4 Sottoinsiemi chiusi di uno spazio metrico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "4 Sottoinsiemi chiusi di uno spazio metrico"

Transcript

1 Geometria I 2009-mar Sottoinsiemi chiusi di uno spazio metrico (4.1) Definizione. Sia A X un sottoinsieme di uno spazio metrico X. Un punto x X si dice di accumulazione (anche: punto limite) per A in X se per ogni r>0 l intersezione B r (x) A contiene almeno un punto oltre al centro x. Idea: i punti di accumulazione di A dovrebbero essere i punti limite di successioni in A. Se A = {x n } n N X è una successione convergente, allora il limite della successione è punto limite di A. È davvero cosí? (4.2) Definizione. Sia X uno spazio metrico. Un sottoinsieme C X si dice chiuso se contiene tutti i suoi punti di accumulazione. (4.3) Il complementare in X di un chiuso è aperto. Il complementare in X di un aperto è chiuso. Quindi C X è chiuso se e solo se X C è aperto. Dimostrazione. Sia C X un chiuso e x X C. Dato che C è chiuso, x non può essere un punto di accumulazione, e quindi esiste r>0per cui B r (x) C =. Ma allora B r (x) (X C) e quindi X C è intorno di x. Per l arbitrarietà di x in X C si ha che X C è aperto. Viceversa, sia A X un aperto e sia C il complementare X A. Se x è un punto di accumulazione di C allora non è un punto di A: infatti, A sarebbe intorno di x, per cui ci sarebbe r>0 tale che B r (x) A, ma allora B r (x) C A C =, cioè x non sarebbe di accumulazione per C. In altre parole, i punti di accumulazione di C sono contenuti in C e dunque C è chiuso. (4.4) L insieme C di tutti i chiusi di uno spazio metrico X verifica le seguenti proprietà: (i) C, X C, (ii) B C = C B C C, (iii) B C, B è finito, allora C B C C. Dimostrazione. Basta considerare la proposizione (3.17) e il fatto che i chiusi sono i complementari degli aperti (dualità). (4.5) Definizione. Sia A X. L unione di A con l insieme di tutti i suoi punti di accumulazione si dice chiusura di A in X e si indica con A. (4.6) Nota. La chiusura A di A contiene A. Inolre, se A B, si ha che A B (esercizio (2.5)). D.L. Ferrario 2009-mar-18 15

2 Geometria I 2009-mar (4.7) La chiusura A di A è il più piccolo insieme chiuso che contiene A (in altre parole: l intersezione di tutti i chiusi che contengono A). In particolare, è un chiuso. Dimostrazione. Per prima cosa vediamo che A è chiuso e per farlo mostriamo che X A è aperto. Se x X A, cioè x non è né punto di A né punto di accumulazione, allora in particolare esiste r>0per cui B r (x) A = ; d altro canto B r (x) è aperto (cioè intorno di ogni suo punto), e quindi non può contenere punti di accumulazione per A. Ma allora B r (x) A =, cioè B r (x) X A. Ora, consideriamo un insieme chiuso C che contiene A. Dato che A C, si ha che A C, ed essendo C chiuso si ha: C = C. Ma allora A C, cioè A è contenuto in tutti i chiusi che contengono A. Essendo A chiuso, in particolare A è un chiuso contenente A, e quindi la tesi. (4.8) Corollario. Un insieme A X è chiuso se e solo se coincide con la sua chiusura A = A. (4.9) Sia f una funzione f : X Y tra spazi metrici. Le tre proposizioni seguenti sono equivalenti: (i) f è continua (ii) A X, f(a) f(a). (iii) per ogni C Y chiuso, la sua controimmagine f 1 (C) X è chiuso. Dimostrazione. Supponiamo f continua. Mostriamo che 1 = 2. Sia x A. Se x A, allora f(x) f(a) f(a), e quindi f(x) f(a). Se x A A, allora x deve essere di accumulazione per A. Vogliamo mostrare che o f(x) appartiene a f(a) oppure ne è punto di accumulazione. Se f(x) f(a), allora non c è altro da dimostrare. Supponiamo altrimenti che f(x) f(a). Ora, dato che f è continua, per ogni r > 0 la controimmagine dell intorno circolare f 1 (B r (f(x))) è un intorno di x, e quindi esiste ɛ> 0 (che dipende da r e x) per cui B ɛ (x) f 1 (B r (f(x))). Ma x è di accumulazione per A, e quindi B ɛ (x) A {x}, cioè esiste un punto z B ɛ (x) A, z x, ed in particolare f(z) B r (f(x)) Dato che stiamo supponendo f(x) f(a) e che z A, si ha che f(z) f(a) e quindi f(z) f(x). Cioè, per ogni r>0 l intorno B r (f(x)) contiene punti di f(a) diversi da f(x), e quindi f(x) è di accumulazione per f(a). Ora dimostriamo che (ii) = (iii). Sia C Y un chiuso e A = f 1 C la sua controimmagine in X. Dal momento che f(a) f(a), e che f(a) C, D.L. Ferrario 2009-mar-18 16

