Analisi Matematica 2 (Corso di Laurea in Informatica)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi Matematica 2 (Corso di Laurea in Informatica)"

Transcript

1 COGNOME NOME Matr. Firma dello studente A Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione per ogni domanda; per annullare una risposta ritenuta errata racchiuderla in un cerchio. Risposta esatta: 1.5 punti; risposta sbagliata: punti; risposta non data: 0 punti. Test 1: Il piano tangente alla superficie di equazione x 3 y z xy = 0 nel punto (1, 1, 1) è: (A) 3x + y + z = 5 (B) 3x + y + z = 0 (C) x + y + z = 0 (D) x + y + z = 4 Test : Sia g(x) la funzione definita implicitamente dall equazione log y 7xy + cos x = 1 e tale che g(0) = 1. Allora l equazione della retta tangente al grafico di g in x = 0 è (A) y = x + 7 (B) y = 7 (C) y = 7x (D) y = 7x + 1 Test 3: Il massimo della funzione f(x, y) = x + y sull insieme risulta (A) 4 (B) 6 (C) 0 (D) 4 D = {(x, y) R y x 4} Test 4: Sia D il disco di raggio 4 con centro nell origine e giacente nel piano z = 0. Il flusso del campo vettoriale F(x, y, z) = (xy, yz, z + 1) attraverso D nella direzione dell asse z è (A) 0 (B) 4π (C) 8π (D) 16π Test 5: Sia γ la curva intersezione del cilindro (x + ) + (y 1) = 1 con il piano x y + z + 3 = 0. Allora la lunghezza di γ è data da (A) (B) π sin(t) dt (C) π 0 + sin(t) dt (D) π cos(t) dt Test 6: La matrice Hessiana della funzione f(x, y) = 3x + cos y 3 nel punto (0, π) è (A) definita positiva (B) definita negativa (C) indefinita (D) semidefinita positiva 1

2 Test 1: primo modo: la superficie è data in forma implicita, della forma g(x, y, z) = 0, pertanto possiamo usare la seguente formula per il piano tangente g x (x 0, y 0, z 0 )(x x 0 ) + g y (x 0, y 0, z 0 )(y y 0 ) + g z (x 0, y 0, z 0 )(z z 0 ) = 0 dove nel nostro caso g(x, y, z) = x + y + z 8 e (x 0, y 0, z 0 ) = (, 0, ). Allora si ha quindi l equazione richiesta è g x (x, y, x) = 3x y z y g x (1, 1, 1) = g y (x, y, x) = x 3 yz x g y (1, 1, 1) = 1 g z (x, y, x) = x 3 y g z (1, 1, 1) = 1 (x 1) + (y 1) + (z 1) = 0 x + y + z = 4. secondo modo: esplicitando la variabile z possiamo si ha z = 1 x y che è una funzione ben definita in un intorno di (1, 1) quindi per il piano tangente possiamo usare la formula z = f(x 0, y 0 ) + f x (x 0, y 0 )(x x 0 ) + f y (x 0, y 0 )(y y 0 ) con f(x, y) = 1 x y, (x 0, y 0 ) = (1, 1) e f(x 0, y 0 ) = 1. Allora si ha e analogamente da cui il piano tangente richiesto vale f x (x, y) = x 3 y f y (x, y) = 1 x y f x (, 0) = f y (, 0) = 1 z = 1 (x 1) (y 1) x + y + z = 4. La risposta corretta è la (D). Test : Detta f(x, y) = log y 7xy + cos x 1 si ha che f C 1 (R ), f(0, 1) = 0 e f y (x, y) = 1 y 7x da cui f y(0, 1) = 1 0. Quindi sono verificate le ipotesi del teorema del Dini e si ha g (x) = f x(x, g(x)) 7y + sin x = f y (x, g(x)) 1/y 7x da cui g (0) = 7. Allora l equazione della retta tangente al grafico di g(x) in 0 è La risposta corretta pertanto è la (D). y = 1 + 7(x 0) = 1 + 7x. Test 3: L insieme D è la regione del piano compresa tra l interno della parabola x = y e la retta x = 4. Il punto (0, 0) è di non differenziabilità per f, mentre essendo f continua su D chiuso e limitato, il massimo e il minimo assoluti esistono per il Teorema di Weierstrass. Si vede immediatamente che non ci sono punti stazionari interni a D perché f x non si annulla mai. Pertanto il massimo e il minimo assoluti andranno ricercati tra i punti del bordo (incluso (0, 0)) il quale è costituito da due parti D 1 = {(x, y) x = y } D = {(x, y) x = 4} entrambe simmetriche rispetto all asse x mentre la funzione è pari rispetto alla y. Dunque per studiare il comportamento della funzione sul bordo, per considerazioni di simmetria è sufficiente studiare la funzione g(x, y) = x + y. A tal proposito si vede che su D la funzione è crescente quindi i punti candidati sono i punti di estremo (4, ±), mentre su D 1 in aggiunta si ha il punto che annulla la derivata prima di g(y, y) = y + y ossia (1/4, 1/). Allora riassumendo pertanto la risposta corretta è la (B). f(4, ±) = 6 f(1/4, 1/) = 3/4 f(0, 0) = 0 Test 4: Il flusso di un campo F attraverso una superficie Σ è dato da Φ = Σ F n ds

