Test di autovalutazione
|
|
- Vincenzo Mattioli
- 2 anni fa
- Visualizzazioni
Transcript
1 Test di autovalutazione n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni. n olora, partendo da sinistra, tante caselle quante sono le risposte esatte; in corrispondenza della fine della banda ce ai colorato, abbassa sulla retta graduata un segmento a essa perpendicolare. Troverai il tuo punteggio in centesimi. Test UNITÀ IL TEOREM DI PITGOR Il teorema di Pitagora si applica a triangoli nei quali due angoli sono ampi a 0 e 80. b e. c 7 e. pplicando a questo triangolo rettangolo il teorema di Pitagora avremo: R d 0 e 0. e e. P Q Qual è l area del quadrato contrassegnato dal punto interrogativo? a PQ PR QR b PR PQ QR c PR QR PQ d QR PQ PR e PQ PR QR cm cm Quale delle seguenti terne può rappresentare le misure dei lati di un triangolo rettangolo? a, 7, b 0,, c,, d, 8, 9 e 8, 0,? Dalla terna pitagorica,, puoi ricavare infinite altre terne. Quale delle seguenti non deriva da questa? a,, 9 b,, c 0,, d, 0, 8 e 0, 9, 0 a 9 cm b cm c Non si può calcolare d e 9 cm D In un triangolo rettangolo, se i lati sono a, b, c con a b c, allora l angolo retto è compreso fra i lati: a non si può dire. b a e b. c b e c. d a e c. e se a b c, allora non ci può essere un angolo retto.
2 UNITÀ IL TEOREM DI PITGOR 7 Un rombo si può sempre scomporre: a in due triangoli rettangoli. b in sei triangoli rettangoli. c non può essere scomposto in triangoli rettangoli. d in quattro triangoli rettangoli. e in due triangoli rettangoli isosceli. Nel triangolo rettangolo isoscele la misura dell altezza relativa all ipotenusa è data da: H Test 8 9 In un triangolo rettangolo i due cateti misurano rispettivamente m e 8 m. Quanto misura l ipotenusa? a 0 m b 7 m c 0 cm d e 9 Osserva la figura. Quanto misura [H]? a H b H c H d H e H 0 cm a Mancano dati per calcolarlo. b 0, cm d cm c 0,8 cm e, cm In un quadrato di lato la diagonale sarà data da a b c d e 8 In un triangolo isoscele siano b la base, l il lato obliquo, l altezza; esso è diviso dall altezza in due triangoli rettangoli congruenti. pplicando a uno di essi il teorema di Pitagora si a: a b l b b l c b l d l b b H e l 8 cm D Se la misura del lato di un quadrato è data da un numero intero, la misura della diagonale sarà data da a un numero intero. b un numero irrazionale. c un numero decimale finito. d un numero decimale periodico. e non si può prevedere. In un trapezio rettangolo l angolo acuto misura. Sapendo ce la base minore e l altezza misurano ciascuna cm, qual è la lungezza del perimetro? a 0 cm b c (8 ) cm d cm e 0 cm Nel triangolo equilatero, se è la lungezza dell altezza, la lungezza l del lato è data da: a l b l c l d l e l
3 Esercizi di rinforzo Ripassa Triangolo rettangolo e teorema di Pitagora In un triangolo rettangolo i lati adiacenti all angolo retto si ciamano cateti; il lato opposto all angolo retto si ciama ipotenusa. cateto (c ) ipotenusa (i) UNITÀ IL TEOREM DI PITGOR Rinforzo cateto (c ) Il teorema di Pitagora In un triangolo rettangolo l area del quadrato costruito sull ipotenusa è uguale alla somma delle aree dei quadrati costruiti sui cateti. Viceversa, l area del quadrato costruito su un cateto è uguale alla differenza fra l area del quadrato costruito sull ipotenusa e l area del quadrato costruito sull altro cateto. i = c + c c i c c i c c c c i c c i c c i c c i c pplica Triangolo rettangolo e teorema di Pitagora alcola l area mancante di uno dei quadrati.? m m m D
4 UNITÀ IL TEOREM DI PITGOR Rinforzo alcola l area mancante di uno dei quadrati. m? m cm alcola la lungezza del lato mancante, dopo aver stabilito se si tratta dell ipotenusa o di uno dei cateti. cm 8 cm m m 7 cm olora un triangolo rettangolo in ciascuno dei seguenti poligoni e applica il teorema di Pitagora per determinare la lungezza del segmento colorato in rosso. cm cm 8 cm cm cm Una rampa inclinata sale di m su una distanza di m. Quanto è lunga la rampa? m m Il piede di una scala è appoggiato per terra a 0 cm dal muro; poicé la scala è alta 80 cm, a ce altezza arriva sul muro? 80 cm 0 cm D
