λ i λ j, (ii) la forma quadratica Φ(v) = Av, v m è: a i λ m i λ C, m λ i λ j λ h,..., a m = ( 1) m λ i ; definita negativa se e solo se a i > 0 per i = 1,..., m; definita positiva se e solo se ( 1) i a i > 0 per i = 1,..., m; semidefinita negativa se e solo se a i 0 per i = 1,..., m; semidefinita positiva se e solo se ( 1) i a i 0 per i = 1,..., m; indefinita in tutti gli altri casi. 4. Sia P (v) un polinomio di secondo grado in R m, privo di termini di grado inferiore. Provare che P (v) è la forma quadratica associata alla matrice A di coefficienti a ij = 1 2 D id j P. 320

7 5. Determinare, al variare del parametro a R, la natura delle seguenti forme quadratiche: (i) Φ(x, y, z) = x 2 + 2axy + y 2 + 2axz + z 2, (ii) Φ(x, y, z, t) = 2x 2 + ay 2 z 2 t 2 + 2xz + 4yt + 2azt Massimi e minimi relativi per funzioni di più variabili Per le funzioni di più variabili la ricerca dei massimi e dei minimi relativi si basa su risultati che sono in stretta analogia con quelli validi per funzioni di una variabile (teorema 4.9.4). Si ha infatti: Teorema Sia f C 2 (A), ove A è un aperto di R m, e sia x 0 A. Valgono i seguenti fatti: (i) se x 0 è un punto di massimo relativo per f, allora f(x 0 ) = 0 e la forma quadratica associata alla matrice Hessiana H(x 0 ) è semidefinita negativa, ma il viceversa è falso; (ii) se x 0 è un punto di minimo relativo per f, allora f(x 0 ) = 0 e la forma quadratica associata alla matrice Hessiana H(x 0 ) è semidefinita positiva, ma il viceversa è falso; (iii) se f(x 0 ) = 0 e se la forma quadratica associata a H(x 0 ) è definita negativa, allora x 0 è punto di massimo relativo per f, ma il viceversa è falso; (iv) se f(x 0 ) = 0 e se la forma quadratica associata a H(x) è definita positiva, allora x 0 è punto di minimo relativo per f, ma il viceversa è falso. Premettiamo alla dimostrazione del teorema due risultati che useremo ripetutamente anche in seguito. Lemma Sia B(x 0, r) una palla di R m e sia f C 2 (B(x 0, r)). Fissato x B(x 0, r), la funzione F : [ 1, 1 R definita da F (t) = f (x 0 + t(x x 0 )) 321

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI 1. REGOLA DI CRAMER Sia S un sistema lineare di n ( 2) equazioni in n incognite su un campo K : a 11 x 1 + a 12 x 2 + + a 1n x n

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:

Dettagli

Esercizi su Autovalori e Autovettori

Esercizi su Autovalori e Autovettori Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon

Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon Esercizi di algebra lineare e sistemi di equazioni lineari con applicazioni

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

Massimi e minimi vincolati in R 2 - Esercizi svolti

Massimi e minimi vincolati in R 2 - Esercizi svolti Massimi e minimi vincolati in R 2 - Esercizi svolti Esercizio 1. Determinare i massimi e minimi assoluti della funzione f(x, y) = 2x + 3y vincolati alla curva di equazione x 4 + y 4 = 1. Esercizio 2. Determinare

Dettagli

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI)

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) 1 Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) Approssimazioni di Taylor BPS, Capitolo 5, pagine 256 268 Approssimazione lineare, il simbolo

Dettagli

Appunti di Algebra Lineare. Antonino Salibra

Appunti di Algebra Lineare. Antonino Salibra Appunti di Algebra Lineare Antonino Salibra January 11, 2016 2 Libro di testo: Gilbert Strang, Algebra lineare, Edizioni Apogeo 2008 Programma di Algebra Lineare (2015/16) (da completare): 1. Campi numerici.

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte.