3 Geometria I 2009-mar f(a) C = C, e quindi A f 1 C. Ne segue che A A, da cui A = A, visto che anche A A. Ora dimostriamo che (iii) = (i). Se A Y è aperto, allora C = Y A è chiuso in Y, e quindi f 1 C è chiuso in X, il che implica che X f 1 C è aperto. Ma X f 1 C = {x X : f(x) C} = f 1 (X C) =f 1 (A), quindi f 1 (A) è aperto. (4.10) Nota. Continuità: f(lim) = lim(f)... Ancora: Tutti i punti di uno spazio metrico sono chiusi. Infatti, se y x X e r = d(x, y), allora r>0ey B r/2 (y) x, cioè X {x} è aperto. D.L. Ferrario 2009-mar-18 17

4 Geometria I 2009-mar Spazi topologici Cfr: Cap I 2-3, Sernesi Vol II [1]. Se si analizzano le dimostrazioni delle proprietà finora vista degli aperti, chiusi e funzioni continue di spazi metrici, ci si rende conto che la metrica serve solo per definire la famiglia degli intorni circolari e alcune proprietà caratterizzanti. Sia X un insieme. Una famiglia di sottoinsiemi A 2 X che verifica le proprietà di (3.17) consente di fatto di introdurre una definizione non solo metrica di continuità. (5.1) Definizione. Una famiglia A 2 X di sottoinsiemi di un insieme X si dice topologia se verifica le seguenti proprietà: (i) A, X A, (ii) B A = B B B A, (iii) B A, B è finito, allora B B B A. Uno spazio X munito di una topologia A 2 X (spesso indicata con la lettera τ) viene detto spazio topologico 5 e gli elementi di A si dicono gli aperti di X. È banale verificare che la definizione di aperto di uno spazio metrico consente di associare ad ogni spazio metrico una topologia come nella definizione (3.19), che è detta anche topologia metrica. Sappiamo già che spazi metrici diversi possono avere la stessa topologia metrica (se le metriche sono equivalenti). Non tutti gli spazi topologici però ammettono l esistenza di una metrica che genera la topologia (cioè, non tutti sono metrizzabili). (5.2) Esempio. Consideriamo le due topologie estreme, cioè quella con più aperti possibile e quella con meno aperti possibile. (i) Topologia banale: ha solo i due aperti A = {,X} 2 X (che devono esistere per poter soddisfare tutti gli assiomi della definizione (5.1)). (ii) Topologia discreta: tutti i sottoinsiemi sono aperti A =2 X. Questo serve a rilassare il concetto di vicinanza che è intrinseco per gli spazi metrici. 5 Così come uno spazio metrico X è più propriamente una coppia (X, d), anche uno spazio topologico dovrebbe essere indicato come coppia (X, τ) con τ 2 X, ma per brevità la topologia non viene espressamente indicata, se non quando necessario. D.L. Ferrario 2009-mar-19 18

5 Geometria I 2009-mar (5.3) Definizione. Se X è uno spazio topologico, A X è un sottoinsieme e x A, si dice che A è un intorno di x se contiene un aperto B tale che x B A. 6 Allora x si dice punto interno di A. Possiamo anche definire funzioni continue usando la caratterizzazione del teorema (3.14). (5.4) Definizione. Siano X e Y spazi topologici. Una funzione f : X Y si dice continua se per ogni aperto A Y la controimmagine f 1 A è aperto di X. Anche il concetto di sottoinsieme chiuso, di punto di accumulazione e di chiusura può essere esteso agli spazi topologici, utilizzando il fatto che gli aperto sono per definizione intorni dei propri punti. (5.5) Definizione. Sia A X un sottoinsieme di uno spazio topologico X. Un punto x X si dice di accumulazione (anche: punto limite) per A in X se per ogni intorno B di x l intersezione B A contiene almeno un altro punto oltre a x. La chiusura A di A è definita come l unione di A con tutti i suoi punti di accumulazione. (5.6) Sia X uno spazio topologico e C X un suo sottoinsieme. Le seguenti proposizioni sono equivalenti. (i) X C è aperto. (ii) C contiene tutti i suoi punti di accumulazione. Dimostrazione. Basta ripetere la dimostrazione di (4.3) sostituendo ovunque intorni aperti invece che intorni circolari. (5.7) Definizione. Un sottoinsieme C X di uno spazio topologico si dice chiuso se una delle due proposizioni equivalenti di (5.6) è verificata. Ancora, cambiando di poco la dimostrazione di (4.7) si può dimostrare che (vedi esercizio (2.8)): (5.8) La chiusura A di un sottoinsieme A X è il più piccolo sottoinsieme chiuso di X che contiene A (in altre parole: l intersezione di tutti i chiusi che contengono A). In particolare, è un chiuso. 6 Alcuni definiscono intorni solo gli aperti che contengono x. D.L. Ferrario 2009-mar-19 19

