Le condizioni di funzionamento delle condotte di adduzione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le condizioni di funzionamento delle condotte di adduzione"

Transcript

1 Le condzon d funzonamento delle condotte d adduzone Ret a dramazon (aperte): tutte le portate ncognte possono essere unvocamente determnate dalle equazon d contnutà. Moto assolutamento turbolento (α = 2 nell equazone d Contessn). Orentamento delle condotte concdente con l verso del moto dal nodo 1 al nodo 2 (qund δ = +1). Condotte a gravtà o n sollevamento con funzone d solo trasporto: H P h = h 1+ H P h 2= JL h 2 h 1, h 2, + w H P = k L Q 2 D n h 2 w = { 1 tratte n sollevamento 0 tratte a gravtà H P = prevalenze delle pompe, = ndce della condotta, gl altr smbol sono gà defnt. 1 h 1 P Pano orzzontale d RIFERIMENTO (lvello medo del mare) L Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 1 / 18 )

2 Incognte ed equazon Indchamo con L l numero d condotte, con N l numero d nod ntern, con S l numero d tratte n sollevamento (che per semplctà d formalsmo saranno numerate per prme con ndc = 1,, S) Le ncognte nel problema del dmensonamento dell adduzone L dametr ncognt D ; N carch pezometrc ncognt h j a nod ntern; S prevalenze ncognte H P Le equazon dsponbl delle tratte con sollevamento. L equazon del moto d tpo h 1, h 2, + w H P = k L Q 2D n N + S equazon che esprmono la condzone d mnma passvtà (N scrtte per nod ntern, S per le condotte con sollevamento) Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 2 / 18 )

3 Costo annuo dell mpanto Il costo annuo (o passvtà P) dell mpanto d adduzone s calcola come alquota r del costo C necessaro per la realzzazone delle opere: P = rc r = r A + r I + r M dove l alquota r è composta da tre termn: r A = tasso annuo d ammortamento; potzzando d rmborsare cost a rate annual con tasso d nteresse a decorrere dal completamento dell opera per n ann s rcava r A = [(1 + ) n ] / [(1 + ) n 1]; r I = alquota per l costo degl nteress maturat durante la costruzone delle opere, sno a completa realzzazone e messa n servzo; r M = alquota per l costo della manutenzone. Nel caso n cu le condotte abbano dverse alquote r d costo annuale, la passvtà annua s scrve come somma delle passvtà d tutte le condotte: L P = r L C C = a 0, + a D ɛ = 1,, L dove C è l costo d realzzazone (per untà d lunghezza) delle sngole condotte -esme, espresso n funzone del dametro D. Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 3 / 18 )

4 Il tasso d ammortamento Il tasso d ammortamento r A s calcola eguaglando l captale maturato C n dopo n ann (remunerando l costo d realzzazone C con tasso d nteresse annuo ) al captale maturato R n dalle n rate R versate annualmente n n ann, remunerate con lo stesso tasso d nteresse. C n = C(1 + ) n n 1 R n = R(1 + ) n 1 + R(1 + ) n R(1 + ) + R = R (1 + ) k Rcordamo le propretà della sere geometrca d ragone x: n x + x x n 1 = x k = 1 x n 1 x k=0 k=0 Posto x = (1 + ) ed eguaglando R n = C n ottenamo l tasso r A : 1 (1 + )n R 1 (1 + ) = C(1+)n = R = (1 + )n (1 + ) n 1 C = r A = (1 + )n (1 + ) n 1 Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 4 / 18 )

5 Il costo annuo dell energa per sollevament La potenza d una corrente è par a γq H. Dvdendo per l rendmento complessvo η e moltplcando per l tempo T d funzonamento della pompa n un anno e per l costo untaro (es. costo del chlowattora) dell energa c e s ottene l costo annuo dell energa per l sollevamento a portata costante: C e = γq HP Tc e C e = 9.81Q HP Tc kwh η η La formula emprca rportata a destra fornsce drettamente l costo annuo (n euro) per l energa necessara per sollevament, quando s esprma la portata Q n m 3 /s, la prevalenza H P n m, l tempo d funzonamento T n ore nell anno, ed l costo untaro dell energa c kwh n euro/chlowattora. Anche nel caso sano rcheste delle portate varabl nel corso dell anno, è comunque opportuno dmensonare la pompa per la massma portata Q = q g e farla funzonare ntermttentemente a portata costante, per un tempo par a T = V a /q g n un anno (volume annuo dvso per la massma portata). Esprmendo l volume annuo V a n m 3 e la portata q g n m 3 /s, l numero d ore d funzonamento n un anno s può calcolare dalla formula emprca: T = V a /(3600q g ) Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 5 / 18 )