3 dove n è il versore normale alla superficie, in questo caso (0, 0, 1). A questo punto allora, l unica componente che sopravvive nel calcolo di F n è la terza componente del campo che calcolata lungo la parametrizzazione del cerchio (z = 0) diventa 1. Quindi Φ si riduce all area del cerchio che vale 16π. La risposta corretta pertanto è la (D). Test 5: Imponiamo che la curva stia sul cilindro, quindi in coordinate polari x + = cos t y 1 = sin t t [0, π] e ricaviamo la z dall equazione del piano imponendo le relazioni precedenti: z = 3 cos t + + sin t + 1 = sin t cos t quindi riassumendo una parametrizzazione della curva diventa r(t) = { x = cos t y = sin t + 1 z = sin t cos t da cui r (t) = ( sin t, cos t, cos t + sin t) r (t) = Quindi la risposta corretta è la (C). sin t + cos t + (cos t + sin t) = + sin t cos t = + sin(t). Test 6: La funzione data è di classe almeno C quindi ha senso calcolarne il gradiente e le derivate successive. Si ha f x (x, y) = 6x f y (x, y) = sin y f xx (x, y) = 6 f xy (x, y) = f yx (x, y) = 0 f yy (x, y) = cos y pertanto H f (0, π) = [ ] Si tratta di una matrice definita positiva, quindi la risposta corretta è la (A). 3

4 Esercizio (8 punti) Sia F(x, y) = (x sin(5y) + αx )i + ((α 4)x cos(5y) + e 5y )j (x, y) R. (i) Qual è l unico valore di α R per cui il campo vettoriale F(x, y) è conservativo su tutto R? (ii) Per tale valore di α calcolare il potenziale U tale che U(0, 0) = 0. (iii) Sempre per tale valore di α, calcolare il lavoro del campo lungo l arco di parabola y = x 3x + congiungente i punti P = (0, ) e Q = (1, 0) percorsa in senso antiorario. (i) Condizione necessaria ma non sufficiente perché un campo sia conservativo è che valga la condizione delle derivate in croce. Pertanto, dette f 1 (x, y) = x sin(5y) + αx F (x, y) = (α 4)x cos(5y) + e 5y le componenti del campo, si deve necessariamente avere x F = y F 1 e questo è vero se dunque se α 4 = 5 cioè se α = 9. x F = x(α 4) cos(5y) = x cos(5y)5 = y F 1 (ii) A questo punto, visto che il campo è definito su R che è un dominio semplicemente connesso, F è conservativo, pertanto esiste una funzione potenziale U tale che U(x, y) = F(x, y). Allora per calcolare U possiamo procedere integrando le componenti del campo rispettivamente nelle variabili x e y. Si ha U(x, y) = (x sin(5y) + 9x ) dx = x sin(5y) + 3x 3 + C 1 (y) e analogamente U(x, y) = (5x cos(5y) + e 5y ) dy = x sin(5y) 1 5 e 5y + C (x). A questo punto, se scegliamo C 1 (y) = 1 5 e 5y + C C (x) = 3x 3 C R si ottiene che la generica espressione del potenziale U risulta U(x, y) = x sin(5y) 1 5 e 5y + 3x 3 + C C R. Allora il potenziale che si annulla in (0, 0) è quello che si ottiene imponendo U(0, 0) = C = 0 C = 1 5. Il potenziale richiesto è dunque U(x, y) = x sin(5y) (1 e 5y ) + 3x 3. (iii) Visto che il campo è conservativo, il lavoro lungo una curva dipende solo dal punto iniziale e dal punto finale. Quindi si tratta di stabilire chi tra P e Q è il punto iniziale e chi è il punto finale. Siccome la curva è percorsa in senso antiorario, si ha che Q = (1, 0) è il punto finale e P = (0, ) il punto iniziale. Allora, usando l espressione del potenziale trovata precedentemente si ottiene L = U(1, 0) U(0, ) = (1 e 10 ). 4