6 Geometria I 2009-mar Base di una topologia La topologia metrica è generata dalla famiglia di tutti gli intorni circolari, nel senso che gli aperti sono tutti e soli le unioni di intorni circolari. Ci si può chiedere quando una famiglia di insiemi genera una topologia in questo modo. Basta prendere le proprietà degli intorni circolari di spazi metrici di (3.18). (5.9) Definizione. Una famiglia di sottoinsiemi B 2 X di un insieme X si dice base se le seguenti proprietà sono soddisfatte: (i) per ogni x X esiste almeno un elemento della base B B che contiene x (equivalentemente, X = B B B). (ii) Se B 1, B 2 B e x B 1 B 2, allora esiste B x B tale che x B x B 1 B 2 (equivalentemente, B 1 B 2 è unione di elementi della base). Possiamo riscrivere (3.18) dicendo: gli intorni circolari costituiscono una base. Il modo di generare una topologia a partire da una base procede dall osservazione che gli aperti sono le unioni di intorni circolari. (5.10) Sia X un insieme. Data una base B 2 X, sia A 2 X la famiglia di tutte le unioni di elementi di B unita a. Allora A è una topologia per X ed è la più piccola topologia in cui gli elementi della base B sono aperti. Dimostrazione. Esercizio. (5.11) Definizione. La topologia generata come in (5.10) si dice topologia generata dalla base B. (5.12) Esempio. In X = N = {1, 2, 3,...} siano B i = {ki : k N} = {n N : n 0 mod i}. Sono una base? La topologia in N è quella metrica? È quella discreta? È metrizzabile (cioè può essere generata da una metrica)? 5.2 Topologia indotta (topologia dei sottospazi/sottospazi topologici) Cfr: Sernesi, Vol II, Cap II 5 [1]. Se X è uno spazio topologico, la topologia τ di X induce una topologia, detta topologia indotta per restrizione sui sottospazi Y X. Cioè, per definizione A Y è aperto se e solo se esiste U X aperto la cui intersezione con Y è A: gli aperti di Y sono tutte e sole le intersezioni A = Y U D.L. Ferrario 2009-mar-19 20

7 Geometria I 2009-mar di aperti di X con Y. Quando si considerano sottoinsiemi di uno spazio topologico, si assume che abbiano la topologia indotta, se non esplicitamente indicato in altro modo. (5.13) Nota. Tutti gli intervalli del tipo [a, b), con a<bcostituiscono una base per la retta reale R. La topologia che ne risulta ha piú aperti di quella generata dalla metrica euclidea. Gli intervalli del tipo (,b), con b R sono una base? Se sí, essa genera una topologia con piú o meno aperti di quella euclidea? Esiste una metrica che genera questa topologia? Quando una funzione è semicontinua superiormente? Topologie finite Sia X un insieme: ricordiamo che R una relazione (binaria) su X è una forma proposizionale su X X, cioè una funzione R: X X {0, 1} (o Vero/Falso), indicata nei due modi R(x, y) =xry. La relazione è simmetrica se per ogni x X si a che xrx = 1 (è vero), e transitiva se per ogni x, y, z X si ha che xry = yrz = 1 = xrz = 1. Una relazione binaria simmetrica e transitiva è detta relazione di preordine parziale. (5.14) Nota. Sia X un insieme finito, con una topologia A. Allora A definisce una relazione di preordine parziale R su X (che possiamo indicare con R A ) nel modo seguente: se x, y X, si definisce xry ( ogni aperto U di X che contiene x contiene anche y ) che è una relazione riflessiva e transitiva (perché?). (5.15) Nota. Se R è una relazione di preordine parziale su X, allora definiamo una topologia A su X nel modo seguente: sia, per ogni x X, U x l insieme definito da U x = {y X : xry}. Se x 1 e x 2 sono due elementi di X e z U x1 U x2, allora x 1 Rz e x 2 Rz, e quindi U z = {y X : zry} U x1 U x2 = {y X : x 1 Ry x 2 Ry}, dato che zry x 1 Rz = x 1 Ry, zry x 2 Rz = x 2 Ry. Inolre x U x (perché riflessiva), e dunque gli U x costituiscono una base per una topologia di X, la topologia associata alla relazione R. D.L. Ferrario 2009-mar-19 21

8 Geometria I 2009-mar Utilizzando (5.14) e (5.15), si può mostrare che le topologie su X sono in corrispondenza biunivoca con le relazioni riflessive e transitive su X. Problema: come elencare tutte le relazioni riflessive e transitive su un insieme finito X? È possibile scrivere un algoritmo che le elenca? Vediamo per X = {1, 2} si hanno le seguenti topologie. [ ] 1 0 1) Matrice (relazione binaria): 0 1 2) Matrice (relazione binaria): 3) Matrice (relazione binaria): 4) Matrice (relazione binaria): A = {{}, {1}, {2}, {1, 2}} 2 X [ ] A = {{}, {1}, {1, 2}} 2 X [ ] A = {{}, {2}, {1, 2}} 2 X [ ] A = {{}, {1, 2}} 2 X D.L. Ferrario 2009-mar-19 22

4 Sottoinsiemi chiusi di uno spazio metrico

4 Sottoinsiemi chiusi di uno spazio metrico Geometria e Topologia I 16 marzo 2005 12 4 Sottoinsiemi chiusi di uno spazio metrico (4.1) Definizione. Sia A X un sottoinsieme di uno spazio metrico X. Un punto x X si dice di accumulazione (anche: punto

Dettagli

1 Spazi metrici e continuità: topologia degli spazi metrici

1 Spazi metrici e continuità: topologia degli spazi metrici Geometria I 1 1 Spazi metrici e continuità: topologia degli spazi metrici Cfr: Cap I, 1; Sernesi Vol II [1]. Ricordiamo alcuni fatti elementari sugli spazi metrici. (1.1) Definizione. Uno spazio metrico

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 1 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.1, 3.2,

Dettagli

D. L. Ferrario. Appunti di. Geometria 1

D. L. Ferrario. Appunti di. Geometria 1 D. L. Ferrario Universitesto Appunti di Geometria 1 D.L. Ferrario, - Appunti del corso di Geometria I (A.A. 2013/2014) D.L. Ferrario Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca

Dettagli

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1].