6 Confronto curve caratterstche della pompa e dell mpanto Curva caratterstca dell mpanto: H = (h 2, h 1, ) + k L Q 2 D n Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 6 / 18 )

7 L espressone della passvtà La somma degl oner annu relatv al costo dell mpanto ed al costo dell energa per sollevament fornsce l espressone della passvtà: P = L =1 ( r L a0, + a D ɛ ) S + =1 Le ncognte nell espressone della passvtà: γq T c e H P η Invertendo l equazone del moto per la condotta -esma ottenamo: ( k L Q 2 ) 1/n D = h 1, h 2, + w H P Fssat carch alla rsorsa e ne serbato d consegna, la passvtà dpende solo dagl N carch h j a nod ntern e dalle S prevalenze H P delle pompe: ( ) P = P h 1, h 2,, h N, H1 P, H2 P,, HS P Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 7 / 18 )

8 Le condzon d mnmo onere (mnma passvtà) - I Imponendo la condzone d mnma passvtà s ottene un sstema d N + S equazon che nseme alle L equazon del moto rende determnato l problema del dmensonamento delle condotte: P = h j P H P L =1 r L a ɛ D ɛ 1 D = r L a ɛ D ɛ 1 = D h j = δ j n k L Q 2 D H P D n +1 dove δ j = h j = 0 j = 1,, N + γq T c e η = 0 = 1,, S Dervamo le equazon del moto per la condotta rspetto ad h j : ( h 1, h 2, + w H P ) = δ j = n k L Q 2 D n 1 D h j h j +1 se h j h 1, 1 se h j h 2, 0 se j non è nodo d Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 8 / 18 )

9 Le condzon d mnmo onere (mnma passvtà) - II Dervamo le equazon del moto per la condotta rspetto a H P : ( h 1, h 2, + w H P ) H P = w = n k L Q 2 D n 1 D H P = D H P 1 = n k L Q 2 D n +1 = 1,, S Sosttuendo s rcavano le N + S equazon d mnma passvtà L r a ɛ δ j n =1 k Q 2 D n +ɛ = 0 j = 1,, N r a ɛ n k Q 2 D n +ɛ = γq T c e = 1,, S η S osserv che cascuna delle prme N equazon s può scrvere elmnando l smbolo δ j ed eguaglando la sommatora relatva alle condotte entrant nel nodo j alla sommatora per le condotte uscent dallo stesso nodo. Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 9 / 18 )

10 Consderazon sulle tratte n sollevamento - I Le ultme S equazon permettono d calcolare mmedatamente dametr D d cascuna delle tratte con sollevamento ( = 1,, S). Esse rappresentano la condzone d mnmo onere rappresentata schematcamente nella seguente Fgura, nella quale vengono confrontat cost della condotta premente con cost dell energa necessara al sollevamento al varare del dametro: Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 10 / 18 )

11 Consderazon sulle tratte n sollevamento - II Nel caso d tratte n sollevamento n cu s utlzzno materal dvers a monte e a valle della pompa, dametr D 1 (prma della pompa) e D 2 (premente) s rcavano mmedatamente dalle relazon: r 1 a 1 ɛ 1 n 1 k 1 Q1 2 D n 1+ɛ 1 1 = r 2a 2 ɛ 2 n 2 k 2 Q2 2 D n 2+ɛ 2 2 = γq T c e η Infatt nessuna delle equazon d mnma passvtà dpende dalle lunghezze delle condotte, pertanto anche non conoscendo l ubcazone della pompa possamo dsporre un nodo fttzo appena a monte della pompa, separando condotta d monte e premente. L equazone al nodo fornsce la prma eguaglanza, la seconda è fornta dall equazone per la tratta n sollevamento. La poszone della vasca d carco della pompa s determnerà successvamente confrontando le pezometrche con l proflo del terreno. Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 11 / 18 )

