STATISTICA INFERENZIALE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "STATISTICA INFERENZIALE"

Transcript

1 STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p X (x θ) o di densità f X (x θ) di cui non si conosce θ. Non si conosco i dati relativi a tutta la popolazione, ma solo quelli relativi ad un campione rappresentativo di n unità: X 1 = x 1,..., X n = x n. Attraverso la conoscenza del campione si cerca di stimare o di verificare la validità di alcune congetture per θ. Quindi l inferenza è un processo attraverso il quale dal campione si deducono informazioni sulla popolazione ed è necessario valutare la qualità e la veridicità di tali informazioni. Statistica, CLEM p. 1/88

2 Problema inferenziale (1) Un azienda produce dei bulloni di ferro. Durante la produzione, capita che dei bulloni prodotti siano difettosi e quindi vanno eliminati. L azienda, per capire la qualità del suo processo produttivo, vuole conoscere la proporzione p di prodotti difettosi in un mese. L azienda inoltre valuta che il processo produttivo è buono se tale proporzione in un mese è p < 15% Problema inferenziale: stimare un valore per p stimare un intervallo di valori per p valutare se il processo produttivo è buono o necessita di interventi per migliorie Statistica, CLEM p. 2/88

3 Interpretazione del problema inferenziale (1) C è una variabile casuale binaria X = numero di pezzi difettosi in un mese (1: difettoso; 0: non difettoso) per conoscere la vera proporzione p di pezzi difettosi, basterrebbe osservare tutta la POPOLAZIONE = tutti i pezzi prodotti in un mese classificandoli come 1 (difettosi) o 0 (non difettosi) e si calcola la proporzione, cioè il PARAMETRO p della popolazione per vari motivi, non si può osservare tutta la popolazione, ma un CAMPIONE (x 1,..., x n ) di n bulloni prodotti in un mese Dato il campione, si cerca di conoscere la popolazione: STIMA PUNTUALE: stimare un valore per p INTERVALLI DI CONFIDENZA: stimare un intervallo di valori per p TEST DI IPOTESI: verificare che p < 0.15 per sincerarsi che il processo produttivo è buono Statistica, CLEM p. 3/88

4 Problema inferenziale (2) Consideriamo gli iscritti al primo anno del CLEM. Siamo interessati a conoscere l altezza media dei maschi µ M e l altezza media delle femmine µ F. Inoltre vogliamo verificare che in media i maschi sono più alti delle femmine. Problema inferenziale: stimare due valori per µ F e µ M stimare due intervalli di valori per µ F e µ M verificare l ipotesi che i maschi sono in media più alti delle femmine Statistica, CLEM p. 4/88

5 Interpretazione del problema inferenziale (2) Ci sono due variabili casuali continue M = altezza dei maschi e F = altezza delle femmine per conoscere le vere altezze medie µ F e µ M, basterrebbe osservare la POPOLAZIONE dei MASCHI = altezza di tutti i maschi iscritti al primo anno e la POPOLAZIONE delle FEMMINE = altezza di tutte le femmine iscritte al primo anno. Facendo le medie dei dati osservati, si ottengono i PARAMETRI µ F e µ M delle due popolazioni per vari motivi, non si possono osservare entrambe le popolazioni, ma due CAMPIONI (m 1,..., m n ) e (f 1,..., f m ) rispettivamente di n e m dimensioni Dati i due campioni, si cerca di conoscere i parametri di entrambe le popolazioni: STIMA PUNTUALE: stimare due valori per µ M e µ F INTERVALLI DI CONFIDENZA: stimare due intervalli di valori per µ M e µ F TEST DI IPOTESI: verificare che µ M µ F > 0 per attestare che effettivamente i maschi in media sono più altri delle femmine Statistica, CLEM p. 5/88

6 Perché il campione Le indagini svolte sull intera popolazione sono dette censuarie poiché svolte attraverso dei CENSIMENTI. Ma spesso può convenire osservare solo un sottoinsieme della popolazione, cioé un CAMPIONE costi elevati di un censimento tempi lunghi di un censimento la popolazione può essere infinita Statistica, CLEM p. 6/88

7 Campione probabilistico Un campione (X 1,..., X n ) è probabilistico quando è nota la probabilità di ogni singola unità di entrare a far parte del campione PRIMA dell estrazione delle n unità il campione (X 1,..., X n ) è una variabile casuale perché non sappiamo esattamente le unità che faranno parte del campione DOPO l estrazione delle n unità il campione (x 1,..., x n ) contiente delle osservazioni e non è più una variabile casuale (X 1 = x 1,..., X n = x n ) Statistica, CLEM p. 7/88

8 Campionamento casuale semplice Un CAMPIONE (X 1,..., X n ) è detto CASUALE SEMPLICE quando ogni unità della popolazione ha la stessa probabilità di entrare a far parte del campione. Consideriamo due tecniche di campionamento estrazione con reinserimento estrazione senza reinserimento Nel primo caso si ha un campione casuale semplice perché ogni unità mantiene la stessa probabilità di entrare a far parte del campione. Nel secondo caso non si ha un campione casuale semplice perché, a seguito di ogni estrazione, varia la probabilità delle singole unità di entrare a far parte del campione. Le differenze fra le due tecniche sono minime quando si hanno popolazioni molto grandi. In generale consideriamo sempre CCS (campioni casuali semplici) ottenuti con estrazione con reinserimento estrazione senza reinserimento in grandi popolazioni Statistica, CLEM p. 8/88

9 Struttura probabilistica del CCS Data una popolazione per una variabile casuale X con distribuzione di probabilità p X (x), un CCS, PRIMA dell estrazione, è una successione di variabili casuali X 1,..., X i,..., X n, i = 1,..., n X 1,..., X n sono i.i.d. ogni X i ha la stessa distribuzione di probabilità della popolazione p Xi (x i ) per l indipendenza, la distribuzione di probabilità del campione è p X1,...,X n (x 1,..., x n ) = n p Xi (x i ) i=1 DOPO l estrazione, il campione non è più una variabile casuale, ma una successione di osservazioni con cui fare inferenza sulla popolazione x 1,..., x i,..., x n, i = 1,..., n Statistica, CLEM p. 9/88

10 Come fare inferenza Supponiamo di considerare una variabile casuale X= altezza ed ipotizziamo X N(µ, σ 2 ). effettuiamo un CCS {X 1,..., X n } osserviamo n unità {x 1,..., x n } Cerchiamo un criterio per utilizzare i dati del CAMPIONE per fare inferenza sui PARAMETRI media µ e varianza σ 2 della POPOLAZIONE Cerchiamo degli indicatori sintetici da calcolare nel campione che possono darci informazioni sui parametri STATISTICHE CAMPIONARIE Statistica, CLEM p. 10/88

11 Statistica campionaria Una statistica campionaria T (X 1,..., X n ) è una funzione che dipende solo dai dati del campione e non da variabili incognite. Dato un CCS {X 1,..., X n } la media campionaria: X = 1 n 2 i=1 X i la varianza campionaria: S 2 = 1 n 1 n i=1 (X i X) 2 oppure S 2 = 1 n n i=1 (X i X) 2 la mediana campionaria semisomma dei valori estremi: (X max X min )/2... Struttura probabilistica della statistica campionaria PRIMA dell estrazione del campione T (X 1,..., X n ) è una variabile casuale ottenuta come combinazioni di variabili casuali X i la cui funzione di distribuzione è quella della popolazione DOPO l estrazione del campione, T (x 1,..., x n ) = t non è una variabile casuale, ma è il valore t che la statistica campionaria assume nel campione estratto. Statistica, CLEM p. 11/88