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1]. Geometria I 27 4 Funzioni continue Cfr: Sernesi vol II, cap I, 4 [1]. Le funzioni continue tra spazi topologici si dicono anche mappe. Si può dimostrare, esattamente come in (2.10) e in (1.10), che vale

Dettagli

D. L. Ferrario. Appunti di. Geometria 1

D. L. Ferrario. Appunti di. Geometria 1 D. L. Ferrario Universitesto Appunti di Geometria 1 D.L. Ferrario, - Appunti del corso di Geometria I (A.A. 2013/2014) D.L. Ferrario Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca

Dettagli

Generalizzazioni del Teorema di Weierstrass

Generalizzazioni del Teorema di Weierstrass Capitolo 2 Generalizzazioni del Teorema di Weierstrass Il principale riferimento bibliografico per questa lezione è il testo di Checcucci, Tognoli, Vesentini [1]. Introduzione Supponiamo che X = R n. È

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 2 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.5, 3.6,

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Geometria e Topologia I

Geometria e Topologia I Appunti di Geometria e Topologia I Davide L. Ferrario A.A. 2006/2007 Dipartimento di Matematica e Applicazioni Università di Milano Bicocca c Davide L. Ferrario, 2007 Appunti del corso di Geometria e Topologia

Dettagli

1 Richiami di logica matematica

1 Richiami di logica matematica Geometria e Topologia I 7 marzo 2005 1 1 Richiami di logica matematica Definire cos è un enunciato, una proposizione (elemento primitivo della logica delle proposizioni). La definizione è data in termini

Dettagli

1 Richiami di logica matematica

1 Richiami di logica matematica Geometria e Topologia I 2006-mar-05 1 1 Richiami di logica matematica Definire cos è un enunciato, una proposizione (elemento primitivo della logica delle proposizioni). La definizione è data in termini

Dettagli

Geometria e Topologia I

Geometria e Topologia I Appunti di Geometria e Topologia I Davide L. Ferrario A.A. 2005/2006 Dipartimento di Matematica e Applicazioni Università di Milano Bicocca c Davide L. Ferrario, 2006 Prima bozza: Marzo-Maggio 2005. Copia

Dettagli

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile.

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile. SPAZI TOPOLOGICI La nozione di spazio topologico è più generale di quella di spazio metrizzabile. Definizione 1 Uno spazio topologico (X, τ) è una coppia costituita da un insieme X e da una famiglia τ

Dettagli

14 Spazi metrici completi

14 Spazi metrici completi 54 2006-apr-26 Geometria e Topologia I 14 Spazi metrici completi (14.1) Definizione. Una successione {x n } n in uno spazio metrico si dice di Cauchy se per ogni ɛ > 0 esiste un intero N = N(ɛ) per cui

Dettagli

Problemi di topologia metrica.

Problemi di topologia metrica. Problemi di topologia metrica. 1.) Sia X un insieme, munito di una distanza d : X X R +. Siano x 1 ;x ;x 3 ;x 4 quattro punti qualsiasi di X. Verificare che: d (x 1 ; x 4 ) d (x 1 ; x ) + d (x ; x 3 )

Dettagli

Geometria e Topologia I 18 maggio

Geometria e Topologia I 18 maggio Geometria e Topologia I 18 maggio 2005 64 17 Mappe affini (17.1) Definizione. Siano X e Y due spazi affini sullo stesso campo K. Una funzione f : X Y si dice affine (anche, mappa affine o trasformazione

Dettagli

SPAZI TOPOLOGICI COMPATTI Note informali dalle lezioni

SPAZI TOPOLOGICI COMPATTI Note informali dalle lezioni SPAZI TOPOLOGICI COMPATTI Note informali dalle lezioni Sia X un insieme. Un ricoprimento di X è una famiglia U = {U j } j J di sottoinsiemi di X tali che X = j J U j. Un ricoprimento U = {U j } j J si

Dettagli

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi ESERCIZI DI GEOMETRIA 3 Vi prego di segnalare ogni inesattezza o errore tipografico a mll@unife.it Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi Esercizio 1. Sia (X, d) uno spazio

Dettagli

Analisi funzionale. Riccarda Rossi Lezione 2. Spazi normati Definizioni topologiche Continuità Convergenza di successioni Compattezza

Analisi funzionale. Riccarda Rossi Lezione 2. Spazi normati Definizioni topologiche Continuità Convergenza di successioni Compattezza Riccarda Rossi Lezione 2 Programma 1. Spazi normati; 2. Definizioni topologiche 3. Continuità di funzioni in spazi topologici in spazi metrici in spazi normati 4. Convergenza di successioni in spazi topologici

Dettagli

TOPOLOGIA - APPUNTI SETTIMANA 2/12/2013-5/11/2013

TOPOLOGIA - APPUNTI SETTIMANA 2/12/2013-5/11/2013 TOPOLOGIA - APPUNTI SETTIMANA 2/12/2013-5/11/2013 KIERAN G. O GRADY - 9 DICEMBRE 2013 1. Connessione Se X è uno spazio topologico connesso per archi vale il Teorema dei valori intermedi : dati una f :

Dettagli

Una semplice dimostrazione del teorema fondamentale dell algebra

Una semplice dimostrazione del teorema fondamentale dell algebra Università degli Studi di Cagliari Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica Una semplice dimostrazione del teorema fondamentale dell algebra Relatore Prof. Andrea

Dettagli

6. Boreliani di uno spazio topologico.

6. Boreliani di uno spazio topologico. 6. Boreliani di uno spazio topologico. 6.1. La σ-algebra degli insiemi di Borel di uno spazio topologico. Definizione 6.1.1. (σ-algebra di Borel di uno spazio topologico). Sia S uno spazio topologico.