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte. PROGRAMMA di Fondamenti di Analisi Matematica 2 (che sarà svolto fino al 7 gennaio 2013) A.A. 2012-2013, Paola Mannucci e Claudio Marchi, Canali 1 e 2 Ingegneria Gestionale, Meccanica-Meccatronica, Vicenza

Dettagli

NUMERI COMPLESSI. Test di autovalutazione

NUMERI COMPLESSI. Test di autovalutazione NUMERI COMPLESSI Test di autovalutazione 1. Se due numeri complessi z 1 e z 2 sono rappresentati nel piano di Gauss da due punti simmetrici rispetto all origine: (a) sono le radici quadrate di uno stesso

Dettagli

Introduzione alla programmazione lineare. Mauro Pagliacci

Introduzione alla programmazione lineare. Mauro Pagliacci Introduzione alla programmazione lineare Mauro Pagliacci c Draft date 25 maggio 2010 Premessa In questo fascicolo sono riportati gli appunti dalle lezioni del corso di Elaborazioni automatica dei dati

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Online Gradient Descent

Online Gradient Descent F94 Metodi statistici per l apprendimento Online Gradient Descent Docente: Nicolò Cesa-Bianchi versione 9 aprile 06 L analisi del Perceptrone ha rivelato come sia possibile ottenere dei maggioranti sul

Dettagli

Corso di Laurea in Ingegneria Informatica Analisi Numerica

Corso di Laurea in Ingegneria Informatica Analisi Numerica Corso di Laurea in Ingegneria Informatica Lucio Demeio Dipartimento di Scienze Matematiche 1 2 Analisi degli errori Informazioni generali Libro di testo: J. D. Faires, R. Burden, Numerical Analysis, Brooks/Cole,

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI

Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI CAMPI SCALARI Sono dati: un insieme aperto A Â n, un punto x = (x, x 2,, x n )T A e una funzione f : A Â Si pone allora il PROBLEMA

Dettagli

Esercizi su risposta libera e modi naturali nel dominio del tempo

Esercizi su risposta libera e modi naturali nel dominio del tempo Esercizi su risposta libera e modi naturali nel dominio del tempo. Effettuare l analisi modale del sistema µ ẋ (t) x (t) y (t) x (t) per µ x () Soluzione. Il polinomio caratteristico è µ µ µ det λ µ λ

Dettagli

Analisi 2 - funzioni di più variabili. Andrea Minetti - andrea.minetti@gmail.com

Analisi 2 - funzioni di più variabili. Andrea Minetti - andrea.minetti@gmail.com Analisi 2 - funzioni di più variabili Andrea Minetti - andrea.minetti@gmail.com January 28, 2011 Ciao a tutti, ecco i miei riassunti, ovviamente non posso garantire la correttezza (anzi garantisco la non

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Geometria Superiore Esercizi 1 (da consegnare entro... )

Geometria Superiore Esercizi 1 (da consegnare entro... ) Geometria Superiore Esercizi 1 (da consegnare entro... ) In questi esercizi analizziamo il concetto di paracompattezza per uno spazio topologico e vediamo come questo implichi l esistenza di partizioni

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

Stabilità di Lyapunov

Stabilità di Lyapunov Stabilità di Lyapunov Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche Ancona Introduzione. In queste note presentiamo i primi elementi della teoria della stabilità

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

Sono definite in sottoinsiemi di R n (n N), a valori in R Ci si limiterà al caso di R 2 o di R 3

Sono definite in sottoinsiemi di R n (n N), a valori in R Ci si limiterà al caso di R 2 o di R 3 1 FUNZIONI DI PIÙ VARIABILI 1 1 Funzioni di più variabili Sono definite in sottoinsiemi di R n (n N), a valori in R Ci si limiterà al caso di R 2 o di R 3 Definizione 1.1 Dati D R 2 e f : D R, l insieme

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica. Calcolo 2 [40214]

Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica. Calcolo 2 [40214] Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica Calcolo 2 [40214] Attività didattica: Attività didattica [codice] Corso di studio Facoltà Calcolo 2 [40214] Ingegneria delle