12 Stimatore di un parametro Lo stimatore è una statistica campionaria T (X 1,..., X n ) che viene utilizzata per stimare (dedurre informazioni) il parametro della popolazione. Esempio. Sia X Be(p). Sia {x 1,..., x n } un CCS osservato del tipo {1, 0, 0..., 1}. Si vuole trovare uno stimatore per p, parametro che rappresenta la proporzione di successi nella popolazione. Un possibile stimatore è la statistica campionaria ˆp = 1 n n i=1 x i Esempio. Sia X N(0, σ 2 ). Sia {x 1,..., x n } un CCS osservato. Si vuole trovare uno stimatore per σ 2, parametro che rappresenta la variabilità nella popolazione. Possibili stimatori sono S 2 = 1 n n (x i 0) 2, S 2 = 1 n 1 i=1 n (x i 0) 2, T = (X max X min )/2 i=1 Statistica, CLEM p. 12/88

13 Come si sceglie lo stimatore? si devono studiare le proprietà degli stimatori e scegliere quello con le proprietà più desiderabili per conoscere le proprietà degli stimatori è necessario conoscere la loro struttura probabilistica, cioè la loro distribuzione di probabilità dato che è nota la distribuzione di probabilità della popolazione, si può dedurre anche la distribuzione di probabilità di una statistica campionaria, poiché questa è funzione del CCS {X 1,..., X n } composto di var. casuali i.i.d. Alcune proprietà di uno stimatore correttezza efficienza consistenza Statistica, CLEM p. 13/88

14 Correttezza di uno stimatore (1) Sia X una variabile casuale con distribuzione di probabilità p X (x θ) con parametro θ. Sia T una funzione del campione {X 1,..., X n } usata come stimatore di θ. Se p T (t θ) è la distribuzione di probabilità dello stimatore T, questo è corretto o non distorto se E(T ) = θ Esempio. Sia T = X la media campionaria usata come stimatore di θ. Se T è corretto, significa che in media riproduce il valore di θ: si estraggono m = 1000 campioni {x 1,..., x n } in ogni campione si calcola la media campionaria x 1,..., x m la media di tutte le medie è uguale a θ 1 m m x j = θ j=1 Statistica, CLEM p. 14/88

15 Correttezza di uno stimatore (2) densità theta = 1.6 T 1 è corretto T 2 non è corretto T 1 T T Statistica, CLEM p. 15/88

16 Efficienza di uno stimatore (1) Sia X una variabile casuale con distribuzione di probabilità p X (x θ) con parametro θ. Siano T 1 e T 2 due possibili stimatori di θ. Se p T1 (t 1 θ) p T2 (t 2 θ) sono le distribuzioni di probabilità dei due stimatori, T 1 è più efficiente di T 2 V(T 1 ) < V(T 2 ) Esempio. Siano T 1 = X la media campionaria e T 2 = Me la mediana campionaria, due stimatori di θ. X è più efficiente di Me se è meno variabile: si estraggono m = 1000 campioni {x 1,..., x n } in ogni campione si calcolano i due stimatori x 1,..., x m, me 1,..., me m si calcolano la varianze σ 2 T 1 e σ 2 T 2 per entrambe le successioni di stimatori la media campionaria è più efficiente delle mediana campionaria se σ 2 T 1 < σ 2 T 2 N.B. L efficienza di uno stimatore è definita in termini relativi (rispetto ad altri stimatori) e non in termini assoluti. Statistica, CLEM p. 16/88

17 Efficienza di uno stimatore (2) 8 T 1 6 VAR(T1) < VAR(T2) densità 4 2 T T Statistica, CLEM p. 17/88

18 Errore quadratico medio (1) L errore quandratico medio di uno stimatore T di un parametro θ considera congiuntamente sia l efficienza sia la distorsione dello stimatore MSE(T ) = E(T θ) 2 = V(T ) + D(T ) 2 dove D(T ) = E(T ) θ. Se uno stimatore è corretto, D(T ) = 0, quindi l errore quadratico medio coincide con la varianza M SE(T ) = V(T ), per stimatori non distorti Siano T 1 e T 2 due possibili stimatori di θ. Lo stimatore T 1 è migliore di T 2 se MSE(T 1 ) < MSE(T 2 ) Se T 1 e T 2 sono due stimatori corretti di θ, si ritorna alla definizione di efficienza, per cui lo stimatore T 1 è migliore di T 2 se V(T 1 ) < V(T 2 ) Statistica, CLEM p. 18/88

19 Errore quadratico medio (2) Anche se T 1 è distorto, è comunque migliore di T 2 perché ha una maggiore efficienza. densità theta = 1.60 E(T1) = 1.70 E(T2) = 1.60 V(T1) < V(T2) MSE(T1) < MSE(T2) T T T 2 Statistica, CLEM p. 19/88

20 Consistenza (1) La consistenza è una proprietà asintotica, nel senso che vale per campioni molto grandi, cioè quando n. Indichiamo con T n lo stimatore calcolato su campioni di dimensioni n. Uno stimatore T n di un parametro θ è consistente quando lim n P ( T n θ < ɛ) = 1, ɛ è un numero piccolissimo positivo Questo significa che quando il campione è molto grande tende ad 1 la probabilità che la stima T n = t cade in un intervallo molto piccolo del parametro θ la stima T n = t ottenuta attraverso uno stimatore consistente è molto vicina al valore vero del parametro θ. Statistica, CLEM p. 20/88

21 Consistenza (2) theta = 1.60 n = 50 n = 100 n = 200 densità T Statistica, CLEM p. 21/88

22 La distribuzione degli stimatori Dato uno stimatore T n, per conoscere le sue proprietà è necessario conoscere la sua distribuzione di probabilità. Studiamo la distribuzione di probabilità e le proprietà dei seguenti stimatori X = 1 n n i=1 X i S 2 = 1 n n 1 i=1 (X i X) 2 S 2 = 1 n n i=1 (X i X) 2 ˆp = n i=1 X i, quando X è una variabile binaria discreta (0, 1) Statistica, CLEM p. 22/88

23 La distrib. della media campionaria X (1) Sia X una variabile casuale con E(X) = µ e V(X) = σ 2 e sia {X 1,..., X n } un CCS con variabili i.i.d. Consideriamo la variabile casuale media campionaria X = 1 n n i=1 X i dato che il campione CS è costituito di variabili i.i.d. E(X) = 1 n n i=1 E(X i) = nµ = µ: X è uno stimatore CORRETTO di µ n V(X) = 1 n n 2 i=1 V(X i) = nσ2 n 2 = σ2 n N.B. Notare che la media campionaria X ha una variabilità inferiore alla variabile X V(X) = σ2 n < V(X) = σ 2 Statistica, CLEM p. 23/88

24 La distrib. della media campionaria X (2) Se X una variabile casuale normale, X N(µ, σ 2 ) e se {X 1,..., X n } è un CCS, la media campionaria n X = 1 n i=1 X i è una combinazione di variabili casuali i.i.d. Per le proprietà della normale X N(µ, σ 2 /n) Se X è variabile casuale qualsiasi con E(X) = µ e V(X) = σ 2, la media campionaria è sempre una combinazione di variabili i.i.d., ma potremmo non conoscere la distribuzione esatta di X ma se il campione è abbastanza grande, per il TLC (teorema del limite centrale), la distribuzione di X si approssima con una distribuzione normale X N(µ, σ 2 /n) Statistica, CLEM p. 24/88

25 La media campionaria per una pop. normale T = media campionaria densità 10 8 T = N(1.60, 0.2/10) X = N(1.60, 0.2) X Statistica, CLEM p. 25/88

26 La distribuzione della stat. campionaria S 2 Sia X una variabile casuale normale N(µ, σ 2 ) e sia {X 1,..., X n } un CCS con variabili i.i.d.. Consideriamo la statistica campionaria S 2 = 1 n n (X i X) 2 i=1 dato che il campione CS è costituito da variabili i.i.d., si dimostra che n S 2 σ 2 χ2 (n 1), N.B. solo se X N da cui si può facilmente verificare che S 2 è uno stimatore DISTORTO di σ 2 E( n S 2 σ 2 ) = n 1, E( S 2 ) = n 1 n σ2 < σ 2 Quindi lo stimatore distorto S 2 tende a sottostimare σ 2. Statistica, CLEM p. 26/88