5 Esercizio (8 punti) Trovare gli estremi assoluti di su f(x, y) = ye x y D = {(x, y) x + (y 1) 1}. La funzione data è continua, l insieme dato è chiuso e limitato quindi gli estremi assoluti di f in D esistono per il teorema di Weierstrass. Se y = 0 allora x = 0 e questo è un punto in cui non esiste f y ; per altro essendo di bordo lo ritroveremo nell analisi della seconda parte. Se y 0, la funzione f C 1 (D) quindi ha senso calcolarne il gradiente. Si ha f(x, y) = ( x ye x y 1, y e x y y y e x y ). Imponendo f(x, y) = (0, 0) dalla prima equazione si legge x = 0 oppure y = 0, ma y = 0 non è accettabile per le ipotesi che abbiamo fatto, quindi imponendo x = 0 nella seconda equazione si legge y = ±1/ ma il punto (0, 1/) non appartiene a D. COncludendo l unico punto stazionario (o critico) risulta (0, 1/). Su questo punto si ha f (0, 1 ) = 1 e 1/4. A questo punto analizziamo la parte del bordo, usando due metodi diversi. primo modo: esplicitiamo l equazione del vincolo: si ha x + y + y + 1 = 1 (la disuguaglianza descrive tutto il dominio, bordo più parte interna, l uguaglianza descrive solo il bordo) da cui x y = y quindi sostituendo questa espressione dentro la funzione f si ottiene una funzione di una sola variabile g(y) = ye y con le limitazioni sulla y: 0 y. Andando a studiare brevemente questa funzione si vede che g (y) = 0 se y = 1/4 quindi punti candidati ad essere estremo assoluto solo i punti corrispondenti a y = 0 e y = (estremi dell intervallo) e y = 1/4 (annullamento derivata prima). Confrontanto i valori sulla f si ha a sua volta f(0, 0) = 0 f(0, ) = 7 e 4 f (± 4, 1 4 ) = 1 e 1/ quindi osservando che visto che 1 e 1/ = 1 e < 1 4 e = 1 e 1/4 4 e < e si ha che max D f = 1 e 1/ min D f = 0 e (0, 1/) è il punto di massimo mentre (0, 0) è il punto di minimo. secondo modo: utilizziamo il metodo dei moltiplicatori di Lagrange. La Lagrangiana del sistema diventa L(x, y, λ) = ye x y + λ(x + y y) quindi gli estremi vincolati si trovano tra i punti critici della Lagrangiana, cioè tra i punti che annullano il gradiente di L. Allora si ha L(x, y, λ) = (0, 0, 0) ( x ye x y + λx, [ 1 y y y] e x y + λy λ, x + y y) = (0, 0, 0). Dalla prima equazione si legge x = 0 oppure λ = ye x y. Inserendo la prima informazione nell equazione del vincolo si ottiene y = ± mentre inserendo la seconda informazione nella seconda equazione si ottiene (semplificando l esponenziale) 1 y y y + (y 1) y = 0 y = 1/4. Si ritrovano gli stessi punti dell analisi precedente pertanto la conclusione è la medesima. 5

6 Tema: Formula di Taylor del secondo ordine per funzioni scalari di due variabili definite su tutto R. Applicazioni allo studio della natura dei punti critici. Si vedano le dispense del corso, Capitolo 4, Sezione 4.9; Capitolo 5 Sezioni

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame COGNOME NOME Matr. Firma dello studente A Analisi Matematica (Corso di Laurea in Informatica) Simulazione compito Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente Analisi Matematica 2 (Corso di Laurea in Informatica) 2.02.2012 B Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta.

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima. Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..

Dettagli

Alcuni esercizi risolti da esami di anni passati

Alcuni esercizi risolti da esami di anni passati Alcuni esercizi risolti da esami di anni passati Andrea Braides ( x. Calcolare, se esiste, il limite lim (x,y (, x + y log + y + x 3 y. x + y Dato che log( + s = s + o(s per s, abbiamo lim (x,y (, ( x

Dettagli

Esercizi su estremi vincolati e assoluti

Esercizi su estremi vincolati e assoluti Esercizi su estremi vincolati e assoluti Esercizio 1. di sul quadrato Determinare i punti di minimo e di massimo (e i relativi valori di minimo e massimo) assoluto f(x, y) = x cos(πy) Q = [0, 1] [0, 1].

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = x 2 + y 3 4y. 4 1, y 2 2(1 + }

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = x 2 + y 3 4y. 4 1, y 2 2(1 + } Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8-09-07 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Estremi vincolati, Teorema del Dini.

Estremi vincolati, Teorema del Dini. Estremi vincolati, Teorema del Dini. 1. Da un cartone di 1m si deve ricavare una scatola rettangolare senza coperchio. Trovare il massimo volume possibile della scatola.. Trovare gli estremi assoluti di

Dettagli

Estremi vincolati, Teorema del Dini.