5 Esercizi di potenziamento Disegna sul tuo quaderno il quadrato somma dei quadrati indicati. Una formicina posta sul vertice del cubo, il cui spigolo è lungo 0 cm, deve raggiungere il vertice. Il percorso passa per il vertice ; il percorso M passa per il punto medio M dello spigolo [D]. Qual è il tragitto più breve? Sai dire qual è la differenza in millimetri, se c è, fra i due percorsi? M D UNITÀ IL TEOREM DI PITGOR Potenziamento Per questa attività devi procurarti alcuni fogli di carta punteggiata secondo i vertici di un quadrato (puoi fotocopiare il foglio accluso al Pronto Soccorso). Immagina di avere una circonferenza con il centro su un punto del foglio. Per quanti punti passa la circonferenza se a uno dei raggi seguenti? Raggi: a) cm d) 0 cm b) 0 cm e) cm c) 9 cm f ) 8 cm Spiega ance, in ciascun caso, percé la circonferenza passa per quei punti. onsidera un quadrato di lato 0 cm. Di quanto aumenta la lungezza della sua diagonale, se la lungezza del lato del quadrato aumenta di cm? E se aumenta di x cm? La catena di Otto (serve solo per inventare il problema: in realtà Otto sta in giardino libero, felice e contento), è lunga 8 m. Riuscirà Otto a vedere il gatto ce si è introdotto furtivamente in giardino? Le misure nella figura sono in metri. D 7 8 alcola la lungezza del perimetro e l area del quadrilatero in figura. [( ) cm; cm ] 0 0 Due navi partono contemporaneamente dallo stesso porto e si dirigono verso il mare aperto alla stessa velocità di 7 miglia all ora. Sapendo ce le loro direzioni formano un angolo di 0, calcola la loro distanza in kilometri quando sono trascorse due ore. ( miglio marino 8 m) [ km circa] Due corpi partono contemporaneamente dallo stesso punto su semirette fra loro perpendicolari; essi viaggiano di moto rettilineo uniforme. Sapendo ce la velocità del primo è di km/ e ce quella del secondo è di km/, calcola la distanza fra il primo e il secondo dopo mezz ora. [ km] D 7
Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta.
CLASSE III C RECUPERO GEOMETRIA AREA PERIMETRO POLIGONI Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. ES: se ho fatto questo disegno e so che 1 quadretto vale
Parte Seconda. Geometria
Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei
I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli.
I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. In ogni triangolo un lato è sempre minore della somma degli altri due e sempre maggiore della loro differenza. Relazione fra i lati di
Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.
I triangoli e i criteri di congruenza Diapositive riassemblate e rielaborate da prof. ntonio Manca da materiali offerti dalla rete. ontributi di: tlas editore, matematicamente, Prof.ssa. nnamaria Iuppa,
ALCUNE OSSERVAZIONI SUI TRIANGOLI
LUNE OSSERVZIONI SUI TRINGOLI ataloghiamo i triangoli seondo i lati seondo gli angoli 115 3 67 81 Esiste sempre il triangolo? Selte a aso le misure dei lati, è sempre possibile ostruire il triangolo? Quali
Test di autovalutazione
Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.
MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree
MODULO DI MATEMATICA di accesso al triennio Abilità interessate Utilizzare terminologia specifica. Essere consapevoli della necessità di un linguaggio condiviso. Utilizzare il disegno geometrico, per assimilare
Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri.
6. Quadrilateri 6.1 efinizioni Un poligono di 4 lati è detto quadrilatero. I lati di un quadrilatero che hanno un vertice in comune sono detti consecutivi. I lati di un quadrilatero non consecutivi tra
APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)
GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una
MATEMATICA: Compiti delle vacanze Estate 2015
MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola
Test di autovalutazione
UNITÀ LE TRSFORMZIONI GEOMETRIHE: OMOTETIE E SIMILITUDINI Test Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è L omotetia è una trasformazione geometrica che a lascia
Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso.