27 La distribuzione della stat. campionaria S 2 Sia X una variabile casuale normale N(µ, σ 2 ) e sia {X 1,..., X n } un CCS con variabili i.i.d.. Consideriamo la statistica campionaria S 2 = 1 n 1 n (X i X) 2 dato che il campione CS è costituito da variabili i.i.d., si dimostra che i=1 (n 1)S 2 σ 2 χ 2 (n 1), N.B. solo se X N da cui si può facilmente verificare che S 2 è uno stimatore CORRETTO di σ 2 (n 1)S2 E( σ 2 ) = n 1, E(S 2 ) = n 1 n 1 σ2 = σ 2 Quindi si predilige S 2 come stimatore della varianza σ 2. Statistica, CLEM p. 27/88

28 La distrib. di (n 1)S 2 /σ 2 per pop. normali 0.12 Distribuzione della varianza campionaria chi quadrato n 1 gradi di libertà densità Statistica, CLEM p. 28/88

29 La distrib. della proporzione campionaria ˆp Sia X una variabile casuale binaria X Be(p) con E(X) = p e V(X) = p(1 p) e sia {X 1,..., X n } un CCS con variabili i.i.d. Consideriamo la variabile casuale ˆp = proporzione campionaria di successo n ˆp = 1 n i=1 X i dato che il campione CS è fatto variabili i.i.d. X i Be(p), ˆp Bin(n, p) E(ˆp) = 1 n n i=1 E(X i) = np n V(ˆp) = 1 n n 2 i=1 V(X i) = np(1 p) n 2 = p: ˆp è uno stimatore CORRETTO di p = p(1 p) n N.B. Se il campione è molto grande, per il TLC ˆp si approssima con una normale ˆp N(p, p(1 p) ) n Statistica, CLEM p. 29/88

30 La distrib. approssimata di ˆp per vari n Densità approssimata della proporzione camp. densità p = 0.4 p(1 p) = 0.24 n = 100 n = 50 n = 30 N(0.4, 0.24/100) N(0.4, 0.24/50) N(0.4, 0.24/30) Statistica, CLEM p. 30/88

31 Stima puntuale Sia X distribuita con una legge di probabilità p X (x θ) o funzione di densità f X (x θ). Sia T (X) uno stimatore di θ e {X 1,..., X n } un CCS. Una volta estratto il campione X 1 = x 1,..., X n = x n la stima puntuale è il valore assunto dallo stimatore nel campione T (x 1,..., x n ) = t Si assume t come stima per θ. L accuratezza della stima puntuale dipende dall errore standard della stima SE(T ) = V(T ) Statistica, CLEM p. 31/88

32 Stima puntuale della media Sia X N(µ, σ 2 ). Supponiamo che σ 2 sia noto e l unico parametro è µ. Una volta estratto il campione X 1 = x 1,..., X n = x n la stima puntuale è e l accuratezza della stima di µ è x = 1 n n i=1 x i SE(x) = σ n dato che V(X) = σ2 n Statistica, CLEM p. 32/88

33 Stima puntuale di una proporzione Sia X Be(p) di parametro p. Una volta estratto il campione X 1 = x 1,..., X n = x n la stima puntuale di p è n p = 1 n i=1 x i e l accuratezza della stima è dato che V( p) = p(1 p) n SE( p) = p(1 p) n Statistica, CLEM p. 33/88

34 Stima per intervallo (1) A volte, piuttosto che stimare il parametro con un unico valore (stima puntuale), si preferisce stimare un intervallo di valori plausibili per il parametro: un intervallo di confidenza (o fiduciario). La stima per intervallo si basa su: uno stimatore T per il parametro θ la distribuzione di probabilità p T (t θ) dello stimatore T un livello di confidenza α = una probabilità che indica l affidabilità della stima un intervallo di confidenza: un insieme di valori per θ Statistica, CLEM p. 34/88

35 Stima per intervallo (2) Sia X una variabile casuale per la popolazione con parametro θ non noto. Sia T uno stimatore corretto di θ, E(T ) = θ, e {X 1,..., X n } un CCS. PRIMA dell estrazione del campione, T è una variabile casuale che consideriamo standardizzata e per la quale possiamo definire un intervallo (a, b) tale che P (a T θ SE(T ) b) = 1 α, con α abbastanza piccolo P (T a SE(T ) θ T + b SE(T )) = P (a θ b ) = 1 α Gli estremi dell intervallo (a, b ) dipendono da T e sono anche loro variabili casuali. α = P [θ / (a, b )], 1 α = P [θ (a, b )] α = probabilità di estrarre un certo campione in cui T = t da cui deriva un intervallo [t a SE(t), t + b SE(T )] che non contiene il parametro θ, quindi produce una stima per intervallo errata Statistica, CLEM p. 35/88

36 Intervallo di confidenza PRIMA dell estrazione del campione, P (T v θ T + k) = 1 α, v = a SE(T ), k = b SE(T ) (T v, T + k) è un intervallo i cui estremi sono variabili casuali 1 α = probabilità si estrarre un certo campione in cui T = t da cui deriva una stima per intervallo intervallo (t v, t + k) che contiene il parametro θ. DOPO l estrazione del campione CS {x 1,..., x n } (t v, t + k) è l intervallo di confidenza i cui estremi sono valori certi, non più variabili casuali per un α molto piccolo {0.10, 0.05, 0.01}, abbiamo che la probabilità a priori di estrarre un campione che genera un intervallo che non contiene θ è bassissma, perciò confidiamo nel fatto che θ (t v, t + k) Statistica, CLEM p. 36/88

37 Intervallo di confidenza (2) Consideriamo una variabile casuale X N(µ, 1) con varianza nota. Sia {X 1,..., X n } un CCS e sia T N(µ, 1/n) lo stimatore media campionaria per il parametro µ. Se α = 0.05 = 5%, P (a T µ 1/n b) = P (T a 1/n µ T + b 1/n) = 0.95 = 95% In pratica, supponiamo di estrarre 1000 campioni: 950 di questi campioni generano una stima T = t tale che la stima per intervallo è corretta θ (t a 1/n, t + b 1/n) 50 di questi campioni generano una stima T = t tale che la stima per intervallo è errata θ / (t a 1/n, t + b 1/n) Statistica, CLEM p. 37/88

38 Come si scelgono a e b? Consideriamo α = 0.10 P (a T µ 1/n b) = P (a Z b) = 90% Ci sono tantissimi intervalli (a, b) che soddisfano quella condizione P ( 2.05 Z 1.41) = P ( 1.48 Z 1.88) = P ( 1.64 Z 1.64) = 90% L intervallo di confidenza migliore di solito è quello simmetrico, cioè quello per cui la probabilità α = 10% si divide a metà P ( 1.64 Z 1.64) = 90% P (Z 1.64) = α/2 = 5%, P (Z < 1.64) = α/2 = 5% Statistica, CLEM p. 38/88

39 Alcuni intervalli per α = 0.10 Quello in rosso è l intervallo simmetrico ( 1.64, 1.64) Int. Confidenza, alpha = 10% alpha = 2% + 8% IC = ( 2.05, 1,41) alpha = 5%+ 5% IC = ( 1.64, 1,64) 0.3 alpha = 7% + 3% IC = ( 1.48, 1,88) 0.25 densità Z Statistica, CLEM p. 39/88

40 Intervallo di confidenza simmetrico Consideriamo una variabile casuale X N(µ, 1) con varianza nota. Sia {X 1,..., X n } un CCS e sia T N(µ, 1/n) lo stimatore media campionaria per il parametro µ. L intervallo di confidenza simmetrico si ottiene P ( z α/2 T µ 1/n z α/2 ) = P (T z α/2 1/n µ T + z α/2 1/n) = 1 α Se α = 0.05, z = 1.96 e z = L intervallo di confidenza casuale è (T /n, T /n) poiché P ( 1.96 T µ 1/n 1.96) = 1 5% = 95% Una volta estratto un campione {x 1,..., x n } in cui T = t, la stima per intervallo del parametro µ è data dall intervallo di confidenza µ (t /n, t /n) Statistica, CLEM p. 40/88