Estremi vincolati, Teorema del Dini. Estremi vincolati, Teorema del Dini. 1. Da un cartone di 1m si deve ricavare una scatola rettangolare senza coperchio. Trovare il massimo volume possibile della scatola.. Trovare gli estremi assoluti di

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #5. Sia f : R R la funzione definita da f(x, y) x + x + y + x + y (x, y) R. (a) Determinare il segno di f. (b) Calcolare

Dettagli

Esame di Analisi Matematica 2 24/9/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 24/9/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 2 24/9/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esercizio 1. Sia A il cerchio aperto del piano di centro l origine e raggio 1. Sia f(x, y) una

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale

Es. 1 Es. 2 Es. 3 Es. 4 Totale Es. Es. Es. Es. 4 Totale Analisi e Geometria Seconda prova in itinere Docente: luglio Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Esercizio 1 Analisi Matematica 2 12 gennaio 2017 Si consideri la curva piana γ di parametrizzazione α(t) = (sin(t), sin(2t)), t [0, π]. 1. Si disegni (approssimativamente) il suo sostegno, specificando

Dettagli

ISTITUZIONI DI MATEMATICHE II

ISTITUZIONI DI MATEMATICHE II ISTITUZIONI DI MATEMATIHE II SEONDO ESONERO Esercizio 1. Data la funzione f(x, y) = (x + y )(1 y) i) se ne studi il segno. ii) Si trovino i punti critici di f e se ne studi le natura. iii) Sia D = {(x,

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010 COMPLEMENTI DI ANALISI MATEMATICA A.A. 29- Primo appello del 5/5/2 Qui trovate le tracce delle soluzioni degli esercizi del compito. Ho tralasciato i calcoli da Analisi (che comunque sono parte della risoluzione),

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

Analisi Matematica II Corso di Ingegneria Gestionale Compito del Analisi Matematica II Corso di Ingegneria Gestionale Compito del 30-0-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

D : 0 E : arctan 2 1 F : 2 arctan 1. 3y + 3y y = 0 y(0) = 3 y (0) = 0.

D : 0 E : arctan 2 1 F : 2 arctan 1. 3y + 3y y = 0 y(0) = 3 y (0) = 0. Analisi Matematica B 31 marzo 003 Compito 1 1. L integrale 1 x arctan( 1 x ) dx vale Risp.: A : arctan 1 1 B : C : arctan 1 3 D : 0 E : arctan 1 F : arctan 1 + arctan 1. Sia ỹ(x) la soluzione del problema

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19 ANALISI MATEMATICA - INGEGNERIA MECCANICA E ENERGETICA A.A. 8-9 PROVA SCRITTA EL 8//9 Scrivere nome cognome e numero di matricola in stampatello su tutti i fogli da consegnare. Consegnare solo la bella

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 24/10/2012

ANALISI VETTORIALE COMPITO IN CLASSE DEL 24/10/2012 ANALISI VETTORIALE COMPITO IN CLASSE DEL 4/10/01 Esercizio 1 Dimostrare che l equazione F (x, y) =e tan(x+y) x 3y 1 = 0 definisce implicitamente in un intorno di (0, 0) una funzione y = f(x) tale che F

Dettagli

ANALISI MATEMATICA 2 ING. ENERGETICA prof. Daniele Andreucci Prova tecnica del 22/01/2019

ANALISI MATEMATICA 2 ING. ENERGETICA prof. Daniele Andreucci Prova tecnica del 22/01/2019 I.1 ANALISI MATEMATICA ING. ENERGETICA prof. Daniele Andreucci Prova tecnica del /1/19 1. Si consideri la funzione x +y, x,y,, fx,y = [ln1+x +y ] 1, x,y =,. A Si dimostri che f è continua in,. B Si dimostri

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. A Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. B Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3 Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 7-7-8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Vettoriale - Primo esonero - 26 ottobre 2006

Analisi Vettoriale - Primo esonero - 26 ottobre 2006 Analisi Vettoriale - Primo esonero - 26 ottobre 26 Esercizio 1. ia F (x, y) = e xy + x 2 y 2x 2y + 1. a) imostrare che l equazione F (x, y) = definisce implicitamente, in un intorno del punto P = (1, ),

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018 nalisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 218 1) ia data la funzione f(x, y, z) = (x 2 + y 2 1) 2 + 8 a) tudiare l esistenza di massimi e minimi assoluti della funzione f nella

Dettagli

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2 Corso di Laurea in Matematica Analisi 4 - SOLUZIONI /9/8) Docente: Claudia Anedda ) Data la funzione yx) x + π, x, π) prolungarla su tutto R in modo tale che sia una funzione π-periodica pari, disegnare