12 Rduzone del sstema d equazon d mnma passvtà Dalle ultme S equazon per le condotte n sollevamento rcavamo prm S dametr che sosttuamo nelle equazon a nod: S =1 δ j γq T c e η + L =S+1 δ j r a ɛ n k Q 2 D n +ɛ = 0 j = 1,, N Sosttuamo nfne dametr ncognt nella seconda sommatora (solo condotte a gravtà) rcavandol formalmente dalle equazon del moto: Sstema rdotto d equazon d mnma passvtà (N equazon non lnear con N carch ncognt h j a nod ntern) S =1 δ j γq T c e η + L =S+1 δ j r a ɛ n k Q 2 ( k L Q 2 h 1, h 2, ) n +ɛ n = 0 j = 1,, N +1 se h j h 1, (coè j è l nodo 1 della condotta ) dove δ j = 1 se h j h 2, (coè j è l nodo 2 della condotta ) 0 se j non è un nodo della condotta Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 12 / 18 )

13 Il metodo d Cross (blancamento de cost) - I Per semplctà d esposzone rscrvamo l sstema d equazon: S L δ j θ + δ j λ (h 1, h 2, ) n +ɛ n = 0 j = 1,, N =1 =S+1 avendo ntrodotto le costant θ = γq T c e η e λ = r a ɛ n k Q 2 ( k L Q 2 ) n +ɛ n S assume che carch h j soluzone del problema s calcolno come somma d un carco arbtraro (ma coerente con le drezon del moto) d tentatvo h j e d una correzone dh j. I carch a nod d monte e valle d cascuna condotta dventano: h 1, = h 1, + dh 1, e h 2, = h 2, + dh 2,. Sosttuamo h 1, h 2, = (h 1, h 2, ) + dh 1, dh 2, = h + dh 1, dh 2, : S δ j θ + =1 L =S+1 δ j λ ( h + dh 1, dh 2, ) n +ɛ n = 0 j = 1,, N Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 13 / 18 )

14 Il metodo d Cross (blancamento de cost) - II Prma approssmazone del sstema Nella j-esma equazone, ottenuta dalla dervata P per l nodo j-esmo, h j s consdera solo la correzone dh j, trascurando tutte le altre correzon: S δ j θ + =1 L =S+1 δ j λ ( h + δ j dh j ) n +ɛ n = 0 j = 1,, N In questo modo cascuna equazone ha una sola ncognta: f j (dh j ) = 0 Seconda approssmazone del sstema S lnearzzano le equazon con uno svluppo n sere al prmo ordne: f j (dh j ) = f j (dh j = 0) + f j dh j dhj =0 dh j = dh j = f j(dh j = 0) f j dh j dhj =0 Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 14 / 18 )

15 Il metodo d Cross (blancamento de cost) - III f j dh j = L =S+1 Le correzon a nod j n + ɛ (δ j ) 2 ( ) λ h n + δ j dh j n +ɛ 1 n Calcolando la f j (dh j ) e la sua dervata per dh j = 0 e sosttuendo nello svluppo n sere s ottengono le correzon a nod. dh j = S =1 δ jθ + L =S+1 δ jλ ( h n +ɛ ) n L n + ɛ =S+1 (δ j ) 2 ( ) 2n λ h +ɛ n n j = 1,, N ( k L Q 2 ) n +ɛ n Usando le untà del S.I.: θ = 9.81Q T c kwh e λ = r a ɛ η n k Q 2 Il processo s rpete teratvamente: al passo successvo carch appena corrett vengono consderat come carch d tentatvo. Il processo s può nterrompere con un crtero d convergenza su carch a nod. Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 15 / 18 )

16 Calcolo de dametr teorc e delle prevalenze I carch h j su tutt nod sono determnat quando l sstema delle N equazon del metodo d Cross gunge a convergenza. Restano da utlzzare le S equazon d mnma passvtà ottenute per le condotte con sollevamento e tutte le L equazon del moto. Per le tratte con sollevamento ( = 1,, S) s rcava l dametro dalle equazon d mnma passvtà e la prevalenza dalle equazon del moto: ( γq T c e n k Q 2 ) 1 n +ɛ D = η r a ɛ H P = (h 2, h 1, ) + k L Q 2 D n I dametr D nelle tratte a gravtà ( = S + 1,, L) s possono determnare dalle rmanent equazon del moto: D = ( k L Q 2 h 1, h 2, ) 1/n Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 16 / 18 )