Proposta di esercitazione per le vacanze Geometria ed aritmetica Ricordo che a settembre verrà effettuata la verifica sul ripasso. 1) Un prisma retto, alto 7 cm, ha per base un triangolo isoscele;
Elementi di Geometria. Lezione 03
Elementi di Geometria Lezione 03 I triangoli I triangoli sono i poligoni con tre lati e tre angoli. Nelle rappresentazioni grafiche (Figura 32) i vertici di un triangolo sono normalmente contrassegnati
PRIMA DI SVOLGERE GLI ESERCIZI RIPASSA GLI ARGOMENTI SUL LIBRO E GLI APPUNTI SUL QUADERNO.
Compiti di matematica e scienze a. s. 2014 2015 classe 2 M da fare su un unico quaderno Alcuni esercizi vanno svolti sul quaderno. Il quaderno e la scheda verranno ritirati al ritorno dalle vacanze PRIMA
Kangourou della Matematica 2015 Coppa a squadre Kangourou Semifinale turno A Cervia, 9 maggio 2015. Quesiti
Kangourou della Matematica 015 Coppa a squadre Kangourou Semifinale turno A Cervia, 9 maggio 015 Quesiti 1. La busta La figura mostra in che modo, ripiegando opportunamente un foglio di carta a forma di
ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5
ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli
PROGRAMMI PER GLI ESAMI I PATENTE DE MAESTRI E DELLE MAESTRE DELLE SCUOLE PRIMARIE
Programmi per le Scuole normali e magistrali, e per gli esami di Patente de Maestri e delle Maestre delle Scuole primarie approvati con regio decreto 9 novembre 1861 n. 315 (Raccolta ufficiale delle leggi
Consolidamento conoscenze. 1. Scrivi l enunciato del teorema di Pitagora. In ogni.
onsolidamento conoscenze 1. Scrivi l enunciato del teorema di Pitagora. In ogni.. Siano c, e i rispettivamente i cateti e l ipotenusa di un triangolo rettangolo, quale delle seguenti scritture esprime
01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5
GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di
Principali Definizioni e Teoremi di Geometria
Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo
IL TEOREMA. Lezioni UNITÀ2. Geometria
7_0_TEORI 9_ -0-007 6:8 Pagina 9 UNITÀ IL TEOREM I PITGOR Geometria Le conoscenze che devi avere Lezioni Le proprietà dei poligoni Il concetto di figure equivalenti Le abilità che devi avere Usare i procedimenti
I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli.
I TRIANGOLI Il triangolo è un poligono formato da tre angoli o vertici e da tre lati. Il triangolo è la forma geometrica con il minor numero di lati perché tre è il numero minimo di lati con cui si può
I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo
I TRIANGOLI 1. IL TRIANGOLO Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo In un triangolo: I lati e i vertici sono consecutivi fra loro. La somma degli angoli interni è sempre
Rilevazione degli apprendimenti
Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATIA Scuola secondaria di II grado lasse... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato
PROVA DI MATEMATICA 2 VERSO LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI SECONDO GRADO PROVA DI MATEMATICA. 30 quesiti. Scuola... Classe... Alunno...
PRV I MTEMTI VERS L RILEVZINE INVLSI SUL SENRI I SEN GR PRV I MTEMTI 30 quesiti Scuola... lasse... lunno... 7 3 4 6 Sostituendo, nell espressione (n + )(n - ), il numero naturale n con il suo successivo
Introduzione. 001_007_pagine_iniziali.indd 7 22/01/14 11.21
7 Introduzione Questo volume si propone di riorganizzare i percorsi di aritmetica e di geometria del corso principale adattandoli a studenti con esigenze specifiche. Il progetto grafico originale del corso
REGOLA DELLA SEMPLIFICAZIONE DELLE AREE
REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.
GEOMETRIA. Congruenza, angoli e segmenti
GEOMETRIA Per affermare che un triangolo è isoscele o rettangolo oppure che un quadrilatero è un parallelogramma o un rettangolo o un rombo o un quadrato o un trapezio o un trapezio isoscele, c è sempre
a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π
PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente
Geogebra. Numero lati: Numero angoli: Numero diagonali:
TRIANGOLI Geogebra IL TRIANGOLO 1. Fai clic sull icona Ic2 e nel menu a discesa scegli Nuovo punto : fai clic all interno della zona geometria e individua il punto A. Fai di nuovo clic per individuare
Applicazioni dei teoremi di Pitagora ed Euclide
Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio
Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.