Dettagli

1 Limiti e continuità

1 Limiti e continuità Calcolo infinitesimale e differenziale Gli esercizi indicati con l asterisco (*) sono più impegnativi. Limiti e continuità Si ricorda che per una funzione di più variabili, la definizione di continuità

Dettagli

Cognome:... Nome:... Matricola:

Cognome:... Nome:... Matricola: Cognome:... Nome:... Matricola: Università di Milano - Bicocca Corso di laurea di primo livello in Scienze statistiche ed economiche Corso di laurea di primo livello in Statistica e gestione delle informazioni

Dettagli

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017 Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria Primo Appello 13 Luglio 017 Cognome: Nome: Matricola: Es.1: 11 punti Es.: 6 punti Es.3: 7 punti Es.: 8 punti Totale

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del , se (x, y) = (0, 0) ( x e. + y x e (y2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del , se (x, y) = (0, 0) ( x e. + y x e (y2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito A del -6-9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL 2/9/2011

TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL 2/9/2011 TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL /9/11 Esercizio 1 a. Dopo aver scritto l equazione parametrica C(t) della curva di equazione cartesiana y = x x, si calcolino i vettori T(t), N(t) e

Dettagli

ESERCIZI SU MASSIMI E MINIMI DI FUNZIONI IN PIÙ VARIABILI. m(x, y, z) = (2x 2 + y 2 )e x2 y 2, f(x, y) = (y x 2 )(y x2. f(x, y) = x 3 + (x y) 2,

ESERCIZI SU MASSIMI E MINIMI DI FUNZIONI IN PIÙ VARIABILI. m(x, y, z) = (2x 2 + y 2 )e x2 y 2, f(x, y) = (y x 2 )(y x2. f(x, y) = x 3 + (x y) 2, ESERCIZI SU MASSIMI E MINIMI DI FUNZIONI IN PIÙ VARIABILI VALENTINA CASARINO Esercizi per il corso di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica,

Dettagli

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 a.a 2005/06 Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 Funzioni di due variabili a cura di Roberto Pagliarini Vediamo prima di tutto degli esercizi sugli insiemi

Dettagli

Esercizi su curve e funzioni reali di più variabili reali 1Febbraio 2010

Esercizi su curve e funzioni reali di più variabili reali 1Febbraio 2010 Esercizi su curve e funzioni reali di più variabili reali 1Febbraio 1 1.Si calcoli la lunghezza della curva di equazione g y = 1 x 1 log x x [1, e].. Sia f(x, y, ) = x + y e sia il sostegno della curva

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2 Analisi Matematica II Corso di Ingegneria Gestionale Compito del 15--18 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Istituzioni di Matematica II 5 Luglio 2010

Istituzioni di Matematica II 5 Luglio 2010 Istituzioni di Matematica II 5 Luglio 010 1. Classificare, al variare del parametro α R, la forma quadratica (1 + α )x + 4xy + αy.. i) Si determinino tutti i punti critici della seguente funzione f(x,

Dettagli

Esercizi. 1) Sia f : R 2! R, f(x, y) =(x ) 2 +(y ) 3.(0< <4)

Esercizi. 1) Sia f : R 2! R, f(x, y) =(x ) 2 +(y ) 3.(0< <4) Esercizi 1) Sia f : R! R, f(x, y) (x ) +(y ) 3.(<

Dettagli

Analisi Matematica 2. Ottimizzazione in due variabili. Ottimizzazione in due variabili 1 / 31

Analisi Matematica 2. Ottimizzazione in due variabili. Ottimizzazione in due variabili 1 / 31 Analisi Matematica 2 Ottimizzazione in due variabili Ottimizzazione in due variabili 1 / 31 Ottimizzazione. Figure: Massimi e minimi relativi (o locali), Massimi e minimi assoluti (o globali) Ottimizzazione

Dettagli

Ingegneria Tessile, Biella Analisi II

Ingegneria Tessile, Biella Analisi II Ingegneria Tessile, Biella Analisi II Esercizi svolti In questo file sono contenute le soluzioni degli esercizi sui campi vettoriali (cf foglio 5 di esercizi) Attenzione: in alcuni esercizi il calcolo

Dettagli

Analisi Matematica 2 - a.a. 2009/2010

Analisi Matematica 2 - a.a. 2009/2010 Quarto appello Esercizio Analisi Matematica 2 - a.a. 29/2 Sia Γ = { (,y,z) R 3 : 2 + y 2 = z 2, y 2 + (z 2) 2 = }.. Provare che tutti i punti di Γ sono regolari. 2. Determinare lo spazio tangente a Γ nel