Dettagli

TOPOLOGIA - APPUNTI SETTIMANA 2/12/2013-5/11/2013

TOPOLOGIA - APPUNTI SETTIMANA 2/12/2013-5/11/2013 TOPOLOGIA - APPUNTI SETTIMANA 2/12/2013-5/11/2013 KIERAN G. O GRADY - 2 DICEMBRE 2013 1. Spazi di Hausdorff Definizione 1.1. Uno spazio topologico X è di Hausdorff se dati x 1, x 2 X distinti esistono

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 4 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 4 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 4 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 5.2, 5.3

Dettagli

Università degli Studi di Roma Tre Corso di Laurea in Matematica a.a. 2014/2015 GE220 Topologia Esonero 30 marzo 2015.

Università degli Studi di Roma Tre Corso di Laurea in Matematica a.a. 2014/2015 GE220 Topologia Esonero 30 marzo 2015. Università degli Studi di Roma Tre Corso di Laurea in Matematica a.a. 2014/2015 GE220 Topologia Esonero 30 marzo 2015 Nome e Cognome: Esercizio 1 6 punti Esercizio 2 4 punti Esercizio 3 6 punti Esercizio

Dettagli

Università degli Studi di Roma Tre Corso di Laurea in Matematica a.a. 2014/2015 GE220 Topologia Prova scritta 3/9/2015 Appello X

Università degli Studi di Roma Tre Corso di Laurea in Matematica a.a. 2014/2015 GE220 Topologia Prova scritta 3/9/2015 Appello X Università degli Studi di Roma Tre Corso di Laurea in Matematica a.a. 2014/2015 GE220 Topologia Prova scritta 3/9/2015 Appello X Nome e Cognome: Esercizio 1 6 punti Esercizio 2 6 punti Esercizio 3 8 punti

Dettagli

3. Successioni di insiemi.

3. Successioni di insiemi. 3. Successioni di insiemi. Per evitare incongruenze supponiamo, in questo capitolo, che tutti gli insiemi considerati siano sottoinsiemi di un dato insieme S (l insieme ambiente ). Quando occorrerà considerare

Dettagli

Corso di Laurea in Matematica Geometria 2. Esercizi di preparazione allo scritto a.a Topologia

Corso di Laurea in Matematica Geometria 2. Esercizi di preparazione allo scritto a.a Topologia Corso di Laurea in Matematica Geometria 2 Esercizi di preparazione allo scritto a.a. 2015-16 Esercizio 1. Dimostrare che Topologia 1. d(x, y) = max 1 i n x i y i definisce una distanza su R n. 2. d(x,

Dettagli

ULTRAFILTRI E METODI NONSTANDARD IN TEORIA COMBINATORIA DEI NUMERI

ULTRAFILTRI E METODI NONSTANDARD IN TEORIA COMBINATORIA DEI NUMERI ULTRAFILTRI E METODI NONSTANDARD IN TEORIA COMBINATORIA DEI NUMERI MAURO DI NASSO 1. Filtri e ultrafiltri Iniziamo introducendo le fondamentali nozioni di filtro e ultrafiltro. Definizione 1.1. Un filtro

Dettagli

SPAZI COMPATTI. Proposizione 2 Sia (X, d) uno spazio metrico. Se esso è sequenzialmente compatto allora è completo.

SPAZI COMPATTI. Proposizione 2 Sia (X, d) uno spazio metrico. Se esso è sequenzialmente compatto allora è completo. SPAZI COMPATTI D ora in poi tutti gli spazi topologici sono di Hausdorff. Definizione 1 Uno spazio topologico (X, τ) si dice sequenzialmente compatto, o compatto per successioni, se ogni successione di

Dettagli

Esame scritto di Geometria 2

Esame scritto di Geometria 2 Esame scritto di Geometria Università degli Studi di Trento Corso di laurea in Matematica A.A. 013/014 Settembre 014 Esercizio 1 Sia P 3 lo spazio proiettivo reale tridimensionale dotato del riferimento

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

Denizione di funzione continua e funzioni continue ed invertibili sui compatti

Denizione di funzione continua e funzioni continue ed invertibili sui compatti Università di Roma Tor Vergata Corso di Laurea in Scienze e Tecnologie per i Media Denizione di funzione continua e funzioni continue ed invertibili sui compatti Massimo A. Picardello CAPITOLO 1 Funzioni

Dettagli

8. Completamento di uno spazio di misura.

8. Completamento di uno spazio di misura. 8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme

Dettagli

Il teorema di Ascoli-Arzelà

Il teorema di Ascoli-Arzelà Il teorema di Ascoli-Arzelà Alcuni risultati sugli spazi metrici Spazi metrici (e topologici) compatti Richiamiamo le definizioni di compattezza negli spazi metrici. Sia (X, d) una spazio metrico e sia