Anno 2014 1 Sommario Altezze, mediane, bisettrici dei triangoli... 2 Altezze relativa a un vertice... 2 Mediane relative a un lato... 2 Bisettrici relativi a un lato... 2 Rette perpendicolari... 3 Teorema
SIMULAZIONE QUARTA PROVA: MATEMATICA
SIMULAZIONE QUARTA PROVA: MATEMATICA COGNOME: NOME: TEMPO IMPIEGATO: VOTO: TEMPO DELLA PROVA = 44 (a fianco di ogni quesito si trova il tempo consigliato per lo svolgimento dell esercizio). PUNTEGGIO TOTALE
I QUADRILATERI. = n(n 3) : 2 = 4(4 3) : 2 = 2. d tot. = (n 2) 180 = (4 2) 180 = 360 S I = 360 S E 1. IL TRAPEZIO
I QUADRILATERI Il quadrilatero è un poligono formato da quattro angoli e da quattro lati. Al contrario del triangolo è una figura deformabile, infatti i quadrilateri possono essere intercambiabili fra
Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1
Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60
Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente.
Linee Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. a. curva spezzata retta mista aperta chiusa b. curva spezzata
; ; 3+ 2; ; 9 ; 2 2 : 7; 4 ; 7
COMPITI PER LE VACANZE ESTIVE ARITMETICA-GEOMETRIA Anno scolastico 016/17 Classe D I seguenti esercizi vanno svolti su un apposito quaderno con l indicazione del capitolo e del numero dell esercizio, o
LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry
LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry La costruzione di figure geometriche al computer con
Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande.
I poligoni Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande. 6 7 8 9 Figura Nome Numero Numero Numero lati angoli diagonali triangolo
Problemi di geometria
1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm
4. Programmi di matematica per le scuole tecniche e gli istituti tecnici (1860) 1
4. Programmi di matematica per le scuole tecniche e gli istituti tecnici (1860) 1 SCUOLE TECNICHE MATEMATICHE ELEMENTARI Primo Anno Aritmetica Sistema volgare di numerazione orale e scritta Le quattro
Piano Lauree Scientifiche 2011-2012
Piano Lauree Scientifiche 2011-2012 «non si può intendere se prima non s impara a intender lingua, e conoscer i caratteri, nei quali è scritto. Egli è scritto in lingua matematica, e i caratteri sono triangoli,
I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno
Kangourou Italia Gara del 19 marzo 2015 Categoria Cadet Per studenti di terza della scuola secondaria di primo grado e prima della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti
I teoremi di Euclide e di Pitagora
I teoremi di Euclide e di Pitagora In questa dispensa vengono presentati i due teoremi di Euclide ed il teorema di Pitagora, fondamentali per affrontare diverse questioni sui triangoli rettangoli. I teoremi
Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:
Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte
1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora.
TEOREMA DI PITAGORA Contenuti 1. Particolari terne numeriche e teorema di PITAGORA. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora Competenze 1. Sapere il significato di terna pitagorica
REGOLA DELLA SEMPLIFICAZIONE DELLE AREE
REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.
3 :
COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero
Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh
Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli
I Giochi di Archimede -- Soluzioni triennio 21 novembre 2007
PROGETTO OLIMPIDI DI MTEMTI U.M.I. UNIONE MTEMTI ITLIN MINISTERO DELL PULI ISTRUZIONE SUOL NORMLE SUPERIORE I Giochi di rchimede -- Soluzioni triennio 1 novembre 007 Griglia delle risposte corrette Problema
E ora qualche proporzione!
CLASSE II B COMPITI PER LE VACANZE Come d accordo risolvi le espressioni ed i problemi con le frazioni del libro delle vacanze dello scorso anno; risolvi tante espressioni quante ti servono per un ripasso
Problemi di geometria
1 2 5 6 7 8 9 10 11 12 1 1 In un triangolo rettangolo l ipotenusa misura 60 cm e la proiezione del cateto maggiore sull ipotenusa misura 55,29 cm. Calcola la misura dei due cateti. [57,6 cm; 16,8 cm] In
I QUADRILATERI. d tot. = n(n 3) : 2 = 4(4 3) : 2 = 2 S I. = (n 2) 180 = (4 2) 180 = 360 S E = IL TRAPEZIO
I QUADRILATERI Il quadrilatero è un poligono formato da quattro angoli e da quattro lati. Al contrario del triangolo è una figura deformabile, infatti i quadrilateri possono essere intercambiabili fra
Forze come grandezze vettoriali
Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due
3 :
COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero
a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.
