Geometria BAER Canale A-K Esercizi 9

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Geometria BAER Canale A-K Esercizi 9"

Transcript

1 Geometria BAER Canale A-K Esercizi 9 Esercizio Sia (V,, ) uno spazio metrico Si mostri che se U V, v V, p U la proiezione ortogonale su U, allora v p U (v) U Soluzione: Il vettore v si scrive in modo unico v = p U (v) + w con w U Esercizio Sia E un sottospazio di R n, p E la proiezione ortogonale su E, si mostri che che la proiezione sul complemento E, p E si ottiene come Id p E Soluzione: Possiamo scrivere ogni vettore di R n come u = v + w con v E, w E per definizione abbiamo p E (u) = v, p E (v) = w Dunque per ogni vettore di R n abbiamo Idu p E (u) = p E (u) Esercizio 3 Si consideri il sottospazio U = L v =, v, v 3 = (a) Si trovino le equazioni cartesiane ed una base ortonormale di U (b) Si trovi una base ortonormale di U (c) Si scriva la matrice della proiezione ortogonale su U rispetto alla base canonica Soluzione: a) ) Il sottospazio U si ottiene imponendo che il generico vettore x R 4 sia ortogonale a tutti i vettori di una base (non necessariamente ortogonale o ortonormale) di U Basta quindi risolvere il sistema v, x = x x = v, x = ovvero x x x 3 = v 3, x = x 3 + x 4 = le cui soluzioni sono tutte multiple del vettore unitario u = 7 b) ) I tre vettori sono lin indip Osserviamo che il primo ed il terzo vettore sono ortogonali tra loro, quindi prendiamo w = v, w = v 3, 4/5 w 3 = v v, w w w v, w w w = /5 Ora abbiamo una base ortogoonale, la base ortonormale si ottiene moltiplicando w i per w i, quindi è data da { 5 w, 5 w, 7 w 3 }

2 c) ) Se p è la proiezione ortogonale su U, p(e i ) = e i, (/ 5)w (/ 5)w + e i, (/ )w (/ )w + e i, (5/ 7)w (5/ 7)w 3 Facendo i conti, si trova Alternativamente, è piú facile scrivere la matrice canonica B della proiezione ortogonale su U e usare l esercizio precedente: le colonne sono date dai vettori e i, u u quindi 4 B = La matrice canonica della proiezione su U dunque è I B Esercizio 4 Si consideri il prodotto scalare su R 3 [x] p(x), q(x) = p( )q( ) + p()q() + p()q() (a) Si scriva la matrice del prodotto scalare rispetto alla base canonica, x, x Soluzione: 3 (b) Si trovi L[, x] Soluzione: Sia A la matrice trovata al punto precedente Allora quindi L[, x] = L[( 3x )] (,, )A x y z = 3x + z (,, )A x y = y z (c) Si trovi una base ortonormale di R 3 [x] Soluzione: e x sono già ortogonali, un terzo polinomio ortogonale ad entrambi lo abbiamo trovato al punto precedente Allora x 3,, 3x 6 Esercizio 5 Si consideri il vettore di R 4 v = (,,, 3) t (a) Si trovi una base ortonormale del sottospazio L[v] (b) Si estenda la base trovata ad una base ortonormale di R 4 Soluzione: a) v, x = x + x 3 + 3x 4 = Non è difficile trovare due soluzioni ortogonali tra loro, per esempio w = (,,, ) t, w = (,,, ) t Un altra soluzione, linearmente indipendente dalle due precedenti é w 3 = ( 3,,, ) t Il vettore w 3 è anche ortogonale a w, quindi, abbiamo che w 3 w 3,w ulw w = ( 3/,, 3/, ) t è ortogonale sia a w che a w (ed anche a v) Quindi la base cercata è { (,,, ) t, (,,, ) t, ( 3/,, 3/, ) t } b) Poichè R 4 = L[v] L[v] basta aggiungere alla base trovata prima il vettore v