17 Dametr commercal S procedere da monte verso valle assegnando l dametro commercale pù prossmo a quello teorco, rservandos eventualmente d usare coppe d dametr mmedatamente pù grande e pù pccolo d quello teorco ne tratt termnal, calcolando le lunghezze dal seguente sstema: { L = L1 + L 2 = h = J 1 L 1 + J 2 L 2 { L1 = ( h J 2 L)/(J 1 J 2 ) L 2 = ( h J 1 L)/(J 2 J 1 ) Se s adottano due dametr sulla sngola tratta è buona regola dsporre l dametro pù grande a monte per mantenere alta la pezometrca. Infne, nella assegnazone de dametr commercal è anche opportuno cercare d mnmzzare l numero d dametr utlzzat per contenere pezz specal ed rcamb che devono essere tenut dsponbl per le manutenzon e gl ntervent d urgenza. Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 17 / 18 )

18 Verfche In cascuna tratta sono stat assegnat dametr commercal e sono note le portate nel gorno d massmo consumo (dalle equazon d contnutà). Dventano ncognt carch pezometrc h j a nod ntern ed a nod de serbato/punt d consegna, avendo cambato dametr. S utlzzano le L equazon del moto per determnare carch pezometrc ncognt procedendo dall opera d presa verso serbato cttadn. Verfche sulle pezometrche e sulle veloctà La lnea pezometrca deve essere almeno due metr sopra la quota terreno Ne serbato e nelle vasche lungo lnea la pezometrca deve essere almeno par alle quote d consegna (massmo lvello) S verfcano le massme presson nelle condotte. Le veloctà devono essere comprese fra 0.5 e 2 m/s. Valor pccol possono compromettere le caratterstche organolettche dell acqua (temp d percorrenza troppo elevat), valor troppo grand provocano vbrazon ed eccessve sollectazon a gunt e pezz specal. Se necessaro s rvede l traccato e s cambano dametr. Infne s dspongono le valvole regolatrc d pressone. Acquedott e Fognature - A.A R. Dedda A.8 - Dmensonamento delle condotte d adduzone ( 18 / 18 )

Le condizioni di funzionamento delle condotte di adduzione

Le condizioni di funzionamento delle condotte di adduzione Le condzon d funzonamento delle condotte d adduzone Ret a dramazon aperte): tutte le portate ncognte possono essere unvocamente determnate dalle equazon d contnutà. Moto assolutamento turbolento α = 2

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. a dfferenza

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. La

Dettagli

Verifica reti con più serbatoi (II)

Verifica reti con più serbatoi (II) Verfca ret con pù serbato (I) Condzon al contorno per gl N nod della rete e corrspondent ncognte: Condzone mposta Incognta A) carco pezometrco portata concentrata B) portata concentrata carco pezometrco

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Corso di Infrastrutture Idrauliche II

Corso di Infrastrutture Idrauliche II Corso d Infrastrutture Idraulche II a.a. 2006-2007 Laurea n Ingegnera Cvle Facoltà d Ingegnera Prof.ssa Elena Volp Rcevmento: Materale ddattco: evolp@unroma3.t martedì 15:30-16:30, Dpartmento d Scenze

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 16: 13 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 16: 13 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 16: 13 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Eserczo Nell ammortamento d un prestto

Dettagli

IMPIANTI DI DISTRIBUZIONE

IMPIANTI DI DISTRIBUZIONE IMPIANTI DI DISTRIBUZIONE Schem caratterstc (serbato e rete d dstrbuzone) Con serbatoo d testata Con torrno pezometrco e serbatoo d estremtà Rete d tpo aperto Rete d tpo chuso Rete d tpo msto (ad albero)

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 17: 8 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Costture n regme semplce al tasso = 0, 025 l

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

Metodi di analisi per circuiti resistivi

Metodi di analisi per circuiti resistivi Metod d anals per crcut resst www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del 7-0-07 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato dalle equazon

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω Metod d anals Eserczo Anals alle magle n presenza d sol generator ndpendent d tensone R s J R Determnare le tenson sulle resstenze sapendo che: s s 0 R R 5.Ω s J R J R R 5Ω R 0Ω R 6Ω R 5 Dsegnamo l grafo,