41 Alcuni valori z α/2 per una normale standard Normale Standard 0.35 Normale Standard % % % 5% % 2.5% Normale Standard % % 0.5% Statistica, CLEM p. 41/88

42 IC per la media µ in caso di varianza nota IC per µ di pop. normale con varianza nota Sia X N(µ, σ 2 ) con varianza σ 2 nota Sia X N(µ, σ 2 /n) lo stimatore per il parametro µ Sia {x 1,..., x n } un CCS estratto in cui X = x L intervallo di confidenza simmetrico è (x 1.64 σ/ n, x σ/ n), per α = 10% (x 1.96 σ/ n, x σ/ n), per α = 5% (x 2.57 σ/ n, x σ/ n), per α = 1% IC per µ di pop. non normale con varianza nota e grandi campioni Gli stessi intervalli si possono usare per ottenere IC asintotici per il parametro E(X) = µ anche per variabili casuali X NON NORMALI, ma solo nel caso di GRANDI CAMPIONI (n abbastanza grande). Poiché, per il teorema del limite centrale X = 1 n n X i si approssima con N(µ, σ 2 /n) per n grande i=1 Statistica, CLEM p. 42/88

43 Stima giusta o errata? IC rossi sono stime errate di µ generate da campioni in cui t = x è poco probabile Stime per intervallo corrette ed errate T t = 0.90 t = t = t = mu = 1.60 Statistica, CLEM p. 43/88

44 IC per la media µ con varianza non nota (1) IC per µ di pop. normale con varianza non nota Sia X N(µ, σ 2 ) con varianza σ 2 non nota usiamo S 2 = 1 n n 1 i=1 (X i X) 2 come stimatore di σ 2 Sia X lo stimatore per il parametro µ, se X N, si dimostra che X µ S/ n t n 1, t Student con n 1 g.l. Sia {x 1,..., x n } un CCS estratto in cui X = x e S 2 = s 2 L intervallo di confidenza simmetrico è (x t (n 1),α/2 s/ n, x + t (n 1),α/2 s/ n) (x 1.83 s n, x s/ n), per α = 10% e n = 10 (x 2.26 s/ n, x s/ n), per α = 5% e n = 10 (x 3.25 s/ n, x s/ n), per α = 1% e n = 10 Statistica, CLEM p. 44/88

45 IC per la media µ con varianza non nota (2) IC per µ di pop. non normale con varianza non nota e grandi campioni Nel caso di grandi campioni, sia che X sia normale sia che X sia non normale, per il teorema del limite centrale X µ S/ n si approssima con N(0, 1) L intervallo di confidenza asintotico e simmetrico per µ è quindi (x z α/2 s/ n, x + z α/2 s/ n) Ad esempio, con n = 10 con α = 5%, IC per µ è (x 1.96 s/ n, x s/ n) Statistica, CLEM p. 45/88

46 IC per la proporzione p in grandi campioni Sia X Be(p) una variabile binaria (0, 1) e sia {X 1,..., X n } un CCS Sia p = 1 n n i=1 X i lo stimatore per il parametro p. Per il teorema del limite centrale p p p(1 p) n si approssima con N(0, 1) Sia {x 1,..., x n } un GRANDE CAMPIONE estratto in cui si calcola p L intervallo di confidenza asintotico e simmetrico è ( p 1.64 ( p 1.96 ( p 2.57 p(1 p) p(1 p) ( p z α/2, p + z α/2 ) n n p(1 p) p(1 p) n, p p(1 p) p(1 p) n ), per α = 10%, p ), per α = 5% n n p(1 p) p(1 p), p ), per α = 1% n n Statistica, CLEM p. 46/88

47 IC per la varianza σ 2 in pop. normali (1) IC per σ 2 di pop. normale con µ non nota Sia X N(µ, σ 2 ) con µ non nota usiamo S 2 = 1 n 1 n i=1 (X i X) 2 come stimatore di σ 2. Si ha che per un certo α (n 1)S 2 σ 2 χ 2 n 1, chi-quadrato con n 1 g.l. P [χ 2 (n 1),1 α/2 (n 1)S2 σ 2 χ 2 (n 1),α/2 ] = 1 α P [(n 1)S 2 /χ 2 (n 1),α/2 σ2 (n 1)S 2 /χ 2 (n 1),1 α/2 ] = 1 α Sia {x 1,..., x n } un CCS estratto in cui S 2 = s 2 L intervallo di confidenza simmetrico è [(n 1)s 2 /χ 2 (n 1),α/2, (n 1)s2 /χ 2 (n 1),1 α/2 ] Statistica, CLEM p. 47/88

48 IC per la varianza σ 2 in pop. normali (2) (9s 2 /16.92, 9s 2 /3.33), per α = 10% e n = 10 (9s 2 /19.02, 9s 2 /2.70), per α = 5% e n = 10 (9s 2 /23.59, 9s 2 /1.73), per α = 1% e n = 10 IC per σ 2 di pop. normale con µ nota Se X N(µ, σ 2 ) dove µ è nota, la differenza è che (n 1)S 2 σ 2 χ 2 n, chi-quadrato con n g.l. quindi, per un certo valore s 2 ed un certo α, IC simmetrico per σ 2 è [(n 1)s 2 /χ 2 n,α/2, (n 1)s2 /χ 2 n,1 α/2 ] Statistica, CLEM p. 48/88

49 Quantili χ 2 9,α/2 e χ2 9,1 α/ Chi quadro con 9 gradi di libertà IC 90% IC 95% IC 99% Statistica, CLEM p. 49/88

50 IC per µ X µ Y : pop. normali, var. note IC per µ X µ Y con X N(µ X, σ 2 X ) e Y N(µ Y, σ 2 Y ), con X Y Siano le varianze σx 2 e σ2 Y note Siano X N(µ X, σx 2 /n) e Y N(µ Y, σy 2 /m) gli stimatori di µ X e µ Y Siano {x 1,..., x n } e {y 1,..., y m } due CCS indipendenti in cui X = x e Y = y Per l indipendenza si ha che L intervallo di confidenza simmetrico è (X Y ) (µ X µ Y ) N(0, 1) σ 2 X n + σ2 Y m [(x y) 1.64 σ 2 X n + σ2 Y m, (x y) [(x y) 1.96 σ 2 X n + σ2 Y m, (x y) [(x y) 2.57 σ 2 X n + σ2 Y m, (x y) σ 2 X σ 2 X n + σ2 Y m ], per α = 10% n + σ2 Y m ], per α = 5% σ 2 X n + σ2 Y m ], per α = 1% Statistica, CLEM p. 50/88

51 IC per µ X µ Y : pop. normali, var. non note IC per µ X µ Y con X N(µ X, σ 2 X ) e Y N(µ Y, σ 2 Y ), con X Y Siano le varianze non note ma uguali σ 2 = σ 2 X = σ2 Y (omoschedasticità) Assumiamo come stimatore per la varianza comune S 2 p = (n 1)S2 X + (m 1)S2 Y n + m 2 Siano X N(µ X, σ 2 X /n) e Y N(µ Y, σ 2 Y /m) gli stimatori di µ X e µ Y Siano {x 1,..., x n } e {y 1,..., y m } due CCS indipendenti in cui X = x e Y = y Se X ed Y sono normali ed indipendenti si ha che (X Y ) (µ X µ Y ) t k, k = n + m 2 Sp( 2 1n + 1m ) L intervallo di confidenza simmetrico è [(x y) t k,α/2 s 2 p( 1 n + 1 m ), (x y) + t k,α/2 s 2 p( 1 n + 1 m )] Statistica, CLEM p. 51/88

52 IC per µ X µ Y per grandi campioni (1) IC per µ X µ Y per popolazioni non normali con varianze note e grandi campioni Anche se X ed Y sono NON NORMALI, ma INDIPENDENTI, per costruire intervalli di confidenza per il parametro µ X µ Y si può comunque utilizzare la distribuzione Normale, ma solo nel caso di GRANDI CAMPIONI, poiché, per il teorema del limite centrale (X Y ) (µ X µ Y ) σ 2 X n + σ2 Y m si approssima con N(0, 1) per n ed m grandi L intervallo di confidenza asintotico e simmetrico è [(x y) z α/2 σ 2 X n + σ2 Y m, (x y) + z α/2 σ 2 X n + σ2 Y m ] Statistica, CLEM p. 52/88