3 Esercizio 6 Si applichi il procedimento digram-schmidt per trovare una base ortonormale di R 3 alla base data dai vettori,, Soluzione: Cominciamo dai primi due vettori: v =, v =, v v v = Denotato il terzo vettore con u, calcoliamo v 3 = u u,v v v u,v v v = ortonormale cercata, basta normalizzare v, v, v 3 / / /3 /3 Per ottenere la base /3 Esercizio 7 Si consideri il vettore (, 3, 5, 7) t - Si trovino le sue proiezioni ortogonali sui sottospazi U = L[(,,, ) t, (, 3, 4, ) t ] e V = L[(,,, ) t, (,, 3, ) t ] Soluzione: La base di U è composta da vettori ortogonali, basta quindi calcolare i coefficienti di Fourier e la combinazione lineari dei due vettori della base ortonormale per ottenere che la proiezione su U è il vettore (59/5, 63/5, 56/5, 6/5) t La base di V non è ortonormale, con Gram Schmidt troviamo la base ortogonale (,,, ) t, (,,, ) t Scrivendo i coefficienti di Fourier come prima, troviamo che la proiezione è (7, 4,, 4) t Esercizio 8 ( ) 3 (a) Si trovino tutti i vettori di R aventi norma e perpendicolari al vettore (b) Si trovino tutti i vettori aventi norma perpendicolari ai vettori v =, v = 3 (c) Si trovino tutti i vettori perpendicolari a aventi norma Geometricamente cosa è l insieme di questi vettori? Soluzione: a) ±(/ 3) ( ) 3 { x + y + 3z = b) I vettori ortogonali ai due vettori dati sono dati dalle soluzioni di, dunque formano x + z = il sottospazio L[ ]; tra questi quelli di norma sono ±(/ 3) c) I vettori ortogonali a formano il piano di equazione x + y + z = La soluzione generale (parametrica) dell equazione è s I vettori non nulli di questa forma (almeno uno tra t, s diverso da t t s

4 ) hanno norma t + s + ts > se almeno uno tra t, s è non nullo Quindi sono quelli per cui t + s + ts = Geometricamente i vettori di norma di un piano descrivono la circonferenza unitaria giacente sul piano con centro nell origine Esercizio 9 Si consideri il sottospazio U = L v =, v, v 3 = (a) Si trovi una base ortonormale di U (b) Si trovi una base ortonormale di U (c) Si scriva la matrice della proiezione ortogonale su U rispetto alla base canonica Soluzione: a) I tre vettori sono lin indip Osserviamo che il primo ed il terzo vettore sono ortogonali tra loro, quindi prendiamo w = v, w = v 3, 4/5 w 3 = v v, w w w v, w w w = /5 Ora abbiamo una base ortogoonale, la base ortonormale si ottiene moltiplicando w i per w i, quindi è data da { 5 w, 5 w, 7 w 3 } b) Il sottospazio U si ottiene imponendo che il generico vettore x R 4 sia ortogonale a tutti i vettori di una base (non necessariamente ortogonale o ortonormale) di U Basta quindi risolvere il sistema v, x = x x = v, x = ovvero x x x 3 = v 3, x = x 3 + x 4 = le cui soluzioni sono tutte multiple del vettore unitario 7 c) ) Se p è la proiezione ortogonale su U, p(e i ) = e i, (/ 5)w (/ 5)w + e i, (/ )w (/ )w + e i, (5/ 7)w (5/ 7)w 3 Facendo i conti, si trova Esercizio Sia f : R n R n tale che f(v), v = per ogni v R n ; ed f non è l applicazione nulla (a) È vero che f non è diagonalizzabile? (b) Si dia un esempio di f : R R che soddisfa queste proprietà

5 Soluzione: a) Se λ è autovalore e v autovettore associato si deve avere = f(v), v = λv, v = λ v, v, dunque poichè v deve essere λ = Quindi se f fosse diagonalizzabile, sarebbe l applicazione nulla b) Una rotazione di π/, oppure f(e ) =, f(e ) = e Esercizio Sia V uno spazio vettoriale di dimensione finita,, una forma bilineare simmetrica, U, W sottospazi Si mostri che (a) Se W U allora U W Soluzione: I vettori di U sono ortogonali a tutti i vettori di U, quindi a tutti quelli di W (b) (U + W ) = U W Soluzione: Se v (U + W ) allora poichè U U + W e W U + W avremo che per ogni u U, w W v, u, = u, w, =, quindi (U + W ) (U + W ) D altra parte visto che ogni vettore di U + W si scrive come u + w con u U, w W, se v U W allora v, u + w = v, u + v, w = + quindi abbiamo l altra inclusione (c) (U V ) = U + W Soluzione: Esercizio Sia V uno spazio vettoriale,, un prodotto scalare su V Siano u, v V vettori tali che u, v, u, u = v, v = Si trovi un vettore w V tale che w, w Soluzione: Ad esempio u + v Infatti si ha u + v, u + v = u, u + v, v + u + v, u + v