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

Sorgenti Numeriche - Soluzioni

Sorgenti Numeriche - Soluzioni Sorgent umerche - Soluzon *) L anals delle frequenze con cu compaono le vare lettere n un documento n talano, comprendente 5975 caratter, ha fornto seguent dat: Lettera umero Frequenza relatva A 666. B

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 7: 6 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/29? Defnzone Se è un prestto se m {1, 2,..., n}

Dettagli

NOME...COGNOME... CORSO DI LAUREA ESERCIZIO I

NOME...COGNOME... CORSO DI LAUREA ESERCIZIO I ESERCIZIO I ata la rete aperta rportata n fgura (rappresentazone non n scala) costtuta da quattro serbato A,, C e e n cu la portata deve flure secondo vers rportat (s tenga conto che nel tratto EF vene

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 15: 12 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/15? Calendaro prossme lezon 13 marzo 14

Dettagli

Riccardo Sabatino 463/1 Progetto di un telaio in c.a. A.A. 2003/04

Riccardo Sabatino 463/1 Progetto di un telaio in c.a. A.A. 2003/04 Rccardo Sabatno 463/1 Progetto d un telao n c.a. A.A. 003/04 3.3 Il metodo degl spostament per la rsoluzone del telao Il metodo degl spostament è basato sulla valutazone de moment flettent ce agscono sugl

Dettagli

COMPORTAMENTO DINAMICO DI ASSI E ALBERI

COMPORTAMENTO DINAMICO DI ASSI E ALBERI COMPORTAMENTO DNAMCO D ASS E ALBER VBRAZON TORSONAL Costruzone d Macchne Generaltà l problema del progetto d un asse o d un albero non è solo statco Gl ass e gl alber, come sstem elastc, sotto l azone

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Le reti di distribuzione

Le reti di distribuzione Le ret d dstrbuzone Dstrbuscono l acqua a tutte le utenze e per lo spegnmento degl ncend. Classfcazone delle condotte avvcnamento: doppa condotta (q h /2) almentatrc prncpal o condotte maestre: ossatura

Dettagli

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof. Ragni Ferrara 05 luglio 2017

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof. Ragni Ferrara 05 luglio 2017 Matematca Fnanzara aa 2016-17 Prof Ragn Ferrara 05 luglo 2017 Cognome Nome matrcola Frma e posta elettronca (solo per ch non s è regstrato sul sto) NOTA BENE: s accetta una sola correzone nel gruppo d

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro omponent www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-0) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura nel

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --04) Teorema d Tellegen potes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 0-0-03) Teorema d Tellegen Ipotes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA CAPITOLO 33 LA CORRENTE ELETTRICA CONTINUA 1 L INTENSITÀ DELLA CORRENTE ELETTRICA 1! v! a t! F m e! E m t v! e t m! E Fssato l ntervallo d tempo t, s può scrvere! v! E 2 Q t 4,0 10 2 A 5,0 s 0,20 C 3 t

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 9: 20 marzo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? an d ammortamento La rata α k scadente al tempo

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON 3 CAMPIOAMETO DI ROULLI E DI POISSO 3. ITRODUZIOE In questo captolo esamneremo due schem d camponamento che dversamente dal camponamento casuale semplce non producono campon d dmensone fssa ma varable.

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Corso di Sistemi di Controllo di Gestione SCG-E04

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Corso di Sistemi di Controllo di Gestione SCG-E04 UNIVERSITÀ DEGLI STUDI DI BERGAMO Corso d Allocazone de centr d servzo SCG-E04 Le fas del processo d msurazone de cost Fase 1 Rlevazone de cost Fase 2 Assegnazone de cost Cost drett (Drect cost) Attrbuzone

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann FISICA DEI FLUIDI Lezone 5-5 Maggo 202 Le equazon per le varabl macroscopche: moment dell equazone d Boltzmann Teorema H a parte, non è facle estrarre altre consderazon general sulla funzone denstà d probabltà

Dettagli

Componenti resistivi

Componenti resistivi omponent resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-03) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

1. La domanda di moneta

1. La domanda di moneta 1. La domanda d moneta Esercz svolt Eserczo 1.1 (a) S consder l modello della domanda d moneta a scopo speculatvo d Keynes. Un ndvduo può sceglere d allocare la propra rcchezza sottoscrvendo un ttolo rredmble