53 IC per µ X µ Y per grandi campioni (2) IC per µ X µ Y per popolazioni non normali con varianze non note e grandi campioni Consideriamo S 2 X ed S2 Y come stimatori corretti per σ2 X e σ2 Y Anche se X ed Y sono NON NORMALI, ma INDIPENDENTI, per costruire intervalli di confidenza per il parametro µ X µ Y si può comunque utilizzare la distribuzione Normale, ma solo nel caso di GRANDI CAMPIONI, poiché, per il teorema del limite centrale (X Y ) (µ X µ Y ) S 2 X n + S2 Y m si approssima con N(0, 1) per n ed m grandi L intervallo di confidenza asintotico e simmetrico è [(x y) z α/2 s 2 X n + s2 Y m, (x y) + z s 2 X α/2 n + s2 Y m ] Statistica, CLEM p. 53/88

54 Decisioni in condizioni di incertezza Un azienda che produce pezzi di ricambio per auto ha acquistato un nuovo macchinario per realizzare tali pezzi in una lega più leggera di alluminio. Vuole testare e valutare il nuovo processo produttivo sulla base dei pezzi prodotti. Valuta che in media i pezzi dovrebbero pesare µ = 1.5 kg se i pezzi pesano in media più o meno di 1.5 kg, il processo produttivo va fermato e revisionato. La decisione si basa su un campione scelto casualmente di n = 50 pezzi prodotti: come si fa a prendere una decisione? 1. si osserva il peso dei 16 pezzi x 1,..., x 16, si calcola la media e, se x 1.5, allora si decide di fermare il processo produttivo 2. dato che non si conosce l intera popolazione, la decisione deve tenere conto dell incertezza dovuta alla stima campionaria: x può essere diverso da 1.5 nel campione, ma la media nella popolazione µ potrebbe comunque essere per decidere se fermare o no la produzione sulla base del campione, è necessario definire una regola che tiene conto dell errore campionario x µ Statistica, CLEM p. 54/88

55 Verifica di ipotesi Sia X un certo fenomeno casuale oggetto di interesse (peso dei pezzi prodotti) di cui si conosce la famiglia di distribuzione di probabilità p X (x θ) o f X (x θ), ma non si conosce il valore del parametro θ. Si vuole verificare una certa ipotesi su θ sulla base di un campione di osservaioni. La verifica di ipotesi si basa su: uno stimatore T per θ la distribuzione f T (t θ) dello stimatore T l ipotesi nulla H 0 : θ = θ 0 l ipotesi alternativa H 1 semplice: H 1 : θ = θ 1 unidirezionale: H 1 : θ > θ 0 o H 1 : θ < θ 0 bi-direzionale: H 1 : θ θ 0 una regola per prendere una decisione sulla base del campione estratto: accettare H 0 o rifiutare H 0 la probabilità α di commettere un errore nel prendere una decisione: rifiutare H 0 anche se è vera. Statistica, CLEM p. 55/88

56 Sistema di ipotesi L ipotesi nulla H 0 : θ = θ 0 esprime ciò che ci interessa verificare. Nell esempio precedente: H 0 : µ = 15 L ipotesi alternativa H 1 smentisce l ipotesi nulla ed indica altri possibili valori per θ diversi da θ 0. Nell esempio precedente: H 1 : µ = 30 o H 1 : µ > 15 o H 1 < 15 o H 1 15 Esempio: Sia X = il peso dei pezzi prodotti e sia x 1,..., x 16 un campione di 50 pezzi osservati. Assumiamo che X N(µ, 4) con µ non nota. Prendiamo X come stimatore di µ: X N(µ, 4/16) Dato che nel campione osservato x = 14, serve una REGOLA per decidere se accettare H 0 : µ = 15 e non fermare il processo produttivo rifiutare H 0 poiché µ 15 e fermare il processo produttivo Statistica, CLEM p. 56/88

57 Regola decisionale (1) Sia Ω lo spazio campionario, cioè l insieme di tutti i possibili campioni x 1,..., x n che si possono estrarre La regola va definita sullo spazio Ω il quale viene diviso in due parti disgiunte ed esaustive, Ω = A R, A R = A: l insieme dei campioni per cui si accetta H 0 R: l insieme dei campioni per cui si rifiuta H 0 Consideriamo il sistema di ipotesi H 0 : θ = θ 0, H 1 : θ θ 0. e lo stimatore T di θ che in ogni campione x 1,..., x n assume un certo valore t. La regola dovrebbe essere definita in modo tale che per ogni campione contenuto in A, t deve essere abbastanza vicino a θ 0 per ogni campione contenuto in R, t deve essere abbastanza diverso da θ 0 Statistica, CLEM p. 57/88

58 Regola decisionale (2) La regola deve essere definita in modo tale che campioni che producono stime T = t per il parametro θ molto vicine (diverse) a θ 0 portano ad accettare (rifiutare) l ipotesi nulla H 0 Si considera la distribuzione di probabilità f T (t θ 0 ) dello stimatore T quando è vera H 0 sulla base di f T (t θ 0 ), la regola definisce A: zona di accettazione, cioè i valori di T per cui si accetta H 0 R: zona di rifiuto o zona critica, cioè i valori di T per cui si rifiuta H 0 se H 0 è vera, A è un insieme di valori di T molto probabili secondo la funzione f T (t θ 0 ) se H 0 è vera, R è un insieme di valori di T poco probabili secondo la funzione f T (t θ 0 ) Statistica, CLEM p. 58/88

59 Zona R di rifiuto e zona di A accettazione Sia X N(µ, 4) e X N(µ, 4/16) lo stimatore di µ. Vogliamo verificare l ipotesi H 0 : µ = 15, contro H 1 : µ Distribuzione della media camp. sotto l ipotesi nulla densità R A R media campionaria A: insieme di molto probabili e R: insieme di poco probabili se è vera H 0 Statistica, CLEM p. 59/88

60 Livello di significatività α e valori critici Il livello di significatività α è una probabilità da cui derivano i valori critici x α/2 che delimitano la zona di rifiuto (zona critica) R e di accettazione A alpha = 10% 14.5 = valore critico 15.5 = valore critico Distribuzione della media camp. sotto H0 H0 densità % 90% 5% 0.2 R A R media campionaria x α/2 = (14.5, 15.5) R : (, 14.5) (15.5, + ) P (X R) = 0.10 = α: prob. di rifiutare H 0 A : (14.5, 15.5) P (X A) = 0.90 = 1 α: prob. di accettare H 0 Statistica, CLEM p. 60/88

61 Errori di I e II tipo R : (, 14.5) (15.5, + ), A : (14.5, 15.5) Se estraggo un campione x 1,..., x 16 in cui = 14.8, ACCETTO H 0 perché x A. Se se H 0 è vera prendo una decisione corretta se H 0 è falsa prendo una decisione errata Se estraggo un campione x 1,..., x 16 in cui x = 15.9, RIFIUTO H 0 perché x R. Se se H 0 è vera prendo una decisione errata se H 0 è falsa prendo una decisione corretta Nel prendere queste decisioni si possono commettere due errori: ERRORE di I tipo: rifiuto H 0 ma è vera ERRORE di II tipo: accetto H 0 ma è falsa Statistica, CLEM p. 61/88

62 Errore di I tipo Se estraggo un campione con x = 15.9 o con x = 13.9, questi valori sotto H 0 sono poco plausibili, mentre sono più plausibili sotto H 1 : RIFIUTO H Distribuzione della media camp. sotto H0 e H1 H1 H0 H densità R A R media campionaria se H 0 è falsa ho preso una giusta decisione se H 0 è vera ho commesso un ERRORE DI I TIPO Statistica, CLEM p. 62/88