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W Matematica B - a.a 2006/07 p. 1 Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. Definizione 1. La funzione L : V W si dice una applicazione

Dettagli

Lezioni di Ottimizzazione

Lezioni di Ottimizzazione Lezioni di Ottimizzazione Italo Capuzzo Dolcetta Flavia Lanzara Dipartimento di Matematica Guido Castelnuovo Sapienza Università di Roma A.A. 2007-2008 Ultimo aggiornamento: October 5, 2007 1 Indice 1

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Syllabus: argomenti di Matematica delle prove di valutazione

Syllabus: argomenti di Matematica delle prove di valutazione Syllabus: argomenti di Matematica delle prove di valutazione abcdef... ABC (senza calcolatrici, senza palmari, senza telefonini... ) Gli Argomenti A. Numeri frazioni e numeri decimali massimo comun divisore,

Dettagli

Prof. Stefano Capparelli

Prof. Stefano Capparelli APPUNTI PER UN SECONDO CORSO DI ALGEBRA LINEARE Prof. Stefano Capparelli A mia madre Prefazione. Brevi Richiami di Algebra Lineare. Forma Canonica di Jordan.. Blocco di Jordan.. Base di Jordan.. Polinomio

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità.

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità. 1 ANELLI Definizione 1.1. Sia A un insieme su cui sono definite due operazioni +,. (A, +, ) si dice Anello se (A, +) è un gruppo abeliano è associativa valgono le leggi distributive, cioè se a, b, c A

Dettagli

Geometria I A. Algebra lineare

Geometria I A. Algebra lineare UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali Geometria I A. Algebra lineare Prof.ssa Silvia Pianta Anno Accademico 22/23 Indice Spazi vettoriali 7 Definizione

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

Note di Analisi Matematica 2

Note di Analisi Matematica 2 Annamaria Mazzia Note di Analisi Matematica 2 Università degli Studi di Padova corso di laurea in Ingegneria Edile-Architettura a.a. 2012-2013 Questo lavoro è pubblicato sotto una Creative Commons Attribution-Noncommercial-No

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI ISTITUTO PROFESSIONALE DI ENOGASTRONOMIA E OSPITALITA ALBERGHIERA CON I PERCORSI: ACCOGLIENZA TURISTICA, CUCINA, SALA-BAR ISTITUTO TECNICO PER IL TURISMO Sede Amministrativa:

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Primo Esonero del corso di Geometria Docente F. Flamini, Roma, 2//28 SOLUZIONI COMPITO I ESONERO Esercizio.

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x FUNZIONI Esercizio 1 Studiare la funzione f(x) = ln ( ) x e disegnarne il grafico. x 1 Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: { e x per x 1 f(x) = α x + e 1 per 1

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

FUNZIONI CONTINUE - ESERCIZI SVOLTI

FUNZIONI CONTINUE - ESERCIZI SVOLTI FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Informatica Grafica. Un introduzione

Informatica Grafica. Un introduzione Informatica Grafica Un introduzione Rappresentare la Geometria Operabile da metodi di calcolo automatici Grafica Vettoriale Partiamo dalla rappresentazione di un punto... Spazi Vettoriale SPAZI VETTORIALI

Dettagli

Teoria evolutiva dei giochi.

Teoria evolutiva dei giochi. Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Specialistica in Matematica Tesi di Laurea Specialistica Teoria evolutiva dei giochi. Candidato: Alessandro Maddaloni Relatore: Prof.Paolo

Dettagli

NOTA 3. VETTORI LIBERI e VETTORI APPLICATI. Negli esempi visti sono stati considerati due tipi di vettori :

NOTA 3. VETTORI LIBERI e VETTORI APPLICATI. Negli esempi visti sono stati considerati due tipi di vettori : NOTA 1 VETTOI LIBEI e VETTOI APPLICATI Negli esempi visti sono stati considerati due tipi di vettori : 1) Vettori liberi, quando non è specificato il punto di applicazione. Di conseguenza ad uno stesso