Dettagli

Realizzazione di FSM sincrone. Sommario. Introduzione. Sommario. M. Favalli

Realizzazione di FSM sincrone. Sommario. Introduzione. Sommario. M. Favalli Realzzazone d FSM sncrone M. Favall Engneerng Department n Ferrara Realzzazone d FSM Anals e sntes de sstem dgtal / Introduzone Realzzazone d FSM Anals e sntes de sstem dgtal 2 / Una volta ottenuto l automa

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 9: 3 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Eserczo Consderamo una rendta perodca d 2n termn

Dettagli

Modello del Gruppo d Acquisto

Modello del Gruppo d Acquisto InVMall - Intellgent Vrtual Mall Modello del Gruppo d Acqusto Survey L attvtà svolta per la realzzazone dell attvtà B7 Defnzone del Gruppo d Acqusto e de Relatv Algortm d Inferenza, prevsta dal captolato

Dettagli

La ripartizione trasversale dei carichi

La ripartizione trasversale dei carichi La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO LA A.A Esame Scritto del 10/12/2004 Soluzione (sommaria) degli esercizi

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO LA A.A Esame Scritto del 10/12/2004 Soluzione (sommaria) degli esercizi INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO LA A.A. 2004-05 Esame Scrtto del 10/12/2004 Soluzone (sommara) degl esercz Eserczo 1: S vuole acqusre e convertre n dgtale la msura d deformazone d una

Dettagli

Il diagramma cartesiano

Il diagramma cartesiano Il dagramma cartesano Il pano cartesano Il dagramma cartesano è costtuto da due ass: uno orzzontale, l asse delle ascsse o della varable X, e uno vertcale, l asse delle ordnate o della varable Y. I due

Dettagli

IL MODELLO DI MACK. Materiale didattico a cura di Domenico Giorgio Attuario Danni di Gruppo Società Cattolica di Assicurazioni

IL MODELLO DI MACK. Materiale didattico a cura di Domenico Giorgio Attuario Danni di Gruppo Società Cattolica di Assicurazioni IL MODELLO DI MACK Materale ddattco a cura d Domenco Gorgo Attuaro Dann d Gruppo Socetà Cattolca d Asscurazon CHAIN-LADDE CLASSICO Metodo pù utlzzato per la stma della rserva snstr. Semplctà. Dstrbuton-ree

Dettagli

Valutazione dei Benefici interni

Valutazione dei Benefici interni Corso d Trasport Terrtoro prof. ng. Agostno Nuzzolo Valutazone de Benefc ntern Valutazone degl ntervent Indvduazone degl effett rlevant La defnzone degl effett rlevant per un ntervento sul sstema d trasporto

Dettagli

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE In presenza d una almentazone alternata snusodale tutte le grandezze elettrche saranno alternate snusodal. Le equazon d funzonamento n regme comunque varale

Dettagli

Risposta in frequenza

Risposta in frequenza Rsposta n frequenza www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 6--6 Dagramm d Bode Le funzon d trasfermento (f.d.t de crcut lnear tempo nvarant sono funzon razonal (coè rapport tra due polnom

Dettagli

2.1 Parabola nella forma canonica

2.1 Parabola nella forma canonica 5 Clc per tutt gl appunt (AUTOMAZIONE TRATTAMENTI TERMICI ACCIAIO SCIENZA delle COSTRUZIONI ) e-mal per suggerment. Paraola nella forma canonca Studamo con metod general la conca nella espressone canonca

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Anna Nobl 1 Defnzone e grad d lbertà S consder un corpo d massa totale M formato da N partcelle cascuna d massa m, = 1,..., N. Il corpo s dce rgdo se le dstanze mutue tra tutte le partcelle che lo compongono

Dettagli

Componenti resistivi

Componenti resistivi omponent resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 4--08) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

( ) d R L. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che

( ) d R L. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che In generale possamo dre che R L f ( µ,,, D Dal punto d vsta matematco possamo approssmare la funzone con una sere d potenze e qund: R L ( a b c d µ B D ma per l'omogenetà delle relazon avremo [ ] ([ ]

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 5: 24 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/24? Eserczo Trovare quale legge d captalzzazone

Dettagli

Matematica Generale a.a. 2018/19 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile

Matematica Generale a.a. 2018/19 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile Matematca Generale a.a. 2018/19 Teorem dmostrat nel corso. ATTENZIONE!!!!. Nel corso d matematca generale sono stat presentat teorem per qual è rchesta la conoscenza del solo enuncato e teorem de qual

Dettagli

Elasticità nei mezzi continui

Elasticità nei mezzi continui Elastctà ne mezz contnu l tensore degl sforz o tensore d stress, σ j Consderamo un cubo d dmenson untare n un mezzo elastco deformato. l cubo è deformato dalle forze eserctate sulle sue facce dal resto

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 4: 28 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Usando le equazon dfferenzal a varabl separabl,

Dettagli

Calcolo della temperatura di uscita dal primo stadio del reattore di conversione del CO per abbattere il tenore di CO fino ad un valore fissato.

Calcolo della temperatura di uscita dal primo stadio del reattore di conversione del CO per abbattere il tenore di CO fino ad un valore fissato. Dpartmento d Energa Poltecnco d Mlano Pazza Leonardo da Vnc - MILAN Eserctazon del corso FNDAMENI DI PCESSI CHIMICI Prof. Ganpero Gropp ESECIAZINE Calcolo della temperatura d uscta dal prmo stado del reattore

Dettagli

Esercizio 1. Esercitazione 14 Dicembre 2012 Sistemi trifase e potenze R 3 R 1 R 2. simmetrico L 1 L 3

Esercizio 1. Esercitazione 14 Dicembre 2012 Sistemi trifase e potenze R 3 R 1 R 2. simmetrico L 1 L 3 serctazone 4 Dcembre 0 Sstem trfase e potenze serczo L L L 00 f 50 Hz smmetrco Fg : Sstema trfase a stella S consder l crcuto d Fg e s calcolno le tre corrent d fase e le potenze attve, reattve ed apparent

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

i 1 i 2 2 A 18 V 2.8 (a) Applicando la LKT alla maglia si ricava la corrente: i =. Imponendo i = 5 A si ricava R

i 1 i 2 2 A 18 V 2.8 (a) Applicando la LKT alla maglia si ricava la corrente: i =. Imponendo i = 5 A si ricava R . Le lampade sono collegate n parallelo. Il modello è rportato nella fgura seguente. La potenza assorbta da cascuna lampada è /6 W, qund la potenza complessa è d 8 W. V 6 Ω 6 Ω. Applcando la LKT alla magla

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 11: 5 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 11: 5 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 11: 5 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? 2/31? Formalzzamo: l debto resduo prospettvo

Dettagli

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof.ssa Ragni Ferrara 08 giugno 2017

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof.ssa Ragni Ferrara 08 giugno 2017 Matematca Fnanzara a.a. 206-7 Prof.ssa Ragn Ferrara 08 gugno 207 Cognome Nome matrcola Frma e posta elettronca (solo per ch non s è regstrato sul sto) NOTA BENE: s accetta una sola correzone nel gruppo

Dettagli

Bipoli resistivi. (versione del ) Bipoli resistivi

Bipoli resistivi.  (versione del ) Bipoli resistivi Bpol resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 6--0) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 2: 21 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Defnzone. f : R R s dce addtva se per ogn

Dettagli

CAPITOLO 3 CIRCUITI DI RESISTORI

CAPITOLO 3 CIRCUITI DI RESISTORI CAPITOLO 3 CIRCUITI DI RESISTORI Pagna 3. Introduzone 70 3. Connessone n sere e connessone n parallelo 70 3.. Bpol resstv n sere 7 3.. Bpol resstv n parallel 77 3.3 Crcut resstv lnear e sovrapposzone degl

Dettagli

6.1- Sistemi punti, forze interne ed esterne

6.1- Sistemi punti, forze interne ed esterne 1 CAP 6 - SISTEMI DI PUNTI MATERIALI Parte I 1 Cap 6 - Sstem d punt materal Cap 6 - Sstem d punt materal Il punto materale è un astrazone alla quale poch cas s possono assmlare. La maggor parte degl oggett

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 17/10/2018

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 17/10/2018 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/2019 1. Esercz: lezone 17/10/2018 Rendmento d un B.O.T. Eserczo 1. Un captale C vene chesto n prestto alla banca