63 Errore di II tipo Se estraggo un campione con x = 14.8, questo valore sotto H 0 è molto plausibile, mentre è poco plausibile sotto H 1 : ACCETTO H Distribuzione della media camp. sotto H0 e H1 H1 H0 H densità R A R media campionaria se H 0 è falsa ho commesso un ERRORE DI II TIPO se H 0 è vera ho preso una giusta decisione Statistica, CLEM p. 63/88

64 Test unidirezionale semplice (1) Verifica di ipotesi unidirezionale semplice con α = 10% H 0 : µ = 15 H 1 : µ = 15.6 Il valore critico è x α = 15.3 e la zona di rifiuto o critica è x > alpha = 10% H0 H1 densità A R Statistica, CLEM p. 64/88

65 Test unidirezionale semplice (2) Verifica di ipotesi unidirezionale semplice con α = 5% H 0 : µ = 15 H 1 : µ = 14.3 Il valore critico è x α = 14.5 e la zona di rifiuto o critica è x < H1 H0 alpha = 5% densità R A Statistica, CLEM p. 65/88

66 Probabilità dell errore di I e II tipo PRIMA di estrarre il campione posso calcolare la probabilità di decisioni errate. P (Errore I tipo) = P (X R H 0 è vera) = α P (Errore II tipo) = P (X A H 0 è falsa) = P (X A H 1 è vera) = β PRIMA di estrarre il campione posso calcolare la probabilità di decisioni corrette P (X A H 0 è vera) = 1 α P (X R H 1 è vera) = 1 β: potenza del test DOPO l estrazione del campione, si ha un valore preciso X = x per il quale si confida nella decisione presa ACCETTO H 0 se x A o RIFIUTO H 0 se x R sulla base della zona di rifiuto o critica stabilita secondo un livello di significatività α Statistica, CLEM p. 66/88

67 H 0 : µ = 15 H 1 : µ = 15.6 x α = alpha = 10% beta = 32% H0 H A R P (X R H 0 ) = P (X > 15.3 µ = 15) = α = 0.10: prob. errore I tipo P (X A H 1 ) = P (X < 15.3 µ = 15.6) = β = 0.32: prob. errore II tipo P (X A H 0 ) = P (X < 15.3 µ = 15) = 1 α = 0.90: P (X R H 1 ) = P (X > 15.3 µ = 15.6) = 1 β = 0.78: potenza del test Statistica, CLEM p. 67/88

68 Test unidirezionale composto (1) Verifica di ipotesi unidirezionale semplice con α = 5% H 0 : µ = 15 H 1 : µ > 15 (l ipotesi H 1 non è semplice, è definita per ogni µ > 15) Il valore critico è x α = 15.3 e la zona di rifiuto o critica è x > alpha = 10% H0 H A R Statistica, CLEM p. 68/88

69 Test unidirezionale composto (2) Verifica di ipotesi unidirezionale semplice con α = 5% H 0 : µ = 15 H 1 : µ < 15 (l ipotesi H 1 non è semplice, è definita per ogni µ < 15) Il valore critico è x α = 14.5 e la zona di rifiuto o critica è x < H1 H0 alpha = 5% R A Statistica, CLEM p. 69/88

70 H 0 : µ = 15 H 1 : µ = µ 1 < H1 H0 alpha = 5% R A P (X R H 0 ) = P (X < 14.5 µ = 15) = α = 0.5: prob. errore I tipo P (X A H 1 ) = P (X > 14.5 µ 1 ) = β(µ 1 ): prob. errore II tipo P (X A H 0 ) = P (X > 14.5 µ = 15) = 1 α = 0.95: P (X R H 1 ) = P (X < 14.5 µ 1 ) = 1 β(µ 1 ): potenza del test Statistica, CLEM p. 70/88

71 Test bi-direzionale Verifica di ipotesi bi-direzionale con α = 10%, H 0 : µ = 15 H 1 : µ 15 (l ipotesi H 1 non è semplice, è definita per ogni µ 15) Abbiamo due valori critici che si ottengono convenzionalmente usando α/2: x α/2 = (14.5, 15.5) e la zona di rifiuto o critica è x < 14.5 x > Test bi direzionale con alpha = 10% H1 H0 H R A R Statistica, CLEM p. 71/88

72 H 0 : µ = 15 H 1 : µ = µ Test bi direzionale con alpha = 10% H1 H0 H R A R P (X R H 0 ) = P (X > 15.5 X < 14.5 µ = 15) = α = 0.10: prob. errore I tipo P (X A H 1 ) = P (14.5 < X < 15.5 µ 1 ) = β(µ 1 ): prob. errore II tipo P (X A H 0 ) = P (14.5 < X < 15.5 µ = 15) = 1 α = 0.90 P (X R H 1 ) = P (X > 15.5 X < 14.5 µ 1 ) = 1 β(µ 1 ): potenza del test Statistica, CLEM p. 72/88

73 Considerazioni sulla verifica di ipotesi (1) Data una variabile casuale X con distribuzione di probabilità f X (x θ), attraverso un test statistico si vuole verificare una certa ipotesi sul parametro θ. Il test di ipotesi di basa su un ipotesi nulla H 0 ed un ipotesi alternativa H 1 che sono fra loro incompatibili uno stimatore T di θ, detto anche statistica test che ha una certa distribuzione di probabilità f T (t θ) un livello di significatività α che, sulla base della distribuzione di probabilità f T (t θ 0 ) sotto H 0 definisce: dei valori critici t α oppure t α/2 una zona critica R di rifiuto e una zona di accettazione A per verificare l ipotesi H 0 dato un campione CS x 1,..., x n in cui T = t se t A, si accetta H 0 se t R si rifiuta H 0 Statistica, CLEM p. 73/88

74 Considerazioni sulla verifica di ipotesi (2) La regola decisionale del test che porta ad accettare/rifiutare l ipotesi nulla, dipende solo dal livello di significatività α dalla distribuzione f T (t θ 0 ) sotto H 0 L ipotesi alternativa H 1 consente di valutare l errore di II tipo β e la potenza del test 1 β di capire la direzione del test (unidirezionale o bi-direzionale) Si possono commettere due errori, le cui probabilità PRIMA di estrarre il campione sono: P (T R H 0 ) = α: prob. errore di I tipo P (T A H 1 ) = β: prob. errore di II tipo DOPO l estrazione del campione, dato il valore della statistica test T = t, si valuta se accettare H 0 : il test non è significativo al livelllo α rifiutare H 0 : il test è significativo al livello α N.B. Al variare di α, varia la regione critica R e con lo stesso campione si possono prendere decisioni diverse Statistica, CLEM p. 74/88

75 H 0 : µ = 15 H 1 : µ = 15.6 Dato un campione CS in cui x = 15.4, il test è significativo (rifiuto H 0 ) al livello α = 10% il test è non significativo (accetto H 0 ) al livello α = 1% alpha = 10% valore critico = beta = 53% alpha = 1% valore critico = 15.6 beta = 87% H0 H Statistica, CLEM p. 75/88

76 Test per la media µ con varianza nota (1) Test per H 0 : µ = µ 0 in pop. normale con varianza nota Sia X N(µ, σ 2 ) con varianza σ 2 nota Sia X N(µ, σ 2 /n) la statistica test per µ e α il livello di significatività del test Sia {x 1,..., x n } in cui X = x Il valore standardizato di x sotto H 0 è z = x µ 0 σ/ n, 0.2 P(T > 3.3) = Media campionaria, N(5,4) P(T > 5.5)= Media campionaria standardizzata, N(0,1) z = (3 3 5)/2) = 0.85 P(Z > 0.85)= = 0.80 z = (5.5 5)/2) = 0.25 P(Z > 0.25)= = Statistica, CLEM p. 76/88