1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità
Soluzioni Giochi di Archimede 2015 Fase Istituto GARA BIENNIO
Soluzioni Giochi di Archimede 05 Fase Istituto GARA BIENNIO. Nel paese Gnallucci circolano quattro monete: dobloni, zecchini, talleri e fufignezi. Un doblone vale quanto uno zecchino più un tallero e un
UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica
UNIONE MATEMATICA ITALIANA C. I. I. M. Commissione Italiana per l'insegnamento della Matematica ESEMPI DI TERZE PROVE per il NUOVO ESAME DI STATO LA COMPONENTE MATEMATICA ISTITUTO MAGISTRALE Tipologia
STUDIO ESTIVO IN PREPARAZIONE ALLA SCUOLA SUPERIORE
www.istitutocalabrese.vr.it e-mail vris@istruzione.it www.liceoprimolevi.it STUDIO ESTIVO IN PREPARAZIONE ALLA SCUOLA SUPERIORE Gli insegnanti di matematica delle Scuole Medie di BUSSOLENGO CAPRINO VERONESE
Ogni primino sa che...
Ogni primino sa che... A cura della équipe di matematica 25 giugno 2015 Competenze in ingresso Tradizionalmente, nei primi giorni di scuola, gli studenti delle classi prime del Pascal sostengono una prova
Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1
Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1 Indice / Terminologia addendo x L'addizione, la somma, l'addendo, più 1 2a 24 addizionare x L'addizione, la somma, l'addendo, più
Esercizi per le vacanze estive.
Esercizi per le vacanze estive. ^ A B Controlla il quaderno delle regole: se non è ordinato o se mancano alcune parti, completalo, chiedendo se è possibile ad un compagno. GEOMETRIA A Ripassa le caratteristiche
CORSO DI TECNOLOGIA Prof.ssa Loffa Laura
1. SISTEMAZIONE QUADERNO CORSO DI TECNOLOGIA Prof.ssa Loffa Laura CLASSE PRIMA A. S. 2013 2014 ------- COMPITI PER LE VACANZE Il quaderno è in ordine se: E diviso in sezioni come richiesto ad inizio anno.
2B GEOMETRIA. Isoperimetria, equivalenza e calcolo delle aree. Esercizi supplementari di verifica
2 GEOMETRI Isoperimetria, equivalenza e calcolo delle aree Esercizi supplementari di verifica Esercizio 1 Metti una crocetta su vero (V) o falso (F) di fianco ad ogni affermazione. a) V F ue poligoni isoperimetrici
Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni
Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono
Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ;
Primo anno Secondo anno Terzo anno Primo anno MATEMATICA Scuola dell Infanzia Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; legge
INDICE. Unità 7 DALLA CIRCONFERENZA AI POLIGONI REGOLARI, 1 CIRCONFERENZA E CERCHIO, 2 PARTI DELLA CIRCONFERENZA E DEL CERCHIO, 3
INIE Unità 7 LL IRONFERENZ I POLIGONI REGOLRI, Il libro prosegue nel 7. IRONFERENZ E ERIO, ESERIZI da p. 7. PRTI ELL IRONFERENZ E EL ERIO, Le parti della circonferenza, Le parti del cerchio, 7. NGOLI E
I VETTORI. 1 Somma di vettori: metodo graco. 19 dicembre 2007. ESERCIZI Risolti e Discussi
I VETTORI ESERCIZI Risolti e Discussi 19 dicembre 2007 1 Somma di vettori: metodo graco 1.0.1 Si considerino due spostamenti, uno di modulo 3 m e un altro di modulo 4 m. Si mostri in che modo si possono
Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.
IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui
In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo
In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
Geometria euclidea. Alessio del Vigna
Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,
si usa in geometria per definire due figure uguali per forma ma non per dimensioni.
FIGURE PIANE EQUIESTESE Due figure piane si definiscono equivalenti (o equiestese) se hanno la stessa superficie, la stessa estensione cioè la stessa area. OSSERVA CHE 1- Due figure congruenti saranno
Elenco Ordinato per Materia Chimica
( [B,25404] Perché le ossa degli uccelli sono pneumatiche, cioè ripiene di aria? C (A) per consentire i movimenti angolari (B) per immagazzinare come riserva di ossigeno X(C) per essere più leggere onde
Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore
15-20-.qxd 29/03/2003 8.22 Pagina 16 Kangourou Italia Gara del 20 marzo 2003 Categoria Per studenti di terza media o prima superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale dei seguenti
POLIGONI. A= bxh. 2p=2(b+h) RETTANGOLO. Il rettangolo è un parallelogramma che ha gli angoli congruenti. Ha le diagonali congruenti
POLIGONI RETTANGOLO Il rettangolo è un parallelogramma che ha gli angoli congruenti. Ha le diagonali congruenti Pertanto ogni parallelogramma che ha gli angoli congruenti e le diagonali congruenti è un
Test di autovalutazione
Test di autovalutazione 0 0 0 0 0 0 60 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni. n olora,
MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).
MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica
Appunti di Geometria
ISTITUTO COMPRENSIVO N.7 - VIA VIVALDI - IMOLA Via Vivaldi, 76-40026 Imola (BOLOGNA) Centro Territoriale Permanente: Istruzione Degli Adulti - IDA Appunti di Geometria Scuola Secondaria di I Grado - Ex
Kangourou Italia Gara del 21 marzo 2013 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado
Kangourou Italia Gara del 21 marzo 2013 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Il numero 200013 2013
Consolidamento Conoscenze
onsolidamento onoscenze 1. Scrivi l enunciato del teorema di Pitagora. In ogni triangolo rettangolo il quadrato costruito sull ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti..
LE GEOMETRIE NON EUCLIDEE FRA CULTURA, STORIA E DIDATTICA DELLA MATEMATICA. Dario Palladino (Università di Genova)
LE GEOMETRIE NON EUCLIDEE FRA CULTURA, STORIA E DIDATTICA DELLA MATEMATICA Dario Palladino (Università di Genova) Seconda parte Momenti della storia dei tentativi di dimostrazione del V postulato di Euclide
4 LA PALETTA È possibile «svuotare» la paletta spostando solo due segmenti. Sai dire come?
GIOCHI MATEMATICI 1 CUORI, QUADRI, PICCHE E FIORI Riempi le caselle della griglia con i simboli,, e in modo che ogni simbolo compaia una sola volta in ogni riga e in ogni colonna. GIOCHI MATEMATICI 2 LA
ABCD è un parallelogrammo 90. Dimostrazione
EQUISCOMPONIBILITÀ Problema G2.360.1 È dato il parallelogrammo ABCD: dai vertici A e B si conducano le perpendicolari alla retta del lato CD e siano rispettivamente E e F i piedi di tali perpendicolari
Parallelogrammi 1 Parallelogrammi Nome: classe: data:
www.matematicamente.it Parallelogrammi 1 Parallelogrammi Nome: classe: data: 1. Quali tra le seguenti sono proprietà del parallelogramma?. ciascuna diagonale lo divide in due triangoli uguali. gli angoli
Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta
Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Il concetto di similitudine è innato: riconosciamo lo stesso oggetto se è più o meno distante
INdAM QUESITI A RISPOSTA MULTIPLA
INdAM Prova scritta per il concorso a 40 borse di studio, 2 borse aggiuntive e a 40 premi per l iscrizione ai Corsi di Laurea in Matematica, anno accademico 2011/2012. Piano Lauree Scientifiche. La prova
Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto
Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Carissimi, eccovi gli argomenti trattati in quest anno scolastico. Ti servono quale ripasso!!!se qualcosa non fosse chiaro batti
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli
LA CIRCONFERENZA e IL CERCHIO
LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più
A tal fine ritengono utile fornire alcune indicazioni preliminari. Matematica. Conoscenza dei seguenti argomenti:
Gli insegnanti di Matematica del liceo A.Righi ritengono opportuno ricordare ai futuri studenti ed alle loro famiglie, al fine di affrontare con serenità e competenza il primo anno del nuovo corso di studi,
Problemi di geometria
1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 7
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 7 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora sommario.
Kangourou Italia Gara del 19 marzo 2009 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria
Testi_09.qxp 15-04-2009 20:23 Pagina 5 Kangourou Italia Gara del 19 marzo 2009 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Hai
Anna Montemurro. 2Geometria. e misura
Anna Montemurro Destinazione Matematica 2Geometria e misura GEOMETRIA E MISURA UNITÀ 11 Le aree dei poligoni apprendo... 11. 1 FIGURE PIANE EQUIVALENTI Consideriamo la figura A. A Le figure B e C
ESERCIZI CINEMATICA IN UNA DIMENSIONE
ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km
geometriche. Parte Sesta Trasformazioni isometriche
Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
LICEO STATALE G. MAZZINI
LICEO STATALE G. MAZZINI LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO DELLE SCIENZE UMANE OPZIONE ECONOMICO-SOCIALE Viale Aldo Ferrari, 37 Tel. 0187743000 19122 La Spezia Fax 0187743208 www.liceomazzini.org