Dettagli

I polinomi 1; x;x 2 ;x 3 sono linearmente indipendenti; infatti. 0= 1 1+ 2 x+ 3 x 2 + 4 x 3 =) 1 = 2 == 4 =0

I polinomi 1; x;x 2 ;x 3 sono linearmente indipendenti; infatti. 0= 1 1+ 2 x+ 3 x 2 + 4 x 3 =) 1 = 2 == 4 =0 ASPETTI TEORICI Spazio vettoriale Un insieme qualunque di inniti elementi V = fv i g si dice uno spazio vettoriale sull'insieme dei numeri reali R se: { E possibile denire un'operazione binaria fra gli

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Appunti per il Corso di Fondamenti di Algebra Lineare e Geometria

Appunti per il Corso di Fondamenti di Algebra Lineare e Geometria Appunti per il Corso di Fondamenti di Algebra Lineare e Geometria Marco A Garuti 4 giugno 9 Questi appunti integrano il testo adottato per il corso (Cantarini - Chiarellotto - Fiorot, Un corso di Matematica,

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi con soluzione

EQUAZIONI DIFFERENZIALI Esercizi con soluzione EQUAZIONI DIFFERENZIALI Esercizi con soluzione. Calcolare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (a) y 2y = (b) y + y = e x (c) y 2y = x 2 + x (d) 3y + y

Dettagli

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni:

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni: FUNZIONI IN PIÙ VARIABILI 1. Esercizi Esercizio 1. Determinare il dominio delle seguenti funzioni, specificando se si tratta di un insieme aperto o chiuso: 1) f(x, ) = log(x x ) ) f(x, ) = x + 3) f(x,

Dettagli

0.1 Esercizi calcolo combinatorio

0.1 Esercizi calcolo combinatorio 0.1 Esercizi calcolo combinatorio Esercizio 1. Sia T l insieme dei primi 100 numeri naturali. Calcolare: 1. Il numero di sottoinsiemi A di T che contengono esattamente 8 pari.. Il numero di coppie (A,

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

ELEMENTI DI ANALISI SPETTRALE 1 I DUE DOMINI

ELEMENTI DI ANALISI SPETTRALE 1 I DUE DOMINI Lezioni di Fisica della Terra Solida, Università di Chieti, a.a. 999/. Docente A. De Santis ELEMENTI DI ANALISI SPETTRALE I DUE DOMINI È spesso utile pensare alle unzioni ed alle loro trasormate di Fourier

Dettagli

Esercizi e Complementi di Geometria Analitica 2003/2004

Esercizi e Complementi di Geometria Analitica 2003/2004 Dipartimento di Matematica Guido Castelnuovo Università degli Studi di Roma La Sapienza Esercizi e Complementi di Geometria Analitica 2003/2004 Domenico Fiorenza e Marco Manetti Premessa Queste note sono

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2014-2015 - Docente: Prof. Angelo Felice Lopez Tutori: Federico Campanini e Giulia Salustri Soluzioni Tutorato 13

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

Per formalizzare il concetto sono necessarie alcune nozioni relative ai poliedri e alla loro descrizione.

Per formalizzare il concetto sono necessarie alcune nozioni relative ai poliedri e alla loro descrizione. 3.7.4 Disuguaglianze valide forti Cerchiamo disuguaglianze valide forti, ovvero disuguaglianze valide che forniscano migliori formulazioni (più stringenti). Per formalizzare il concetto sono necessarie

Dettagli

Algebre di Lie semisemplici, sistemi di radici e loro classificazione

Algebre di Lie semisemplici, sistemi di radici e loro classificazione UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA MAGISTRALE IN MATEMATICA Algebre di Lie semisemplici, sistemi di radici e loro classificazione Relatore

Dettagli

Corrado Zanella. Modelli Geometrici. applicabili in Meccanica dei Solidi, Robotica, Visione Computazionale