Dettagli

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura) Soluzione della prova scritta di Analisi Matematica II del 5 Aprile 009 Ingegneria Edile e Architettura x. Calcolare J = ds essendo γ la curva ottenuta intersecando γ + y il cilindro di equazione x + y

Dettagli

Analisi 2 Fisica e Astronomia

Analisi 2 Fisica e Astronomia Analisi Fisica e Astronomia Appello scritto del 8 Luglio 0. Soluzione Esercizio 7 pti Sia α > 0 un parametro e consideriamo la curva piana γ : [0, ] R γt = t cos, t sin, se t 0, ], e γ0 = 0, 0. t α t α

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1. Prova scritta di Analisi Matematica II del 14-07-1999 - c.1 1) Sia (d n ) una successione di numeri reali tali che inf d n > 0. Studiare il carattere della serie + n=1 al variare del parametro reale positivo

Dettagli

Esprimendo il vettore (u, v) in coordinate polari (u = r cos θ, v = r sin θ), si ha. = u2 v 0 0 u 0 v

Esprimendo il vettore (u, v) in coordinate polari (u = r cos θ, v = r sin θ), si ha. = u2 v 0 0 u 0 v Università di Milano - Bicocca Corso di laurea di primo livello in Scienze statistiche ed economiche Corso di laurea di primo livello in Statistica e gestione delle informazioni Matematica II rova scritta

Dettagli

1. Esercizio. g(x, y) = xy + (y + 1) sin x + y 2.

1. Esercizio. g(x, y) = xy + (y + 1) sin x + y 2. Le soluzioni del foglio 1 1. Esercizio Giustificare l affermazione seguente: l equazione sin(xy) = 0 non definisce implicitamente una funzione in un intorno di (0, 0). Sia g : R R definita come segue:

Dettagli

Corso di Matematica 3 o A.A. 2016/2017 Argomenti delle lezioni

Corso di Matematica 3 o A.A. 2016/2017 Argomenti delle lezioni Corso di Matematica 3 o A.A. 2016/2017 Argomenti delle lezioni 1 lezione. Martedí 27 settembre. 2 ore. Richiami sulle applicazioni lineari tra spazi vettoriali di dimensione finita. Il teorema di rappresentazione.

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

Esame di Analisi Matematica 2 25/2/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 25/2/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 2 25/2/203 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 202/203 A Esercizio 0. Riportare esclusivamente la risposta a ciascuno dei questi a-d di sotto. Gli elaborati

Dettagli

Esercizi. Misti iniziali. Più variabili. 1. Data la funzione. F (x) = x3 3 + x e t2 dt. se ne studino massimi, minimi, flessi, limiti a ±.

Esercizi. Misti iniziali. Più variabili. 1. Data la funzione. F (x) = x3 3 + x e t2 dt. se ne studino massimi, minimi, flessi, limiti a ±. Esercizi Misti iniziali. Data la funzione se ne studino massimi, minimi, flessi, iti a ±. 2. Provare che Più variabili F x) = 3. Calcolare, se esistono, i seguenti iti a) b) c) d) x,y),) x 2 + y 2 2 x,y),)

Dettagli

= 2x 2λx = 0 = 2y 2λy = 0

= 2x 2λx = 0 = 2y 2λy = 0 ESERCIZI SULLA OTTIMIZZAZIONE VINCOLATA ESERCIZIO Determinare i punti di massimo e minimo di f x, y = x y soggetta al vincolo x + y = Il vincolo è chiuso e limitato (circonferenza di raggio ) e la funzione

Dettagli

Esercizi sulle funzioni di due variabili: parte II

Esercizi sulle funzioni di due variabili: parte II ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) A.A.009-00 - Università di Bologna - Prof. G.Cupini Esercizi sulle funzioni di due variabili: parte II (Grazie agli studenti del corso

Dettagli

1.9 Massimi e minimi vincolati

1.9 Massimi e minimi vincolati .9 Massimi e minimi vincolati Sia K un compatto di R N e sia f : K R una funzione continua. Per il teorema di Weierstrass, f assume massimo e minimo su K. Come determinarli? Se K ha punti interni e f è

Dettagli

Massimi e minimi assoluti vincolati: esercizi svolti

Massimi e minimi assoluti vincolati: esercizi svolti Massimi e minimi assoluti vincolati: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio 1. Determinare i punti di massimo e minimo assoluti

Dettagli

Analisi Matematica III

Analisi Matematica III Università di Pisa - Corso di Laurea in Ingegneria Civile dell ambiente e territorio Analisi Matematica III Pisa, 7 gennaio 00 (Cognome) (Nome) (Numero di matricola) Esercizio Si consideri la successione

Dettagli

Foglio 3 Esercizi su forme differenziali lineari ed integrali di seconda specie (alcuni con cenno di soluzione).