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER Canale A-K Esercizi 8 Esercizio. Si consideri il sottospazio U = L v =, v, v 3 =. (a) Si trovino le equazioni cartesiane ed una base ortonormale di U. (b) Si trovi una base ortonormale di

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER 6-7 Canale A-K Esercizi 8 Esercizio Si consideri il sottospazio (a) Si trovi una base ortonormale di U (b) Si trovi una base ortonormale di U U = L v =, v, v 3 = (c) Si scriva la matrice

Dettagli

Geometria BAER Test di autovalutazione del 31/10/18

Geometria BAER Test di autovalutazione del 31/10/18 Geometria BAER Test di autovalutazione del 3//8 LEGGERE ATTENTAMENTE PRIMA DI ANDARE ALL INIZIO DEL TEST ALLA PAGINA SUCCESSIVA. NON LEGGERE LE DOMANDE PRIMA DI INIZIARE IL TEST Il test NON É VALUTATO

Dettagli

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica. 1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1 LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica Padova -8-8 TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono vere o false giustificando brevemente

Dettagli

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A.

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Geometria Canale. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 1 7 2 6 6 4 6+1 5 6+2 Totale 1+ ATTENZIONE:

Dettagli

Geometria BAER A.A. Canale I Foglio esercizi 4

Geometria BAER A.A. Canale I Foglio esercizi 4 Geometria BAER A.A. Canale I Foglio esercizi 4 Esercizio. Si trovino basi degli spazi delle soluzioni dei seguenti sistemi lineari Soluzione: Sol(S ) = L[ x + 3x x 3 + 5x 4 = S : x + 3x x 3 + x 4 = S x

Dettagli

Tutoraggio di Algebra Lineare e Geometria. Correzione del tema d'esame del 28/2/2006

Tutoraggio di Algebra Lineare e Geometria. Correzione del tema d'esame del 28/2/2006 Tutoraggio di Algebra Lineare e Geometria Correzione del tema d'esame del 8//6 Esercizio. Si considerino in R 4 i vettori : v =, v =, v = / / a) si dica se tali vettori sono linearemente indipendenti e

Dettagli

x + 2y = 0 Soluzione. La retta vettoriale di equazione cartesiana x + 2y = 0.

x + 2y = 0 Soluzione. La retta vettoriale di equazione cartesiana x + 2y = 0. Algebra Lineare. a.a. 4-5. Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del //5 Esercizio. Sia V = R il piano vettoriale euclideo con base ortonormale standard {e, e }. Determinare le

Dettagli

Geometria BAER Canale I Esercizi 11

Geometria BAER Canale I Esercizi 11 Geometria BAER Canale I Esercizi 11 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

Geometria A. Università degli Studi di Trento Corso di laurea in Matematica A.A. 2017/ Maggio 2018 Prova Intermedia

Geometria A. Università degli Studi di Trento Corso di laurea in Matematica A.A. 2017/ Maggio 2018 Prova Intermedia Geometria A Università degli Studi di Trento Corso di laurea in Matematica A.A. 7/8 Maggio 8 Prova Intermedia Il tempo per la prova è di ore. Durante la prova non è permesso l uso di appunti e libri. Esercizio

Dettagli

Complemento ortogonale e proiezioni

Complemento ortogonale e proiezioni Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali

Dettagli

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 2017 1 Introduzione Gli esercizi di questo capitolo riguardano i seguenti

Dettagli

2. Nello spazio vettoriale V delle matrici a coefficienti reali di ordine 2 si consideri il sottospazio vettoriale U delle matrici simmetriche (A = A

2. Nello spazio vettoriale V delle matrici a coefficienti reali di ordine 2 si consideri il sottospazio vettoriale U delle matrici simmetriche (A = A Esame di Geometria del 19 luglio 2013 Nome: Cognome: Corso di Laurea: 5cf u Giustificare le risposte con spiegazioni chiare ed essenziali. Consegnare esclusivamente questi due fogli. 1. In R 3 si considerino

Dettagli

ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente.

ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente. ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) versione: 24 maggio 27 In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente Autovettori e autovalori Esercizio Trova gli

Dettagli

Esame di GEOMETRIA (Appello del 30 gennaio 2018)

Esame di GEOMETRIA (Appello del 30 gennaio 2018) Esame di GEOMETRIA (Appello del 3 gennaio 28) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Siano dati i sottospazi di R 4 : W = L, 4, 5 2 2. Scrivere equazioni cartesiane per W. {, U : x +

Dettagli

Algebra e Geometria 2 per Informatica Primo Appello 23 giugno 2006 Tema A W = { A M 2 (R) A T = A }

Algebra e Geometria 2 per Informatica Primo Appello 23 giugno 2006 Tema A W = { A M 2 (R) A T = A } Algebra e Geometria per Informatica Primo Appello 3 giugno 6 Tema A Sia M (R lo spazio vettoriale delle matrici a coefficienti reali Sia W = { A M (R A T = A } il sottospazio vettoriale delle matrici simmetriche

Dettagli

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli Gennaio 7 Esercizio. Si considerino i seguenti tre punti dello spazio euclideo: P :=, Q :=, R :=.. Dimostrare che P, Q ed R non sono collineari.

Dettagli

Geometria I. Soluzioni della prova scritta del 19 settembre 2016

Geometria I. Soluzioni della prova scritta del 19 settembre 2016 Geometria I Soluzioni della prova scritta del 9 settembre 6 Esercizio Consideriamo una forma bilineare simmetrica g : V V R su uno spazio vettoriale reale V di dimensione finita, una sua base B e la matrice

Dettagli

Esercizi Di Geometria 1 (BAER) Canale 1

Esercizi Di Geometria 1 (BAER) Canale 1 Esercizi Di Geometria 1 (BAER) Canale 1 SETTIMANA 9 (23 29 Novembre 2015) da consegnare Mercoledi 2 Dicembre. Esercizio 1. Sia E = (V,, ) uno spazio metrico finito dimensionale. sottospazio vettoriale

Dettagli

Corso di Laurea in Matematica - Esame di Geometria UNO. Prova scritta del 22 gennaio 2015

Corso di Laurea in Matematica - Esame di Geometria UNO. Prova scritta del 22 gennaio 2015 Corso di Laurea in Matematica - Esame di Geometria UNO Prova scritta del 22 gennaio 2015 Cognome Nome Numero di matricola Corso (A o B) Voto ATTENZIONE. Riportare lo svolgimento completo degli esercizi.

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 22 Febbraio 2008 Traccia I H = {(x, y, z, t) : x + 3y = 0, y z = 0}; K = {(x, y, z, t) : y + z = 0} 3y z 2z x y y { } hx 1 +hx 4 = h 1 x 2 +hx 4 = 1 x 1 +x 3 = h 1 1 1 4 Sia S = 1 una matrice

Dettagli

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 15 settmbre 2011 Versione 1

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 15 settmbre 2011 Versione 1 Corso di Laurea in Matematica - Esame di Geometria Prova scritta del 5 settmbre 20 Versione Esercizio Sia S(R 22 lo spazio vettoriale reale delle matrici simmetriche di ordine 3. a. Verificare che ponendo

Dettagli

Geometria BAER Canale I Esercizi 12

Geometria BAER Canale I Esercizi 12 Geometria BAER Canale I Esercizi Esercizio. x = 0 x = Date le rette r : y = t e s : y = t, si verifichi che sono sghembe e si scrivano le equazioni z = t z = t parametriche di una retta r ortogonale ed

Dettagli

19 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

19 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 15/11/11

Geometria 1 a.a. 2011/12 Esonero del 15/11/11 Geometria a.a. 0/ Esonero del 5// () Determinare una base ortonormale del piano π di R 3 di equazione x + y z 0 (rispetto al prodotto scalare standard di R 3 ). Soluzioni. È sufficiente determinare una