Corrado Zanella. Modelli Geometrici. applicabili in Meccanica dei Solidi, Robotica, Visione Computazionale Corrado Zanella Modelli Geometrici applicabili in Meccanica dei Solidi, Robotica, Visione Computazionale ii Versione del 23 settembre 2010 www.corradozanella.it Questo lavoro è diffuso sotto licenza Creative

Dettagli

Lezione 3: Il problema del consumatore: Il

Lezione 3: Il problema del consumatore: Il Corso di Economica Politica prof. Stefano Papa Lezione 3: Il problema del consumatore: Il vincolo di bilancio Facoltà di Economia Università di Roma La Sapienza Il problema del consumatore 2 Applichiamo

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

3. SPAZI VETTORIALI CON PRODOTTO SCALARE

3. SPAZI VETTORIALI CON PRODOTTO SCALARE 3 SPAZI VETTORIALI CON PRODOTTO SCALARE 31 Prodotti scalari Definizione 311 Sia V SV(R) Un prodotto scalare su V è un applicazione, : V V R (v 1,v 2 ) v 1,v 2 tale che: i) v,v = v,v per ogni v,v V ; ii)

Dettagli

2. Variabilità mediante il confronto di valori caratteristici della

2. Variabilità mediante il confronto di valori caratteristici della 2. Variabilità mediante il confronto di valori caratteristici della distribuzione Un approccio alternativo, e spesso utile, alla misura della variabilità è quello basato sul confronto di valori caratteristici

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga Lezioni del corso di Geometria e Algebra prof Michele Mulazzani dott Alessia Cattabriga AA 20001/2002 Indice 1 Equazioni e sistemi lineari 4 11 Alcune strutture algebriche 4 12 Operazioni standard su K

Dettagli

Classicazione dei moduli nitamente generati su un dominio euclideo

Classicazione dei moduli nitamente generati su un dominio euclideo Classicazione dei su un dominio euclideo Relatore: Prof. Andrea Loi Candidato: Università degli Studi di Cagliari 31 Marzo 2015 (UniCa) 31 Marzo 2015 1 / 14 classicazione dei su un dominio euclideo Obiettivo:

Dettagli

Esercizi su dominio limiti continuità - prof. B.Bacchelli. Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.1, 3.2.

Esercizi su dominio limiti continuità - prof. B.Bacchelli. Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.1, 3.2. Esercizi su dominio iti continuità - prof. B.Bacchelli Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2. ESERCIZI * Determinare e disegnare il dominio delle seguenti

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 8 - METODI ITERATIVI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Norme e distanze 2 3 4 Norme e distanze

Dettagli

Appunti del corso di Metodi numerici e ottimizzazione

Appunti del corso di Metodi numerici e ottimizzazione Appunti del corso di Metodi numerici e ottimizzazione L A TEX Ninjas Andrea Cimino Marco Cornolti Emanuel Marzini Davide Mascitti Lorenzo Muti Marco Stronati {cimino,cornolti,marzini,mascitti,muti,stronati}@cli.di.unipi.it

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Esercitazione n o 3 per il corso di Ricerca Operativa

Esercitazione n o 3 per il corso di Ricerca Operativa Esercitazione n o 3 per il corso di Ricerca Operativa Ultimo aggiornamento October 17, 2011 Fornitura acqua Una città deve essere rifornita, ogni giorno, con 500 000 litri di acqua. Si richiede che l acqua

Dettagli

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine Lezione 6 Nucleo, Immagine e Teorema della Dimensione In questa lezione entriamo nel vivo della teoria delle applicazioni lineari. Per una applicazione lineare L : V W definiamo e impariamo a calcolare

Dettagli

ESERCIZI APPLICAZIONI LINEARI

ESERCIZI APPLICAZIONI LINEARI ESERCIZI APPLICAZIONI LINEARI PAOLO FACCIN 1. Esercizi sulle applicazioni lineari 1.1. Definizioni sulle applicazioni lineari. Siano V, e W spazi vettoriali, con rispettive basi B V := (v 1 v n) e B W

Dettagli