Foglio 3 Esercizi su forme differenziali lineari ed integrali di seconda specie (alcuni con cenno di soluzione). Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e MeccanicaMeccatronica, V. Casarino P. Mannucci (-) Foglio 3 Esercizi su forme differenziali lineari ed integrali

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9/6/ A ) ata la funzione f(x, y) x y log( + x + y ), a) stabilire dove risulta derivabile parzialmente nel suo

Dettagli

Analisi Vettoriale A.A Soluzioni del Foglio 2

Analisi Vettoriale A.A Soluzioni del Foglio 2 Analisi Vettoriale A.A. 2006-2007 - Soluzioni del Foglio 2 2.1 Esercizio Assegnato il sistema e y + z + x 2 = 0 x 2 + y 2 + z 2 + y 1 = 0 dimostrare che in un intorno del punto (0,0,1) il sistema definisce

Dettagli

x 2 y 2 z 2 (b) Detta z = z(x, y) la funzione definita dall equazione f(x, y, z) = 1 intorno al punto (1, 1, 0), calcolare z

x 2 y 2 z 2 (b) Detta z = z(x, y) la funzione definita dall equazione f(x, y, z) = 1 intorno al punto (1, 1, 0), calcolare z Analisi Matematica II, Anno Accademico 4-5 Ingegneria Edile, Civile, Ambientale Paolo Acquistapace, Laura Cremaschi, Vincenzo M. Tortorelli giugno 5 - primo appello - gruppo A, prima parte (un ora) N.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x4 +y 2. xy y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x4 +y 2. xy y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--6 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Secondo Parziale, 6.6.7, Versione A Cognome e nome:....................................matricola:......... es. es. es.3 es.4 es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 3 9cr. 5 5 5 5

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Terzo Appello 8 Settembre 24 Cognome: Nome: Matricola: Compito A Es.: 9 punti Es.2: 8 punti Es.3: 8 punti Es.4: 8 punti Totale. Sia F la

Dettagli

g(x, y) = b y = h 1 (x), x I 1 oppure x = h 2 (y), y I 2 riconducendosi alla ricerca degli estremanti di una funzione in una sola variabile:

g(x, y) = b y = h 1 (x), x I 1 oppure x = h 2 (y), y I 2 riconducendosi alla ricerca degli estremanti di una funzione in una sola variabile: Estremi vincolati Un problema di ottimizzazione vincolata consiste nella ricerca degli estremanti di una funzione in presenza di un vincolo, cioè limitatamente ad un certo sottoinsieme del dominio di f:

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x Analisi Matematica II Corso di Ingegneria Gestionale Compito del -7-14 Esercizio 1. (14 punti) Data la funzione = log(1 + x y) i) determinare il dominio e studiare l esistenza del ite (x,y) (,) x x ii)

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria Esercitazioni per la preparazione della prova scritta di Matematica Dott Franco Obersnel Lezione 8: estremi vincolati Esercizio 1 Scomporre il numero 411 nella

Dettagli

Istituzioni di Analisi 2 (programma, domande ed esercizi)

Istituzioni di Analisi 2 (programma, domande ed esercizi) Istituzioni di Analisi programma, domande ed esercizi) nona settimana Argomenti trattati Dal libro di testo: 3. punti critici vincolati), 3.3. estremi assoluti), 0.3. e 0.3. solo la definizione di compatto

Dettagli

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste.

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste. Campi vettoriali. Sia F (x, y = ye x i + (e x cos y j un campo vettoriale. Determinare un potenziale per F, se esiste.. Sia F (x, y = xy i + x j un campo vettoriale. Determinare un potenziale per F, se

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del

Analisi Matematica II Corso di Ingegneria Biomedica Compito del Analisi Matematica II Corso di Ingegneria Biomedica Compito del 7-- Esercizio. punti Data la funzione fx, y = log x + y x + y + x y i trovare tutti i punti critici; ii trovare massimo e minimo assoluti

Dettagli

Alcuni esercizi: funzioni di due variabili e superfici

Alcuni esercizi: funzioni di due variabili e superfici ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.008-009 - Prof. G.Cupini Alcuni esercizi: funzioni di due variabili e superfici

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (9/09/0) Università di Verona - Laurea in Biotecnologie - A.A. 0/ Matematica e Statistica Prova di MATEMATICA (9/09/0) Università di Verona - Laurea in Biotecnologie

Dettagli

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e.