Dettagli

Geometria BAER I canale Foglio esercizi 5

Geometria BAER I canale Foglio esercizi 5 Geometria BAER I canale Foglio esercizi 5 Esercizio. Si considerino i sottospazi di R 4 : E = L[v =, v = Si trovi una base di E F. ] F = L[w = 3, w = 4, w 3 = Soluzione: Osserviamo che w 3 = w + w, dunque

Dettagli

20 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

20 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 0 gennaio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Geometria BAER Canale I Esercizi 10

Geometria BAER Canale I Esercizi 10 Geometria BAER Canale I Esercizi 10 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti.

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti. Cognome Nome A Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti. 1) 2) 4) 5) Geometria e algebra lineare { 16/1/2019 A 1) Siano r e r 0 le rette dello spazio di equazioni: r : x 2z =

Dettagli

Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 15 Settembre 2015 Cognome: Nome: Matricola:

Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 15 Settembre 2015 Cognome: Nome: Matricola: Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 5 Settembre 5 Cognome: Nome: Matricola: Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 26 febbraio 2007 Traccia I COG 1 In R 3 sono assegnati i vettori: u 1 = (2, h, 0), u 2 = (1, 0, h), u 3 = (h, 1, 2). Stabilire se esistono valori reali del parametro h per cui S = {u 1, u 2,

Dettagli

Esame di Geometria e Algebra Lineare

Esame di Geometria e Algebra Lineare Esame di Geometria e Algebra Lineare Esame scritto: 28 Luglio 2014 Esame orale: Cognome: Nome: Matricola: Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 9 febbraio 2007 Traccia I 1 In R 3 si consideri il sottoinsieme H = {(a, b, 2a + b) a, b R}. Stabilire se H è un sottospazio vettoriale di R 3 e, in caso affermativo, determinarne la dimensione

Dettagli

Parte 8. Prodotto scalare, teorema spettrale

Parte 8. Prodotto scalare, teorema spettrale Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 DOCENTE: MATTEO LONGO Rispondere alle domande di Teoria in modo esauriente e completo. Svolgere il maggior numero di esercizi

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA PRIMO APPELLO, 15 GIUGNO 2010 VERSIONE A. 1 a 1. 0 a a 2

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA PRIMO APPELLO, 15 GIUGNO 2010 VERSIONE A. 1 a 1. 0 a a 2 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA PRIMO APPELLO, 5 GIUGNO 2 VERSIONE A Esercizio Al variare del parametro reale a, si consideri l endomorfismo : R R definito dalle condizioni: a a a 2 a a 2 =,

Dettagli

Fondamenti di Algebra Lineare e Geometria - DII - Ingegneria Aerospaziale Test di preparazione alla seconda prova parziale del

Fondamenti di Algebra Lineare e Geometria - DII - Ingegneria Aerospaziale Test di preparazione alla seconda prova parziale del Fondamenti di Algebra Lineare e Geometria - DII - Ingegneria Aerospaziale Test di preparazione alla seconda prova parziale del 66 Problema Si consideri la trasformazione lineare L: R 4 R 3 la cui matrice

Dettagli

Geometria e algebra lineare 1/2/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione. = 2 + 3t = 1 t

Geometria e algebra lineare 1/2/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione. = 2 + 3t = 1 t Geometria e algebra lineare 1//017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione A Esercizio 1A Siano r la retta di equazioni parametriche x y z = t = + 3t = 1 t ed r la

Dettagli

GEOMETRIA. 17 FEBBRAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi.

GEOMETRIA. 17 FEBBRAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. GEOMETRIA 7 FEBBRAIO 2009 2 ore Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. Trascrivere i risultati dei quiz della prima parte nella tabella in questa pagina.

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 15 Febbraio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 15 Febbraio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli 5 Febbraio 7 Esercizio. Si considerino i due sottospazi π e π di R dati dalle seguenti equazioni: π : x y + z = ; π : x + y z =.. Trovare una

Dettagli

ESERCIZI DI ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente.