Dettagli

Teoria degli Insiemi

Teoria degli Insiemi Teoria degli Insiemi Docente: Francesca Benanti Ottobre 2017 1 Teoria degli Insiemi La Teoria degli Insiemi è una branca della matematica creata alla fine del diciannovesimo secolo principalmente dal matematico

Dettagli

Teoria degli Insiemi

Teoria degli Insiemi Teoria degli Insiemi Docente: Francesca Benanti Ottobre 2015 1 Teoria degli Insiemi La Teoria degli Insiemi è una branca della matematica creata alla fine del diciannovesimo secolo principalmente dal matematico

Dettagli

(2) se A A, allora A c A; (3) se {A n } A, allora +

(2) se A A, allora A c A; (3) se {A n } A, allora + 1. Spazi di misura In questo paragrafo accenneremo alla nozione di spazio di misura. Definizione 1. Sia X un insieme non vuoto. Una famiglia A di sottoinsiemi di X è una σ-algebra se : (1) A; (2) se A

Dettagli

Completezza e compattezza

Completezza e compattezza 1 Completezza e compattezza Spazi metrici completi Data una successione x : N X, j x j, una sua sottosuccessione è la composizione x ν, ove ν : N N è strettamente crescente. Data una successione (x j )

Dettagli

Cenni di Topologia Generale

Cenni di Topologia Generale Alfonso Villani Cenni di Topologia Generale per il corso di Complementi di Analisi Matematica per gli studenti di Fisica (a.a. 2006-07) Università degli studi di Catania Dipartimento di Matematica e Informatica

Dettagli

Cenni di Topologia Generale

Cenni di Topologia Generale Alfonso Villani Cenni di Topologia Generale per il corso di Complementi di Analisi Matematica per gli studenti di Fisica (a.a. 2006-07) Università degli studi di Catania Dipartimento di Matematica e Informatica

Dettagli

Il Teorema di Kakutani

Il Teorema di Kakutani Il Teorema di Kakutani Abbiamo visto, precedentemente, il seguente risultato: 1 Sia X uno spazio di Banach. Se X è separabile, la palla è debolmente compatta. B X = {x X x 1} Il Teorema di Kakutani è un

Dettagli

MINITOPOLOGIA M.M. Sommario. Un minicorso base di topologia generale orientato allo studio delle varietà differenziabili.

MINITOPOLOGIA M.M. Sommario. Un minicorso base di topologia generale orientato allo studio delle varietà differenziabili. MINITOPOLOGIA M.M. Sommario. Un minicorso base di topologia generale orientato allo studio delle varietà differenziabili. Indice 1. Notazioni e riscaldamento 1 2. Relazioni di equivalenza e di ordine 3

Dettagli

Capitolo 1. Spazi quoziente. 1.1 Spazi quoziente

Capitolo 1. Spazi quoziente. 1.1 Spazi quoziente Capitolo 1 Spazi quoziente 1.1 Spazi quoziente Siano (S, A ) uno spazio topologico, Σ una relazione di equivalenza definita in S e p la proiezione canonica di S su S/Σ. Posto S = S/Σ definiamo topologia

Dettagli

La definizione di Ultrafiltro e la regolarità per partizioni

La definizione di Ultrafiltro e la regolarità per partizioni La definizione di Ultrafiltro e la regolarità per partizioni Lorenzo Lami Definizione 1 (Filtro). Dato un insieme X, si dice filtro su X una collezione F di sottoinsiemi di X tali che: X F; / F; A F, B

Dettagli

È difficile verificare la disuguaglianza triangolare. x1 y1. x2 y2. R 2 con la metrica del sup: d : X X [0,+ [ distanza (=metrica)

È difficile verificare la disuguaglianza triangolare. x1 y1. x2 y2. R 2 con la metrica del sup: d : X X [0,+ [ distanza (=metrica) SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x,y,z) è un vettore in coordinate ortonormali,

Dettagli

Topologia, continuità, limiti in R n

Topologia, continuità, limiti in R n Topologia, continuità, limiti in R n Ultimo aggiornamento: 18 febbraio 2017 1. Preliminari Prima di iniziare lo studio delle funzioni di più variabili, in generale funzioni di k variabili e a valori in

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo.

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo http://www.dimi.uniud.it/biomat/ Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università

Dettagli

MINITOPOLOGIA MARCO MANETTI

MINITOPOLOGIA MARCO MANETTI MINITOPOLOGIA MARCO MANETTI Sommario. Minicorso di topologia generale orientato allo studio delle varietà differenziabili. Per approfondimenti e maggiori dettagli rimandiamo alla monografia [1]. Indice

Dettagli

CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA

CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA 1 Applicazioni tra insiemi Siano A, insiemi. Una corrispondenza tra A e è un qualsiasi sottoinsieme del prodotto cartesiano A ; Se D

Dettagli

LEZIONE 30. Se x = 1 si dice che x è un versore. Se poi y = (y 1,..., y n ) R n poniamo. Ricordiamo che vale la cosiddetta disuguaglianza triangolare