Dettagli

Progetto di travi in c.a.p isostatiche Il tracciato del cavi e il cavo risultante

Progetto di travi in c.a.p isostatiche Il tracciato del cavi e il cavo risultante Unverstà degl Stud d Roma Tre - Facoltà d Ingegnera Laurea magstrale n Ingegnera Cvle n Protezone Corso d Cemento Armato Precompresso A/A 2015-16 Progetto d trav n c.a.p sostatche Il traccato del cav e

Dettagli

( ) d R L. = ρ. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che

( ) d R L. = ρ. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che Fsca Tecnca G. Grazzn Facoltà d Ingegnera In generale possamo dre che R L f ( µ,,, D Dal punto d vsta matematco possamo approssmare la funzone con una sere d potenze e qund: R L ( a b c d µ B D ma per

Dettagli

Statistica di Bose-Einstein

Statistica di Bose-Einstein Statstca d Bose-Ensten Esstono sstem compost d partcelle dentche e ndstngubl che non sono soggette al prncpo d esclusone. In quest sstem non esste un lmte al numero d partcelle che possono essere osptate

Dettagli

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA UNIVERSITA DEGI STUDI DI CASSINO FACOTA DI INGEGNERIA ANTONIO RUSSO, ANGEO EOPARDI ANAISI DE ERRORE CONNESSO A APPROSSIMAZIONE DEE UNGHEZZE E DEE CEERITA NE METODO DI INTEGRAZIONE DEE CARATTERISTICHE (MOC)

Dettagli

INTERPOLAZIONE MEDIANTE CURVE SPLINE. '' ( b ) = 0

INTERPOLAZIONE MEDIANTE CURVE SPLINE. '' ( b ) = 0 INTERPOLAZIONE EDIANTE CURVE SPLINE Defnzone del problema Sovente, nelle applcazon grafche (CAD Computer Aed Desgn), s ha la necesstà d traccare, dat alcun punt, una lnea che l raccord e che sa suffcentemente

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 18: 18 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 18: 18 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 18: 18 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? Eserczo Il sgnor ancrazo Topazo decde

Dettagli

Definizione della tariffa per l accertamento di conformità degli strumenti di misura

Definizione della tariffa per l accertamento di conformità degli strumenti di misura Provvedmento adottato dalla Gunta del 6/7/2007 Defnzone della tarffa per l accertamento d conformtà degl strument d msura. Per l accertamento d conformtà degl strument d msura sono defnte le seguent 6

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 16: 9 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 16: 9 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 16: 9 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? 2/25? Caso partcolare, ma molto mportante α

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 17: 16 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/22? Eserczo Un Btp trennale, d valore nomnale C

Dettagli

Sistemi punti, forze interne ed esterne

Sistemi punti, forze interne ed esterne Ncola GglettoA.A. 2017/18 3 6.2- IL CENTRO DI MASSA Parte I 1 Cap 6 - Sstem d punt materal Cap 6 - Sstem d punt materal Il punto materale è un astrazone alla quale poch cas s possono assmlare. La maggor

Dettagli

Contenuti: o Specificazione del modello. o Ipotesi del modello classico. o Stima dei parametri. Regressione semplice Roberta Siciliano 2

Contenuti: o Specificazione del modello. o Ipotesi del modello classico. o Stima dei parametri. Regressione semplice Roberta Siciliano 2 Corso d STATISTICA Prof. Roberta Sclano Ordnaro d Statstca, Unverstà d Napol Federco II Professore supplente, Unverstà della Baslcata a.a. 0/0 Contenut: o Specfcazone del modello o Ipotes del modello classco

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI METODO DEGLI ELEMENTI FINITI Introduzone al metodo degl element fnt Il concetto base nella nterpretazone fsca del metodo degl element fnt è la decomposzone d un sstema meccanco complesso n pù semplc component

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 21: 29 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/35? Eserczo Dmostrare che l portafoglo d mnmo rscho

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni Introduzone al calcolo numerco Dervazone Integrazone Soluzone d equazon Dervazone numerca Il calcolo della dervata d una unzone n un punto mplca un processo al lmte ce può solo essere approssmato da un

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 16: 2 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? CCT/CCTEu S tratta d un ttolo a cedola varable:

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 x 1 =103 2 x 2 =97 3 x 3 =90

Dettagli