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e. 16 42 Funzioni implicite Il seguente teorema fornisce una condizione sufficiente affinché, data un equazione della forma f(x, ) = 0, sia possibile determinare come funzione della x Teo 11 (Teorema della

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. D Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Analisi Matematica 2: Scritto Generale, , Fuori corso. Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, , Fuori corso. Cognome e nome:...matricola:... Analisi Matematica 2: Scritto Generale, 26.11.216, Fuori corso Cognome e nome:....................................matricola:......... es.1 es.2 es. es.4 es.5 es.6/7 somma 5cr. 6 6 6 6 6 6/9cr. 5 5 5 5

Dettagli

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Recupero compitino di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 7/8. Prof. M. Bramanti Tema n 3 4 5 6 Tot. Cognome e nome in stampatello codice persona o n di matricola

Dettagli

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) Esercizi 1. Determinare le derivate parziali di f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) 2. Scrivere l equazione del piano tangente e della retta normale al grafico ln(xy) + cos(x + y) nel punto

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A Analisi Matematica 3 (Fisica) Prova scritta del 7 febbraio Un breve svolgimento delle versioni A Vi sarò grato per la segnalazione di eventuali errori. Esercizio. (a) Dimostrare che l equazione () (3 +

Dettagli

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 4/7/013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 01/013 A Cognome (in STAMPATELLO):... Nome (in STAMPATELLO):... CFU:... Esercizio 1. Sia f : R R una funzione

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del f(x, y) = x sin y

Analisi Matematica II Corso di Ingegneria Biomedica Compito del f(x, y) = x sin y Analisi Matematica II Corso di Ingegneria Biomedica Compito del 4-- - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Es. 1 Es. 2 Es. 3 Totale

Es. 1 Es. 2 Es. 3 Totale Es. 1 Es. 2 Es. 3 Totale Analisi e geometria 2 Seconda Prova in Itinere Docente: 2 7 212 Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (/07/202) Università di Verona - Laurea in Biotecnologie - A.A. 20/2 Matematica e Statistica Prova di MATEMATICA (/07/202) Università di Verona - Laurea in Biotecnologie

Dettagli

Esercizi I : curve piane

Esercizi I : curve piane Esercizi I : curve piane. Esercizio Si consideri la curva parametrizzata sin t, t [, 2π]. cos(2t) a) Stabilire per quali valori di t la parametrizzazione è regolare. b) Sia Γ la traccia di α. Descrivere

Dettagli

Risoluzione del compito n. 1 (Febbraio 2018/1)

Risoluzione del compito n. 1 (Febbraio 2018/1) Risoluzione del compito n. Febbraio 8/) PROBLEMA Considerate la curva Φθ) = rθ)cosθ, rθ)senθ, θ/ ), θ. a) Determinate la funzione rθ) in modo che il sostegno di Φ stia sulla superficie conica C = {z =

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = (x 2 2y 2 ) e x y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = (x 2 2y 2 ) e x y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--5 - È obbligatorio consegnare tutti i fogli anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

Il punto (0, 0) è per f : (a) di massimo locale (b) di minimo locale (c) di sella (d) nessuno di questi.

Il punto (0, 0) è per f : (a) di massimo locale (b) di minimo locale (c) di sella (d) nessuno di questi. Corso di Algebra Lineare e Analisi Matematica II Anno Accademico 2013-2014 PRIMA PROVA SCRITTA DI ANALISI MATEMATICA II Pisa, 07.06.14 Nome e cognome Matricola 1. Sia γ : IR IR 3 una curva di classe C

Dettagli

Analisi Matematica II (Fisica e Astronomia) Seconda Prova Parziale ed Esame Scritto (18/06/2009)

Analisi Matematica II (Fisica e Astronomia) Seconda Prova Parziale ed Esame Scritto (18/06/2009) Analisi Matematica II (Fisica e Astronomia) Seconda Prova Parziale ed Esame Scritto (18/06/009) Università di Padova - Lauree in Fisica ed Astronomia - AA 008/09 Cognome-Nome Matr - IN STAMPATELLO SF /

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Sia f una funzione differenziabile, definita su un aperto A di R N. Se K è un sottoinsieme chiuso e limitato di A, per il teorema di Weierstrass f assume massimo e minimo su

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 016/017. Prof. M. Bramanti 1 Tema n 1 4 5 6 Tot. Cognome e nome in stampatello) codice persona

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

DERIVATE SUCCESSIVE E MATRICE HESSIANA

DERIVATE SUCCESSIVE E MATRICE HESSIANA FUNZIONI DI DUE VARIABILI 1 DERIVATE SUCCESSIVE E MATRICE HESSIANA Derivate parziali seconde e matrice hessiana. Sviluppo di Taylor del secondo ordine. Punti stazionari. Punti di massimo o minimo (locale

Dettagli