77 Test per la media µ con varianza nota (2) H 0 : µ = 5 H 1 : µ > 5 Per α = 5%, i valori critici sono z α sulla N(0, 1), x α = µ 0 + z α σ/ n = = 8.3 sulla N(5, 2) Media camp. standardizzata, N(0,1) e Media campionaria, N(5,4) 0.4 alpha = 5% N(0,1) 0.35 valore critico: 1.64 R: z > N(5,4) 0.25 valore critico: 8.3 R: t > 8.3 = 1.64* Statistica, CLEM p. 77/88

78 Test per la media µ con varianza nota (3) se H 1 : µ = µ 1 > µ 0, o H 1 : µ µ 0, il valore critico per un certo α è z α :A = (, z α ), R = (z α, + ) rifiuto H 0 se z > z α se H 1 : µ = µ 1 < µ 0, o H 1 : µ µ 0, il valore critico per un certo α è z α :A = (z α, + ), R = (, z α ) rifiuto H 0 se z < z α se H 1 : µ µ 0, i valori critici per un certo α sono ±z α/2 : A = ( z α/2, z α/2 ), R = (, z α/2 ) (z α/2, + ) rifiuto H 0 se z < z α/2 o z > z α/2 Test per µ di pop. non normale con varianza nota e grandi campioni Per il TLC si può usare lo stesso test asintotico per la verifica di ipotesi del parametro E(X) = µ anche per variabili NON NORMALI in GRANDI CAMPIONI. Statistica, CLEM p. 78/88

79 Alcuni valori critici z α Test unidirezionali Test inidirezionale a sinistra alpha = 10% alpha = 5% alpha = 1% Test unidirezionale a destra alpha = 10% alpha = 5% alpha = 1% Statistica, CLEM p. 79/88

80 Alcuni valori critici z α/2 Test bi-direzionali Test bi direzionali alpha = 10% alpha = 5% alpha = 1% Statistica, CLEM p. 80/88

81 Test per la media µ con varianza non nota (1) Test per H 0 : µ = µ 0 in pop. normale con varianza non nota Sia X N(µ, σ 2 ) con varianza σ 2 non nota con S 2 come stimatore di σ 2 e X come stimatore di µ, sotto H 0 t = X µ 0 S/ n t n 1, t Student con n 1 g.l. Dato un campione CS in cui X = x, per un certo α fissato se H 1 : µ = µ 1 > µ 0, o H 1 : µ µ 0, rifiuto H 0 se t > t α se H 1 : µ = µ 1 < µ 0, o H 1 : µ µ 0, rifiuto H 0 se t < t α se H 1 : µ µ 0, rifiuto H 0 se t < t α/2 o t > t α/2 Statistica, CLEM p. 81/88

82 Test per la media µ con varianza non nota (2) Test per µ di pop. non normale con varianza non nota e grandi campioni Nel caso di grandi campioni, sia che X sia normale sia che X sia non normale, per il TLC, sotto H 0 z = X µ 0 S/ n si approssima con N(0, 1) Il test asintotico per µ si può fare utilizzando la distribuzione normale. Per un certo α se H 1 : µ = µ 1 > µ 0, o H 1 : µ µ 0, rifiuto H 0 se z > z α se H 1 : µ = µ 1 < µ 0, o H 1 : µ µ 0, rifiuto H 0 se z < z α se H 1 : µ µ 0, rifiuto H 0 se z < z α/2 o z > z α/2 Statistica, CLEM p. 82/88

83 rifiuto H 0 se z < z α/2 o z > z α/2 Statistica, CLEM p. 83/88 Test per la proporzione p in grandi campioni Sia X Be(p) una variabile binaria (0, 1) e sia {X 1,..., X n } un CCS Sia p = 1 n n i=1 X i lo stimatore per il parametro p. Per il TLC, sotto H 0 : p = p 0 z = p p 0 p0 (1 p 0 ) n si approssima con N(0, 1) Sia {x 1,..., x n } un GRANDE CAMPIONE estratto in cui si calcola p e z Il test asintotico per un certo α fissato è se H 1 : p = p 1 > p 0, o H 1 : p p 0, rifiuto H 0 se z > z α se H 1 : p = p 1 < p 0, o H 1 : p p 0, rifiuto H 0 se z < z α se H 1 : p p 0,

84 Test per µ X µ Y : pop. normali, var. note Test per H 0 : µ X µ Y = 0 con X N(µ X, σ 2 X ) e Y N(µ Y, σ 2 Y ), con X Y Siano le varianze σx 2 e σ2 Y note Siano X N(µ X, σx 2 /n) e Y N(µ Y, σy 2 /m) gli stimatori di µ X e µ Y Siano {x 1,..., x n } e {y 1,..., y m } due CCS indipendenti in cui X = x e Y = y Per l indipendenza si ha che, sotto H 0 Il test per un certo α fissato è se H 1 : µ X µ Y > 0, z = X Y N(0, 1) σ 2 X n + σ2 Y m rifiuto H 0 se z > z α se H 1 : µ X µ Y < 0, rifiuto H 0 se z < z α se H 1 : µ X µ Y 0, rifiuto H 0 se z < z α/2 o z > z α/2 Statistica, CLEM p. 84/88

85 Test per µ X µ Y : pop. normali, var. non note Test per H 0 : µ X µ Y = 0 con X N(µ X, σ 2 X ) e Y N(µ Y, σ 2 Y ), con X Y Siano le varianze non note ma uguali σ 2 = σ 2 X = σ2 Y (omoschedasticità) Assumiamo come stimatore per la varianza comune S 2 p = (n 1)S2 X + (m 1)S2 Y n + m 2 Siano X N(µ X, σ 2 X /n) e Y N(µ Y, σ 2 Y /m) gli stimatori di µ X e µ Y Siano {x 1,..., x n } e {y 1,..., y m } due CCS indipendenti in cui X = x e Y = y Se X ed Y sono normali ed indipendenti si ha che, sotto H 0 t = X Y S 2 p( 1n + 1m ) t k, k = n + m 2 Statistica, CLEM p. 85/88

86 Test per µ X µ Y : pop. normali, var. non note Il test per un certo α fissato è se H 1 : µ X µ Y > 0, rifiuto H 0 se t > t α se H 1 : µ X µ Y < 0, rifiuto H 0 se t < t α se H 1 : µ X µ Y 0, rifiuto H 0 se t < t α/2 o t > t α/2 Statistica, CLEM p. 86/88

87 Test per µ X µ Y per grandi campioni (1) Test per H 0 : µ X µ Y = 0 per popolazioni non normali con varianze note e grandi campioni Anche se X ed Y sono NON NORMALI, ma INDIPENDENTI, per costruire intervalli di confidenza per il parametro µ X µ Y si può utilizzare la distribuzione Normale, perché per il TLC, nel caso di GRANDI CAMPIONI, sotto H 0 z = X Y si approssima con N(0, 1) per n ed m grandi σ 2 X n + σ2 Y m Il test per un certo α fissato è se H 1 : µ X µ Y > 0, rifiuto H 0 se z > z α se H 1 : µ X µ Y < 0, rifiuto H 0 se z < z α se H 1 : µ X µ Y 0, rifiuto H 0 se z < z α/2 o z > z α/2 Statistica, CLEM p. 87/88

88 Test per µ X µ Y per grandi campioni (2) Test per H 0 : µ X µ Y = 0 per popolazioni non normali con varianze non note e grandi campioni Consideriamo S 2 X ed S2 Y come stimatori corretti per σ2 X e σ2 Y Anche se X ed Y sono NON NORMALI, ma INDIPENDENTI, il test asintotico per µ X µ Y si può fare usando la distribuzione Normale, perché per il TLC, nel caso di GRANDI CAMPIONI, sotto H 0 z = X Y si approssima con N(0, 1) per n ed m grandi S 2 X n + S2 Y m Il test asintotico per un certo α fissato è se H 1 : µ X µ Y > 0, rifiuto H 0 se z > z α se H 1 : µ X µ Y < 0, rifiuto H 0 se z < z α se H 1 : µ X µ Y 0, rifiuto H 0 se z < z α/2 o z > z α/2 Statistica, CLEM p. 88/88

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test STATISTICA (2) ESERCITAZIONE 6 05.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test Il preside della scuola elementare XYZ sospetta che

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Inferenza statistica I Alcuni esercizi. Stefano Tonellato

Inferenza statistica I Alcuni esercizi. Stefano Tonellato Inferenza statistica I Alcuni esercizi Stefano Tonellato Anno Accademico 2006-2007 Avvertenza Una parte del materiale è stato tratto da Grigoletto M. e Ventura L. (1998). Statistica per le scienze economiche,

Dettagli

Temi di Esame a.a. 2012-2013. Statistica - CLEF

Temi di Esame a.a. 2012-2013. Statistica - CLEF Temi di Esame a.a. 2012-2013 Statistica - CLEF I Prova Parziale di Statistica (CLEF) 11 aprile 2013 Esercizio 1 Un computer è collegato a due stampanti, A e B. La stampante A è difettosa ed il 25% dei

Dettagli

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Cognome Nome: Part time: Numero di matricola: Diurno: ISTRUZIONI: Il punteggio relativo alla prima parte dell esame viene calcolato

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Esercizi test ipotesi Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Verifica delle ipotesi - Esempio quelli di Striscia la Notizia" effettuano controlli casuali per vedere se le pompe

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

Esercitazione n.4 Inferenza su varianza

Esercitazione n.4 Inferenza su varianza Esercizio 1 Un industria che produce lamiere metalliche ha ricevuto un ordine di acquisto di un grosso quantitativo di lamiere di un dato spessore. Per assicurare la qualità della propria fornitura, l

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi

Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi In molte situazioni una raccolta di dati (=esiti di esperimenti aleatori) viene fatta per prendere delle decisioni sulla base di quei dati. Ad esempio sperimentazioni su un nuovo farmaco per decidere se

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame del 18/7/2013 NOME COGNOME N. Matr. Rispondere ai punti degli esercizi nel modo più completo possibile, cercando

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Dipartimento di Ingegneria Meccanica Chimica e dei Materiali PROGETTAZIONE E GESTIONE DEGLI IMPIANTI INDUSTRIALI Esercitazione 6 ORE ELEMENTI DI STATISTICA Prof. Ing. Maria Teresa Pilloni Anno Accademico

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 3.1 Introduzione all inferenza statistica Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni)

Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) STATISTICA (2) ESERCITAZIONE 4 18.02.2013 Dott.ssa Antonella Costanzo Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) Sia X una popolazione distribuita secondo la legge Bernoulliana

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova).

Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione: si consegnano

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 3 A. Sia una variabile casuale che si distribuisce secondo

Dettagli

SPC e distribuzione normale con Access

SPC e distribuzione normale con Access SPC e distribuzione normale con Access In questo articolo esamineremo una applicazione Access per il calcolo e la rappresentazione grafica della distribuzione normale, collegata con tabelle di Clienti,

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica

Dettagli

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice Esercitazione 15 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 18 L importanza del gruppo di controllo In tutti i casi in cui si voglia studiare l effetto di un certo

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

Concetto di potenza statistica

Concetto di potenza statistica Calcolo della numerosità campionaria Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Concetto di potenza statistica 1 Accetto H 0 Rifiuto H 0 Ipotesi Nulla (H

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli

Elementi di Psicometria

Elementi di Psicometria Elementi di Psicometria E2-Riepilogo finale vers. 1.2 Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2010-2011 G. Rossi (Dip. Psicologia) ElemPsico 2010-2011

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi per la media (varianza nota), p-value del test Il manager di un fast-food

Dettagli

L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt

L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELL ROLE Six Sigma Master lack elt Dicembre, 009 Introduzione Nell esecuzione dei progetti Six Sigma è di fondamentale importanza sapere se

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI Esercizio 1. Per la caratteristica di un processo distribuita gaussianamente sono note media e deviazione standard: µ = 100, σ = 0.2. 1a. Calcolare la linea centrale

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

Esercizi riassuntivi di probabilità

Esercizi riassuntivi di probabilità Esercizi riassuntivi di probabilità Esercizio 1 Una ditta produttrice di fotocopiatrici sa che la durata di una macchina (in migliaia di copie) si distribuisce come una normale con µ = 1600 e 2 = 3600.

Dettagli

Probabilità II Variabili casuali discrete

Probabilità II Variabili casuali discrete Probabilità II Variabili casuali discrete Definizioni principali. Valore atteso e Varianza. Teorema di Bienaymé - Čebičev. V.C. Notevoli: Bernoulli e Binomiale. Concetto di variabile casuale Cos'è una

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI 1. L azienda Wood produce legno compensato per costruzioni

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 4.2 I principali test statistici per la verifica di ipotesi: Il test F Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico

Dettagli

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente:

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: t = X i X j s 2 i (n i 1) + s 2 j (n j 1) n i + n j - 2 1

Dettagli

11. Analisi statistica degli eventi idrologici estremi

11. Analisi statistica degli eventi idrologici estremi . Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche

Dettagli

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a:

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a: TEST DI AUTOVALUTAZIONE - SETTIMANA 2 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Si considerino gli

Dettagli

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che: Esercizi Esercizio 4. Un urna contiene inizialmente 2 palline bianche e 4 palline rosse. Si effettuano due estrazioni con la seguente modalità: se alla prima estrazione esce una pallina bianca, la si rimette

Dettagli

Gli input sono detti anche fattori di produzione: terra, capitale, lavoro, materie prime.

Gli input sono detti anche fattori di produzione: terra, capitale, lavoro, materie prime. LA TECNOLOGIA Studio del comportamento dell impresa, soggetto a vincoli quando si compiono scelte. La tecnologia rientra tra vincoli naturali e si traduce nel fatto che solo alcuni modi di trasformare

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati Teoria della Stima. Stima della Media e di una Porzione di Popolazione Introduzione La proceduta in base alla quale ad uno o più parametri di popolazione si assegna il valore numerico calcolato dalle informazioni

Dettagli

SVM. Veronica Piccialli. Roma 11 gennaio 2010. Università degli Studi di Roma Tor Vergata 1 / 14

SVM. Veronica Piccialli. Roma 11 gennaio 2010. Università degli Studi di Roma Tor Vergata 1 / 14 SVM Veronica Piccialli Roma 11 gennaio 2010 Università degli Studi di Roma Tor Vergata 1 / 14 SVM Le Support Vector Machines (SVM) sono una classe di macchine di che derivano da concetti riguardanti la

Dettagli

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Statistica 1 Parte A 1.1 La formula µ = x ± s n

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

Introduzione all Inferenza Statistica

Introduzione all Inferenza Statistica Introduzione all Inferenza Statistica Fabrizio Cipollini Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) G. Parenti Università di Firenze Firenze, 3 Febbraio 2015 Introduzione Casi di studio

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni Analisi dei Dati 1/13 Esercizi proposti 3 soluzioni 0.1 Un urna contiene 6 palline rosse e 8 palline nere. Si estraggono simultaneamente due palline. Qual è la probabilità di estrarle entrambe rosse? (6

Dettagli

Inferenza statistica. Inferenza statistica

Inferenza statistica. Inferenza statistica Spesso l informazione a disposizione deriva da un osservazione parziale del fenomeno studiato. In questo caso lo studio di un fenomeno mira solitamente a trarre, sulla base di ciò che si è osservato, considerazioni

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

FONDAMENTI DI PSICOMETRIA - 8 CFU

FONDAMENTI DI PSICOMETRIA - 8 CFU Ψ FONDAMENTI DI PSICOMETRIA - 8 CFU STIMA DELL ATTENDIBILITA STIMA DELL ATTENDIBILITA DEFINIZIONE DI ATTENDIBILITA (affidabilità, fedeltà) Grado di accordo tra diversi tentativi di misurare uno stesso

Dettagli

Verifica di ipotesi e intervalli di confidenza nella regressione multipla

Verifica di ipotesi e intervalli di confidenza nella regressione multipla Verifica di ipotesi e intervalli di confidenza nella regressione multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2014 Rossi MRLM Econometria - 2014 1 / 23 Sommario Variabili di controllo

Dettagli