ESERCIZI DI ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente. ESERCIZI DI ALGEBRA LINEARE (II PARTE) versione: 4 maggio 26 In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente Autovettori e autovalori Esercizio Trova gli autovalori

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 settembre 2013 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 settembre 2013 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) settembre 013 Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

PROVA SCRITTA DEL 10 LUGLIO 2008 e SOLUZIONI. Per ognuno dei seguenti quiz indicare l unica risposta corretta tra le quattro proposte.

PROVA SCRITTA DEL 10 LUGLIO 2008 e SOLUZIONI. Per ognuno dei seguenti quiz indicare l unica risposta corretta tra le quattro proposte. Geometria B1-02efe Geometria - 13bcg PROVA SCRITTA DEL 10 LUGLIO 2008 e SOLUZIONI Per ognuno dei seguenti quiz indicare l unica risposta corretta tra le quattro proposte. Esercizio 1. Sia u, v, w vettori

Dettagli

Geometria e algebra lineare 7/2/2018 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione

Geometria e algebra lineare 7/2/2018 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione Geometria e algebra lineare 7//08 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione A Esercizio A Siano r la retta passante per i punti A = (0,, 0) e B = (,, ) ed s la retta

Dettagli

Soluzioni della prova scritta di Geometria 1 del 27 giugno 2019 (versione I)

Soluzioni della prova scritta di Geometria 1 del 27 giugno 2019 (versione I) Soluzioni della prova scritta di Geometria 1 del 7 giugno 019 (versione I) Esercizio 1. Sia R 4 lo spazio quadridimensionale standard munito del prodotto scalare standard con coordinate canoniche (x 1,

Dettagli

Geometria BAER Canale I Esercizi 11

Geometria BAER Canale I Esercizi 11 Geometria BAER Canale I Esercizi Esercizio. Scrivere la matrice delle seguenti trasformazioni ortogonali del piano (a Proiezione ortogonale sulla retta x + y = 0 (b Rotazione di π/4 seguita da riflessione

Dettagli

3. Determinare dimensione a basi per l annullatore ker(f) e per il complemento. Esercizio 2. Sia V uno spazio vettoriale reale di dimensione finita d.

3. Determinare dimensione a basi per l annullatore ker(f) e per il complemento. Esercizio 2. Sia V uno spazio vettoriale reale di dimensione finita d. Esercizi --- 5-- Esercizio. Sia f =: L A : R 4 R 4, ove A = 3 e sia B =:.. Dimostrare che B è una base di R 4.. Determinare la matrice di L A nella base B. 3. Determinare dimensione a basi per l annullatore

Dettagli

Esame di Geometria - 9 CFU (Appello del 20 Giugno A)

Esame di Geometria - 9 CFU (Appello del 20 Giugno A) Esame di Geometria - 9 CFU (Appello del 20 Giugno 2012 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio 1. Siano dati, al variare del parametro k R, i piani: π 1 : x 2y + 2z = 2, π 2 : z =

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Compito A Corso del Prof.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Compito A Corso del Prof. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. 202-203 PROVA SCRITTA DI GEOMETRIA DEL 8-02-3 Compito A Corso del Prof. Manlio BORDONI Esercizio. Sia W il sottospazio vettoriale di R 4 generato dai vettori

Dettagli

Geometria BAER Canale A-K Esercizi 11

Geometria BAER Canale A-K Esercizi 11 Geometria BAER 6-7 Canale A-K Esercizi Esercizio. Scrivere la matrice delle seguenti trasformazioni ortogonali del piano (a Proiezione ortogonale sulla retta x + y = (b Rotazione di π/4 seguita da riflessione

Dettagli

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 17 SETTEMBRE 2012

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 17 SETTEMBRE 2012 INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 7 SETTEMBRE 202 Esercizio. Sia V = R[X] 2 lo spazio vettoriale dei polinomi ax 2 + bx + c nella variabile X di grado al più 2 a coefficienti

Dettagli

Esercizi di Geometria - 1

Esercizi di Geometria - 1 Esercizi di Geometria - Samuele Mongodi - smongodi@snsit Di seguito si trovano alcuni esercizi assai simili a quelli che vi troverete ad affrontare nei test e negli scritti dell esame Non è detto che vi

Dettagli

Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 27 Introduzione Gli esercizi di questo capitolo riguardano i seguenti argomenti: Data