LEZIONE 30. Se x = 1 si dice che x è un versore. Se poi y = (y 1,..., y n ) R n poniamo. Ricordiamo che vale la cosiddetta disuguaglianza triangolare LEZIONE 30 30.1. Insiemi aperti e chiusi in R n. Nel corso di Analisi sono state introdotte alcune nozioni di topologia di R, come la nozione di aperto, di chiuso, di punto d accumulazione. Lo scopo di

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

Relazioni e Rappresentazioni. 1 Una relazione (binaria) R su

Relazioni e Rappresentazioni. 1 Una relazione (binaria) R su S Modica 19.III.1999 Relazioni e Rappresentazioni. 1 Una relazione (binaria) R su un insieme X è un sottoinsieme di X 2 (X 2 = X X, prodotto cartesiano): R X 2. Per l appartenenza (x, y) R useremo il sinonimo

Dettagli

Primi elementi di topologia dell asse reale. Intorni

Primi elementi di topologia dell asse reale. Intorni Primi elementi di topologia dell asse reale. Intorni R è uno spazio metrico: La distanza d(x, y) tra due numeri reali x, y è il valore assoluto della loro differenza: d(x, y) = x y Definizione (Intorno

Dettagli

Complemento 1 Gli insiemi N, Z e Q

Complemento 1 Gli insiemi N, Z e Q AM110 Mat, Univ. Roma Tre (AA 2010/11 L. Chierchia) 30/9/10 1 Complemento 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici

Dettagli

Spazi affini e combinazioni affini.

Spazi affini e combinazioni affini. Spazi affini e combinazioni affini. Morfismi affini. Giorgio Ottaviani Abstract Introduciamo il concetto di combinazione affine in uno spazio affine, e in base a questo, ne caratterizziamo i sottospazi.

Dettagli

Alcuni equivalenti dell Assioma della Scelta

Alcuni equivalenti dell Assioma della Scelta Alcuni equivalenti dell Assioma della Scelta Giugno 2010 Gabriele Gullà Sommario Dimostreremo l equivalenza fra l assioma della scelta ed altri enunciati della matematica piú o meno noti. Enunciati: 1)

Dettagli

Definizione 1.1. Sia A un sottoinsieme dei numeri reali. Diciamo che A è un insieme induttivo se

Definizione 1.1. Sia A un sottoinsieme dei numeri reali. Diciamo che A è un insieme induttivo se 1 Numeri naturali, interi e razionali Definizione 1.1. Sia A un sottoinsieme dei numeri reali. Diciamo che A è un insieme induttivo se 1. 1 A. per ogni x A, si ha x + 1 A Definizione 1.. Chiamo insieme

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo).

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo). ESERCIZI PER CASA di GEOMETRIA per il Corso di Laurea di Scienze dei Materiali, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 28 maggio 29 Sottospazi di uno spazio vettoriale, sistemi

Dettagli

12. Funzioni numeriche misurabili.

12. Funzioni numeriche misurabili. 12. Funzioni numeriche misurabili. 12.1. Funzioni numeriche misurabili. D ora in avanti, nel corso di questi appunti, adotteremo la seguente terminologia: per far riferimento ad una funzione f : Ω R, per

Dettagli

11. Misure con segno.

11. Misure con segno. 11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

10. Il gruppo Speciale Lineare SL(V )

10. Il gruppo Speciale Lineare SL(V ) 1 2 3 4 5 6 7 8 9 1 10. Il gruppo Speciale Lineare SL(V ) Siano F un campo e V uno spazio vettoriale di dimensione n su F. Indichiamo con GL(V ) l insieme delle applicazioni lineari biiettive di V in sé.

Dettagli

Capitolo 1. Gli strumenti. 1.1 Relazioni

Capitolo 1. Gli strumenti. 1.1 Relazioni Capitolo 1 Gli strumenti Consideriamo un insieme X. In geometria siamo abituati a considerare insiemi i cui elementi sono punti ad esempio, la retta reale, il piano cartesiano. Più in generale i matematici

Dettagli

Prima lezione. Gilberto Bini. 16 Dicembre 2006

Prima lezione. Gilberto Bini. 16 Dicembre 2006 16 Dicembre 2006 Vediamo alcune nozioni di teoria ingenua degli insiemi. Vediamo alcune nozioni di teoria ingenua degli insiemi. Un insieme è una collezione di oggetti di cui possiamo specificare una proprietà

Dettagli

LOGICA MATEMATICA PER INFORMATICA

LOGICA MATEMATICA PER INFORMATICA LOGICA MATEMATICA PER INFORMATICA A.A. 10/11, DISPENSA N. 2 Sommario. Assiomi dell identità, modelli normali. Forma normale negativa, forma normale prenessa, forma normale di Skolem. 1. L identità Esistono

Dettagli

Geometria I- Diario delle lezioni L. Stoppino, Università dell Insubria, a.a. 2016/2017

Geometria I- Diario delle lezioni L. Stoppino, Università dell Insubria, a.a. 2016/2017 Geometria I- Diario delle lezioni L. Stoppino, Università dell Insubria, a.a. 2016/2017 Mercoled ì 29 settembre (2 ore). Introduzione del corso. Definizione di spazio topologico. Primi esempi: 1) topologia

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220 Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220 A.A. 2010-2011 - Docente: Prof. Edoardo Sernesi Tutori: Filippo Maria Bonci, Annamaria Iezzi e Maria Chiara Timpone Tutorato

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni

Dettagli

Geometria I- Diario delle lezioni L. Stoppino, Università dell Insubria, a.a. 2015/2016