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE210 - Geometria 2 a.a Prima prova di esonero TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE210 - Geometria 2 a.a Prima prova di esonero TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE0 - Geometria a.a. 08-09 Prima prova di esonero TESTO E SOLUZIONI. Sia k 0 un numero reale. Sia V uno spazio vettoriale reale e sia e = {e,

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 7 GIUGNO 06 MATTEO LONGO Ogni versione del compito contiene solo due tra i quattro esercizi 6-7-8-9. Esercizio. Considerare

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. - PROVA SCRITTA DI GEOMETRIA DEL -- Corsi dei Proff. M. BORDONI, A. FOSCHI Esercizio. E data l applicazione lineare L : R 4 R 3 definita dalla matrice A = 3

Dettagli

12 dicembre Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

12 dicembre Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 1 dicembre 005 - Soluzione esame di geometria - Ing. gestionale - a.a. 005-006 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti

Dettagli

Esercizi di geometria per Fisica / Fisica e Astrofisica

Esercizi di geometria per Fisica / Fisica e Astrofisica Esercizi di geometria per Fisica / Fisica e Astrofisica Foglio 3 - Soluzioni Esercizio. Stabilire se i seguenti sottoinsiemi di R 3 sono sottospazi vettoriali: (a) S = {(x y z) R 3 : x + y + z = }. (b)

Dettagli

Geometria BAER Canale A-K Esercizi 9

Geometria BAER Canale A-K Esercizi 9 Geometria BAER 2016-2017 Canale A-K Esercizi 9 Esercizio 1. Si considerino i punti del piano A (1, 1), B (4, 1), C ( 1/2, 2) (a) Si determini se i punti A, B, C sono allineati e, in caso affermativo, si

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n.

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n. LAUREA IN INGEGNERIA CIVILE Corso di Matematica II a prova di accertamento Padova 10-1-07 Docenti: Chiarellotto - Cantarini TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono

Dettagli

18 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI

18 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti.

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti. Cognome Nome A Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti. 1) 2) 3) Geometria e algebra lineare 5/11/2015 A 1) Sia π il piano passante per i punti A = ( 3, 2, 1), B = (0, 1, 2), C

Dettagli

8 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

8 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Geometria BAER Canale I Esercizi 9

Geometria BAER Canale I Esercizi 9 Geometria BAER Canale I Esercizi 9 Esercizio 1. Si trovi la matrice del prodotto standard di R 3 rispetto alle basi B = (2, 0, 1) t, (1, 0, 2) t, (1, 1, 1) t } e D = (2, 2, 1) t, ( 1, 2, 2) t, (2, 1, 2)

Dettagli

Esame di Geometria - 9 CFU (Appello del 26 gennaio A)

Esame di Geometria - 9 CFU (Appello del 26 gennaio A) Esame di Geometria - 9 CFU (Appello del 26 gennaio 25 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. In R 3, siano dati il punto P = (, 2, 3) e la retta r : (,, ) + t(, 2), t R.. Determinare

Dettagli

Esonero di GEOMETRIA 1 - C. L. Matematica 21 Febbraio M 2 (R) a + 2b d = 0.

Esonero di GEOMETRIA 1 - C. L. Matematica 21 Febbraio M 2 (R) a + 2b d = 0. Esonero di GEOMETRIA 1 - C. L. Matematica 21 Febbraio 2013 1. Si considerino i seguenti sottospazi vettoriali di M 2 (R): ( ) ( ) 0 1 0 1 U =,, 1 0 1 0 ( ) a b V = c d } M 2 (R) a + 2b d = 0. (a) Si determinino

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) 28 aprile 2014 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) 28 aprile 2014 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma 8 aprile 04 Tema A Tempo a disposizione: ore e mezza. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

SOLUZIONI (PROVA DELL 11 FEBBRAIO 2019) Due rette sghembe sono simultaneamente parallele a infiniti piani. [ V ]

SOLUZIONI (PROVA DELL 11 FEBBRAIO 2019) Due rette sghembe sono simultaneamente parallele a infiniti piani. [ V ] SOLUZIONI (PROVA DELL FEBBRAIO 209) Il rango per righe può superare di il rango per colonne [ F ] In R 6 possono esistere 7 generatori di un sottospazio [ V ] {( + 2k, 2 k, 0), (,, 0), (0, 0, )} è una