Geometria I- Diario delle lezioni L. Stoppino, Università dell Insubria, a.a. 2015/2016 Geometria I- Diario delle lezioni L. Stoppino, Università dell Insubria, a.a. 2015/2016 Martedì 29 settembre (2 ore). Introduzione del corso. Definizione di spazio topologico. Primi esempi: 1) topologia

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

APPUNTI DEL CORSO DI GEOMETRIA 3

APPUNTI DEL CORSO DI GEOMETRIA 3 APPUNTI DEL CORSO DI GEOMETRIA 3 (Topologia Generale - Omotopia e Gruppo Fondamentale) FRANCESCO MAZZOCCA Anno Accademico 2015/16 Disegno di copertina: Il nastro di Möbius, di Maurits Cornelis Escher,

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

Se con e indichiamo l elemento neutro di in G, e deve appartenere ad H.

Se con e indichiamo l elemento neutro di in G, e deve appartenere ad H. Abbiamo visto a lezione che una sottoalgebra B di un algebra A è identificabile con l immagine di un omomorfismo iniettivo a valori in A. Una sottoalgebra B di A è in particolare un sottoinsieme non vuoto

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi ppendice Elementi di teoria degli insiemi.1 Introduzione Comincia qui l esposizione di alcuni concetti primitivi, molto semplici da un punto di vista intuitivo, ma a volte difficili da definire con grande

Dettagli

22 Coniche proiettive

22 Coniche proiettive Geometria e Topologia I (U1-4) 2006-giu-06 95 22 Coniche proiettive (22.1) Definizione. Sia K[x 0, x 1,..., x n ] l anello dei polinomi nelle indeterminate (variabili) x 0, x 1,..., x n. Un polinomio di

Dettagli

Topologia della retta reale

Topologia della retta reale Topologia della retta reale R e i suoi sottoinsiemi Intervalli Si consideri l insieme dei numeri reali R. Siano a, b R. Si definisce intervallo ogni sottoinsieme di R costituito dai punti compresi tra

Dettagli

Forme bilineari simmetriche

Forme bilineari simmetriche Forme bilineari simmetriche Qui il campo dei coefficienti è sempre R Definizione 1 Sia V uno spazio vettoriale Una forma bilineare su V è una funzione b: V V R tale che v 1, v 2, v 3 V b(v 1 + v 2, v 3

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 Esercizio 1. Usando l algoritmo euclideo delle divisioni successive, calcolare massimo comune divisore e identità di Bézout per le seguenti coppie

Dettagli

Il metodo diretto del Calcolo delle Variazioni

Il metodo diretto del Calcolo delle Variazioni Capitolo 3 Il metodo diretto del Calcolo delle Variazioni Coercività Definizione 3.1 Una funzione F : X R si dice coerciva (risp. sequenzialmente coerciva) se per ogni t R esiste un sottoinsieme compatto

Dettagli

Analisi Matematica per Informatici Esercitazione 1 a.a

Analisi Matematica per Informatici Esercitazione 1 a.a Analisi Matematica per Informatici Esercitazione 1 a.a. 2006-2007 Dott. Simone Zuccher 25 Ottobre 2006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore

Dettagli

Esame scritto di Geometria 2

Esame scritto di Geometria 2 Esame scritto di Geometria 2 UNIVERSITÀ DEGLI STUDI DI TRENTO CORSO DI LAUREA IN MATEMATICA A.A. 2014/2015 Settembre 2015 Esercizio 1 Sia E 4 lo spazio euclideo a quattro dimensioni con un sistema di coordinate

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente

Dettagli

DAI NUMERI NATURALI AI NUMERI RAZIONALI

DAI NUMERI NATURALI AI NUMERI RAZIONALI DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che

Dettagli

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I APPUNTI DI TEORIA DEGLI INSIEMI MAURIZIO CORNALBA L assioma della scelta e il lemma di Zorn Sia {A i } i I un insieme di insiemi. Il prodotto i I A i è l insieme di tutte le applicazioni α : I i I A i

Dettagli

Indice. 1. Cenni di logica 2. Elementi di teoria degli insiemi 3. Relazioni e funzioni 4. Strutture algebriche. 1 Cenni di logica

Indice. 1. Cenni di logica 2. Elementi di teoria degli insiemi 3. Relazioni e funzioni 4. Strutture algebriche. 1 Cenni di logica Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Cenni di logica Dispongo queste quattro carte da gioco davanti a voi, due coperte e due scoperte

Dettagli

10 Spazi connessi. Geometria I 67. Cfr: Sernesi Vol II, Cap III, 11 [1]. Il teorema del valore intermedio si può esprimere in termini di connessione:

10 Spazi connessi. Geometria I 67. Cfr: Sernesi Vol II, Cap III, 11 [1]. Il teorema del valore intermedio si può esprimere in termini di connessione: Geometria I 67 10 Spazi connessi Cfr: Sernesi Vol II, Cap III, 11 [1]. Il teorema del valore intermedio si può esprimere in termini di connessione: (10.1) Definizione. Uno spazio topologico X è detto connesso

Dettagli

1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine

1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine 1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine In questo tipo di giochi l arena è costituita da due grafi orientati G = (V, E), G = (V, E ). Lo scopo del I giocatore è di mostrare, in un numero

Dettagli