Dettagli

Esame scritto di Geometria I

Esame scritto di Geometria I Esame scritto di Geometria I Università degli Studi di Trento Corso di laurea in Fisica A.A. 26/27 Appello di febbraio 27 Esercizio Sia f h : R R l applicazione lineare definita da f h (e ) = 2e + (2 h)e

Dettagli

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016)

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016) Esame di Geometria - 9 CFU (Appello del 26 gennaio 206) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Al variare del parametro α R, si considerino la retta { x + y z = r : 2x + αy + z = 0 ed

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edilizia ed Edile/Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edilizia ed Edile/Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edilizia ed Edile/Architettura I Appello corso di Geometria a.a. 0/3 Docente F. Flamini NORME SVOLGIMENTO Negli appositi spazi scrivere

Dettagli

5 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI

5 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edilizia ed Edile/Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edilizia ed Edile/Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edilizia ed Edile/Architettura IV Appello corso di Geometria Docente F. Flamini, Roma, 3/7/ NORME SVOLGIMENTO Scrivere negli appositi

Dettagli

Esercitazioni del Marzo di Geometria A

Esercitazioni del Marzo di Geometria A Esercitazioni del -5 Marzo di Geometria A Università degli Studi di Trento Corso di laurea in Matematica AA 07/08 Matteo Bonini matteobonini@unitnit Esercizio Si consideri la matrice 0 A 0 0 0 0 (i Scrivere

Dettagli

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 30 gennaio 2017

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 30 gennaio 2017 Corso di Laurea in Matematica - Esame di Geometria 1 Prova scritta del 30 gennaio 2017 Cognome Nome Numero di matricola Voto ATTENZIONE. Riportare lo svolgimento completo degli esercizi. I soli risultati,

Dettagli

13 febbraio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

13 febbraio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI febbraio 0 - Soluzione esame di geometria - Ing. gestionale - a.a. 0-0 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati

Dettagli

Esercizi proposti. Si dica quali dei precedenti sono sottospazi vettoriali dello spazio vettoriale quadrate di ordine n.

Esercizi proposti. Si dica quali dei precedenti sono sottospazi vettoriali dello spazio vettoriale quadrate di ordine n. Esercizi proposti 1. astratti 1.1 Si consideri lo spazio R [x] dei polinomi nella variabile x con coefficienti reali. Si dica se il suo sottoinsieme S formato dai polinomi privi del termine di grado 2

Dettagli

15 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

15 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente,

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente, Corso di Laurea in Fisica. Geometria 1. a.a. 2006-07. Gruppo B. Prof. P. Piazza Esonero del 1/12/06 con soluzione Esercizio. Spazio vettoriale R 2 con base canonica fissata e coordinate associate (x 1,

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015 MATTEO LONGO Svolgere entrambe le parti (Teoria ed Esercizi Si richiede la sufficienza su entrambe le parti 1

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria 1 che ho tenuto presso la

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio.

I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio. I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio. A [8] Sono date le matrici A M 34 (IR) e b M 31 (IR) A = 1 0 2 2 0 k 1 k, b = 1

Dettagli

21 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

21 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

1 Esonero di GEOMETRIA 2 - C. L. Matematica Aprile 2009

1 Esonero di GEOMETRIA 2 - C. L. Matematica Aprile 2009 1. Si consideri la matrice 1 Esonero di GEOMETRIA 2 - C. L. Matematica Aprile 2009 A = ( 1 1 1 3 Sia g : R 2 R 2 R la forma bilineare e simmetrica avente A come matrice associata rispetto alla base canonica

Dettagli

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 25 FEBBRAIO a a. A a = 1 a 0

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 25 FEBBRAIO a a. A a = 1 a 0 INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 5 FEBBRAIO 013 Esercizio 1. Al variare del parametro a R, si consideri la matrice A a = 1 a 0 a 1 0. 1 1 a (1) Si discuta al variare

Dettagli

Prodotto interno (prodotto scalare definito positivo)

Prodotto interno (prodotto scalare definito positivo) Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi

Dettagli

10 aprile Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

10 aprile Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

13 gennaio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

13 gennaio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli