CONNESSIONI MATEMATICHE PRINCIPALI TRA LE COSTANTI. Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CONNESSIONI MATEMATICHE PRINCIPALI TRA LE COSTANTI. Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero"

Transcript

1 CONNESSIONI MATEMATICHE PRINCIPALI TRA LE COSTANTI π, Φ ed e Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero Abstract In this paper we show some connections between π, Φ and e Riassunto In questo breve lavoro mostreremo alcune principali connessioni tra π, Φ ed e, alcune delle quali da noi scoperte Testo Ci baseremo su un apposito reticolo che riportale tre costanti matematiche in esame e le loro possibili 1

2 connessioni, nel relativo incrocio indichiamo il numero di riferimento ai lavori o loro brani, nostri o altrui, che riportano queste connessioni tramite formule matematiche o breve descrizioni. Reticolo e Φ π e Φ 3-4 π Riferimenti 1 e 2 insieme: Da Internet (un post su Facebook, profilo della Sig.ra Nicoletta Sapioli) 2

3 I will attempt to definitively answer how the numbers, shapes, and properties of these 3 irrationals are intertwined... more details coming soon. Come vediamo, i numeri di Fibonacci 5, 8 e 13 sono connessi rispettivamente alle costanti π, Φ, π ed e π, e e Φ. Possiamo quindi valutare il prossimo numero di Fibonacci, 21, come 13*1,618, e sostituendo 13 con π *e* Φ, avremo π *e* Φ* Φ = 13,81758*1,618 = 22,

4 Moltiplicando ancora il valore ottenuto per 1,618, avremo 36, , e così via, ottenendo valori per eccesso prossimi ai successivi numeri di Fibonacci: formula generale π *e* Φ^n 1) distribuzione dei numeri primi, e e Φ La successione di Fibonacci e il Teorema dei numeri primi (TNP) Francesco Di Noto Sul sito Brano interessato, con correzione di piccoli errori (in rosso) Ora possiamo vedere come le due costanti e, Ф, e la funzione π(n) sono strettamente collegate alla distribuzione dei numeri primi fino alle potenze di 10, tramite la relazione: e^n 10^k / π(10^3k ) log 10^3k Fi + 4 (23) quando k = Fi, ed en Ф Fi +1 (24) Cominciamo con e = 2,718 e Ф =1,618 insieme: 4

5 TABELLA 1 (e^n, e^n Ф ) N e^n Fi e^n * Φ Fi , , , , , , , , , , , , , , , Al crescere ancora di N, e^n dà però valori sempre più lontani da Fi e da Fi+1, e approssimati per eccesso a partire da N = 5 in poi. Si nota subito, peraltro, che per i primi valori di N, e^n dà valori molto prossimi a Fi = 3, 8, 21, 55, 144 mentre e^n Ф dà valori molto prossimi a Fi+1 = 5, 13, 34, 89, 233 Mettendo in un ordine unico tali numeri, si ottiene la serie completa di Fibonacci, tranne i primi termini iniziali 0, 1, 1 e 2. Quando anche N è anch esso un numero di Fibonacci, abbiamo la connessione tra e, Ф, Fi ed Fi+1: e^n Fi, e^n Ф Fi+1 alternati. (25) Per il resto rimandiamo al lavoro sopra indicato. Conclusioni In tal modo abbiamo scoperto le suddette relazioni matematiche tra la serie di Fibonacci e la distribuzione dei numeri primi ed e =2,718028, e quindi anche con il Teorema dei numeri primi (TNP) già dimostrato da Jacques Hadamard e Charles Jean de la Vallée-Poussin e a sua volta connesso all ipotesi di Riemann, uno dei sei problemi del Millennio (Rif. 2). 2) e e π 5

6 Da Wikipedia, Formula di Eulero, paragrafo sull Identità di Eulero L'identità di Eulero[modifica modifica wikitesto] La formula di Eulero dà origine ad un'identità considerata tra le più affascinanti della matematica, nota come identità di Eulero, che mette in relazione tra loro cinque simboli che sono alla base dell'analisi matematica: e, i,, 1 e 0: Qui ci interessano però solo le costanti e e π 2) Formula di Stirling, e e π, insieme anche qui Da Wikipedia, Approssimazione di Stirling: Da Wikipedia, l'enciclopedia libera. Vai a: navigazione, ricerca 6

7 Al crescere di n, il rapporto tra (ln n!) e (n ln n n) tende a 1. In matematica l'approssimazione di Stirling o formula di Stirling o formula approssimata di Stirling è un'approssimazione per fattoriali grandi. Deve il suo nome al matematico scozzese James Stirling ( ). La formulazione corretta è: che viene scritta spesso come: Per valori elevati di n il secondo membro della formula fornisce una buona approssimazione di n! che si può calcolare rapidamente e facilmente. Ad esempio la formula per 30! fornisce l'approssimazione 2, , mentre un valore più preciso è 2, ; in questo caso si ha una discrepanza minore dello 0,3%, più precisamente: Anche in queste formule compaiono insieme e e π 7

8 6) COSTANTE DI STRUTTURA FINE E DIMENSIONI EXTRA Dott. Michele Nardelli, Francesco Di Noto, Ing. Pierfrancesco Roggero Già sul nostro sito (Connessione tra π e Φ) Brano finale interessato Vi sono ulteriori connessioni matematiche che vale la pena di andare a descrivere ed analizzare. L Ing. Christian Lange ha ottenuto alcuni risultati lavorando sul numero 432, corrispondente alla frequenza del La naturale (ricordiamo che 432 =24 18). Dividendo 432 per π, si ottiene 137,5 un valore molto vicino a quello della Costante di Struttura Fine,di importanza fondamentale nella fisica teorica e nella cosmologia, in quanto ha un ruolo di primo piano nelle teorie delle stringhe e del multiverso. Inoltre, dividendo 432 per Ф e per Ф^2 si ottengono rispettivamente i numeri 267 e 165. Le somme di tali numeri forniscono nuovamente 432 Si osserva anche che i numeri 267 e 165 sono dati da somme di numeri di Fibonacci. Infatti:267 = , e 165 = (233 = ; 144 = ). (E anche le formule per ottenere i numeri 267 = 432/Ф e 165=432/Ф^2 sono connesse alla sezione aurea) Ora però il numero 137,5796 si ottiene da 432/π. Ma 432 è connesso anche ad alcuni numeri di Fibonacci, dalle relazioni di cui sopra. Quindi anche π, già presente nella formula della costante di struttura fine, potrebbe essere connesso all angolo aureo 137,5 (ma per angolo aureo si intendono anche altri angoli, come 36, ecc. ; noi in questo lavoro ci riferiremo sempre all angolo 137,5, molto prossimo all inverso della costante di struttura fine, 137,035 ) Quindi, sarebbe possibile una connessione tra 432, π, Ф, e α = costante di struttura fine. Conclusioni Mostrate le connessioni tra le tre costanti a due a due o tra tutte e tre (vedi Rif. 1 e 2 insieme nella connessione 8

9 riportata da Internet), tralasciamo le già ben note formule di fisica e matematica in cui è presente solo una costante, vogliamo ora accennare al fatto che oltre ad essere connesse a svariati fenomeni naturali e argomenti matematici, le tre costanti spuntano spesso fuori inaspettatamente anche in contesti artificiali, per esempio: Φ è presente nella musica, nell arte, nella finanza (consentirebbe di prevedere l andamento dei titoli in borsa), nei giochi d azzardo tipo roulette (permetterebbe, come martingala attenuata con Φ, una regolazione delle poste successive in modo da non perdere molto alla roulette...come succederebbe invece con la ben più pericolosa martingala normale), nell elettronica, ecc. (vedi articoli in Rif. generali 1) e è 9

10 presente in questioni di matematica finanziaria, tipo ammortamenti di interessi ecc., π è presente nel curioso metodo di approssimazione (L ago di Buffon) buttando tantissime volte un ago in un reticolo e misurando gli angoli formati (casualmente?...) tra ago e una delle righe del reticolo. Vedi NOTA 1 Questo ci suggerirebbe che i fenomeni naturali in cui è coinvolta una delle tre costanti, avrebbero degli analoghi fenomeni nella sfera delle attività umane artificiali, e quindi anch essi regolati dalla stessa costante in modi più o meno simili. Sarebbe un bel futuro campo di ricerca, poiché scoprire e approfondire una connessione matematica tra i due fenomeni attraverso una o più delle costanti π, e, Φ in comune, potrebbe portare ad una migliore conoscenza di entrambi. 10

11 Riferimenti generali 1) sito sezione Articoli 2) sito con diversi articoli in cui sono presenti fenomeni matematici, naturali o artificiali regolati da una o più delle tre costanti. NOTA 1 circa l ago di Buffon Da Internet, link: rcitazione-06.pdf riportiamo parzialmente una curiosità : Stima di π con l ago di Buffon Lo scopo di questa esercitazione e`stimare il valore di π con un metodo iterativo noto dal XVIII secolo. Supponiamo di avere un piano percorso da linee parallele distanti d tra di loro e un ago di lunghezza L con L < d. Lanciando l ago sul piano, essa ha una probabilita2l/πd di Incrociare una linea del piano. Sia x la distanza tra il centro dell ago e la linea più vicina all ago e θ l angolo acuto tra l ago e le linee. L ago incrocerà una delle linee se e`verificata la condizione x <(L/2) sinθ. Effettuando N lanci e indicando con S il numero di volte che l ago incroci a una linea si ha che 11

12 N = 2*L S π*d da cui possiamo ottenere π = 2*L*N S*d... Nota 2 sulla legge di Benford Dalla relativa voce di Wikipedia riportiamo parzialmente : Legge di Benford Da Wikipedia, l'enciclopedia libera. Vai a: navigazione, ricerca La distribuzione di Benford meglio nota come legge di Benford o legge della prima cifra è una distribuzione di probabilità che descrive la probabilità che un numero presente in molte raccolte di dati reali (p.es. popolazione dei comuni, quotazione delle azioni, costanti fisiche o matematiche, numero di strade esistenti nelle località) cominci con una data cifra, ad esempio "1", che secondo questa variabile casuale discreta dovrebbe essere nel 30,1% dei casi la prima cifra. La funzione di probabilità è data da prima cifra prime due cifre n P(x=n) n P(x=n) 1 30,1% 10 4,1% 2 17,6% 11 3,8% 3 12,5% 12 3,5% 4 9,7% 13 3,2% 5 7,9% 14 3,0% 6 6,7% ,8% ecc. 8 5,1% ,6% 99 0,4% 12

13 Una delle estensioni della legge di Benford, Diagramma a torta della distribuzione della prima cifra prende in considerazione la coppia delle prime due cifre (da 10 a 99 dunque), lasciando invariata la formula, ma semplicemente modificando l'intervallo di validità da [1,9] a [10,99]. Una breve e intuitiva spiegazione del perché in "natura" accade ciò, e che quindi la cifra 1 si presenti con maggior frequenza, poi la cifra 2 e così via, è dato dal fatto che noi contiamo a iniziare dal numero 1 in avanti sino al 9. Se proviamo a pensare alle cifre da 1 a 9 è chiaro che abbiamo le stesse probabilità che una cifra inizi con 1 o 2 o 3 o 9. Se, però, prendiamo già i numeri da 1 a 20 ecco che da 11 a 19 ho molti più numeri che iniziano con la cifra 1. Se prendiamo quelli da 1 a 30 ne ho molti che iniziano con 1 ma anche con 2. Come si può facilmente notare, per avere numeri che inizino con 9, ad es, devo andare molto in là con i numeri e quindi aumento anche la quantità di quelli che inizieranno con 1 o con 2 e quindi con cifre basse, per cui in una distribuzione di numeri legati a superfici, popolazioni, sarà più alta la probabilità di averne che inizino con 1 piuttosto che con 9. La cosa comunque singolare è che Benford riuscì a far vedere che, per molte distribuzioni, la probabilità che un numero inizi con una certa cifra tra 1 e 9 è sempre la stessa (30,1% per la cifra 1, 17,6% per la cifra 2, 4,6% per la cifra 9)... Connessione con il numero e : Invarianza di scala[modifica modifica wikitesto] Se un fenomeno segue la legge di Benford, allora moltiplicando tutti i valori per un numero prefissato, si ottiene una nuova raccolta di valori che seguono a loro volta la legge di Benford. Esempio: se le quotazioni espresse in Lire delle azioni quotate in borsa seguono la legge di Benford, allora le stesse quotazioni espresse in Euro seguono anch'esse la legge di Benford. L'invarianza di scala richiede che Essendo richiesto che e che anche si ricava che la forma dev'essere del tipo 1/x. Effettivamente per è una distribuzione continua di probabilità che produce valori casuali le cui prime cifre rispettano la legge di Benford..... Ma noi abbiamo trovato una nuova connessione anche 13

14 con i numeri di Fibonacci. Prendiamo la tabella iniziale: prima cifra prime due cifre n P(x=n) n P(x=n) 1 30,1% 10 4,1% 2 17,6% 11 3,8% 3 12,5% 12 3,5% 4 9,7% 13 3,2% 5 7,9% 14 3,0% 6 6,7% ,8% ecc. 8 5,1% ,6% 99 0,4% Se prendiamo i numeri della seconda colonna e li scriviamo in orizzontale e solo la loro parte intera, abbiamo: , con una prima e più debole connessione con i numeri di Fibonacci: = 5 = 5 4 3; ma se scriviamo sotto le loro differenze successive, e consecutive abbiamo, in rosso, per esempio 14

15 30-17= 13, ecc: corrispondenti a numeri di Fibonacci, tranne il numero 8 tra 5 e 13 Scriviamo invece le differenze alternate, per es = 18, 17-9 = 8, ecc. avremo ora la serie di differenze Ora recuperiamo il numero 8, ma perdiamo il 13. Però lo recuperiamo, sia pure parzialmente, poiché 18 è circa la media tra 13 e 21 = 17, cosa che si verifica spesso in altri fenomeni naturali o matematici che coinvolgono i numeri di Fibonacci. I numeri di Fibonacci più piccoli sono ovviamente relativi alle cifre con minori frequenze percentuali, mentre i più grandi, 8 e 18 come circa la media tra 13 e 21, sono relativi rispettivamente alle cifre 2 e 1. 15

16 Le due tabelle seguenti rendono meglio l idea Tabella 1 Numeri interi di Benford Numeri interi di Benford slittati di un posto Tabella 2 Numeri interi di Benford Numeri interi di Benford slittati di due posti Differenze = Numeri di Fibonacci tranne l 8 Differenze = Numeri di Fibonacci tranne l = (13+21)/

17 Se ora invece prendiamo i piccoli numeri della tabella di Wikipedia (ultima colonna, parzialmente), relativi alla seconda cifra notiamo un altra piccola connessione di Fibonacci: i rapporti successivi sono mediamente lievemente superiori alla 2^3 -esima radice di 1,618 = numero aureo Tabella 3 Numeri di Benford Relativi alla seconda cifra Rapporti successivi 2^3 -esima radice di 1,618 1,0619 valore reale 4,1 4,1/3,8 = 1,078 1,0619 3,8 3,8/3,5= 1,085 1,0619 3,5 3,5/3,2= 1,093 1,0619 3,2 3,2/3,0 1,066 1,0619 La prima connessione con i numeri di Fibonacci 17

18 tramite le differenze èvidentissima (la seconda un po meno). Con tale nuova nostra connessione, la scoperta di Benford, già nota in statistica e già usata per qualche applicazione, specialmente in campo fiscale, vedi Nota 3, potrebbe essere oggetto di altre possibili applicazioni pratiche, per esempio nel campo dei bigdata in ogni campo, per estrarre, dalla loro grande massa di informazioni, solo quelle più interessanti per fare previsioni utili sull andamento dei relativi fenomeni naturali ( per es. clima, epidemie, ecc. ecc.). Per esempio, già con la serie di Fibonacci, e dei relativi e potenti algoritmi, gli hft (high frequency trading) si è già in grado di prevedere in modo attendibile l andamento azionario e di sfruttarlo per speculazioni finanziarie, acquistando o vendendo azioni al momento 18

19 opportuno, con relativi e lauti guadagni. Un nostro lavoro teorico in tal senso, già sul sito è Finanza aurea. Comunque, una maggiore conoscenza di questo argomento statistico ( legge di Benford) e, possibilmente, anche della nostra modesta correlazione con la serie di Fibonacci, potrebbe essere molto utile ai ricercatori sui bigdata, già richiestissimi e pagatissimi essendo ancora molto rari (ma già si stanno preparando appositi stage universitari), per poter spremere dai bigdata che essi studieranno in futuro, le informazioni necessarie per conoscere e prevedere meglio l andamento futuro del fenomeno studiato, sia esso naturale (per es. clima) o artificiale ( es. mercato azionario). 19

20 Nota 3 sulla applicazione della legge di Benford in campo fiscale: La recente Garzantina di matematica (Garzanti), riporta a pag la voce Cifre iniziali dei numeri (Frank Benford, 1938), con una breve nota finale, che riportiamo testualmente: La legge di Benford non costituisce solo un intrigante curiosità matematica, ma si presta anche a delle interessanti applicazioni pratiche. Per esempio, negli USA viene utilizzata per scovare gli evasori fiscali: tutte le dichiarazioni di reddito I cui importi non presentano un adeguata distribuzione delle prime cifre vengono considerate sospette e sottoposte ad un controllo più accurato: Si narra che, in un accertamento del genere, fosse incappato anche Clinton, prima di diventare presidente degli USA. Nostro commento. Ecco un esempio di buona applicazione della legge di Benford in campo fiscale, applicazione che potrebbe essere ancora migliorata, possibilmente e sperabilmente, 20

21 anche con la nostra relazione con Fibonacci. E così anche per altre possibili applicazioni statistiche in altri campi. Ben 76 anni dopo l intuizione di Benford, la sua legge statistica è stata migliorata con la nostra, che la connette chiaramente ai numeri di Fibonacci, e con nuovi e possibili risvolti applicativi. Una volta tanto, nessuno si rivolta nella tomba, poichè pensiamo che a Benford la nostra connessione sarebbe proprio piaciuta. 21

LA LEGGE DI BENFORD: CONNESSIONE CON I NUMERI DI FIBONACCI E UN APPLICAZIONE CON LE TARGHE AUTOMOBILISTICHE

LA LEGGE DI BENFORD: CONNESSIONE CON I NUMERI DI FIBONACCI E UN APPLICAZIONE CON LE TARGHE AUTOMOBILISTICHE Pagina 1 di 21 LA LEGGE DI BENFORD: CONNESSIONE CON I NUMERI DI FIBONACCI E UN APPLICAZIONE CON LE TARGHE AUTOMOBILISTICHE Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract:

Dettagli

I NUMERI DI PADOVAN (CONNESSIONI TRA LA SERIE DI PADOVAN ED ALTRE SERIE NUMERICHE)

I NUMERI DI PADOVAN (CONNESSIONI TRA LA SERIE DI PADOVAN ED ALTRE SERIE NUMERICHE) I NUMERI DI PADOVAN (CONNESSIONI TRA LA SERIE DI PADOVAN ED ALTRE SERIE NUMERICHE) Gruppo B. Riemann Francesco Di Noto, Michele Nardelli Abstract In this paper we show some connections between Padovan

Dettagli

DAI NUMERI COMPLESSI ALLA REALTA FISICA. (in particolare gli ottonioni)

DAI NUMERI COMPLESSI ALLA REALTA FISICA. (in particolare gli ottonioni) DAI NUMERI COMPLESSI ALLA REALTA FISICA (in particolare gli ottonioni) Gruppo B. Riemann Michele Nardelli, Francesco Di Noto *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro congetture

Dettagli

INFINITA DEI NUMERI PRIMI PALINDROMI DECIMALI

INFINITA DEI NUMERI PRIMI PALINDROMI DECIMALI INFINITA DEI NUMERI PRIMI PALINDROMI DECIMALI Gruppo Riemann* Nardelli Michele, Francesco Di Noto *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro congetture e sulle loro connessioni

Dettagli

3 Il problema dell impacchettamento come problema

3 Il problema dell impacchettamento come problema 3 Il problema dell impacchettamento come problema NP - Le partizioni di numeri e i Taxicab come possibili esempi di soluzione Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero Abstract In this

Dettagli

I numeri semiprimi e i numeri RSA. come loro sottoinsieme

I numeri semiprimi e i numeri RSA. come loro sottoinsieme I numeri semiprimi e i numeri RSA come loro sottoinsieme Francesco Di Noto, Michele Nardelli Abstract In this paper we show some connections between semi-primes numbers and RSA numbers. Riassunto In questo

Dettagli

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana Schemi delle Lezioni di Matematica Generale Pierpaolo Montana A volte i fenomeni economici che ci interessano non variano con continuitá oppure non possono essere osservati con continuitá, ma solo a intervalli

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

CONNESSIONI TRA LA SERIE DI FIBONACCI, LE FREQUENZE DI ZIPF, IL TEOREMA DI TED HILL E LE LEGGI DI SCALA

CONNESSIONI TRA LA SERIE DI FIBONACCI, LE FREQUENZE DI ZIPF, IL TEOREMA DI TED HILL E LE LEGGI DI SCALA CONNESSIONI TRA LA SERIE DI FIBONACCI, LE FREQUENZE DI ZIPF, IL TEOREMA DI TED HILL E LE LEGGI DI SCALA (Oltre che con la legge di Benford e la legge di Poisson) Ing. Pier Franz Roggero, Dott. Michele

Dettagli

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione:

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione: 1 Lastoriadiun impresa Il Signor Isacco, che ormai conosciamo per il suo consumo di caviale, decide di intraprendere l attività di produttore di caviale! (Vuole essere sicuro della qualità del caviale

Dettagli

Matematica classe 1^

Matematica classe 1^ NUCLEO TEMATICO 1 Numeri 1 L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali. 7 legge e comprende testi che coinvolgono aspetti logici e matematici. NUCLEO TEMATICO 2

Dettagli

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte Competenza chiave europea: MATEMATICA Scuola Primaria DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte TAB. A TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE al termine della Scuola Primaria

Dettagli

LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO

LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO Pagina 1 di 8 LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract: This paper explains that all physical constants and consequently

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Calcolo delle probabilità Il Sig. Rossi abita nella città X e lavora nella città Y, poco distante.

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1 Tecniche di Valutazione Economica Processo di aiuto alla decisione lezione 13.04.2005 Modello di valutazione Dobbiamo riuscire a mettere insieme valutazioni che sono espresse con dimensioni diverse. Abbiamo

Dettagli

I NUMERI DI LEYLAND E LE SERIE DI FIBONACCI E DI PADOVAN

I NUMERI DI LEYLAND E LE SERIE DI FIBONACCI E DI PADOVAN Gruppo B. Riemann * I NUMERI DI LEYLAND E LE SERIE DI FIBONACCI E DI PADOVAN Francesco Di Noto, Michele Nardelli *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro congetture e sulle

Dettagli

Richiami di microeconomia

Richiami di microeconomia Capitolo 5 Richiami di microeconomia 5. Le preferenze e l utilità Nell analisi microeconomica si può decidere di descrivere ogni soggetto attraverso una funzione di utilità oppure attraverso le sue preferenze.

Dettagli

ESERCITAZIONI MACROECONOMIA 2

ESERCITAZIONI MACROECONOMIA 2 ESERCITAZIONI MACROECONOMIA 2 CAPITOLO 10 Crescita: i fatti principali 1) Spiegate cosa si intende per convergenza nella teoria della crescita e mostrate il grafico con cui si rappresenta. 2) Spiegate

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

GRUPPO DI LAVORO DI PARMA

GRUPPO DI LAVORO DI PARMA ATTIVITÀ DI ANALISI QUESITI INVALSI GRUPPO DI LAVORO DI PARMA Coordinamento prof. P. VIGHI ANALISI QUESITI RELATIVI A: FASCICOLO somministrato nella 2^ classe PRIMARIA a.s. 2013-2014 FASCICOLO somministrato

Dettagli

Capitolo II Le reti elettriche

Capitolo II Le reti elettriche Capitolo II Le reti elettriche Fino ad ora abbiamo immaginato di disporre di due soli bipoli da collegare attraverso i loro morsetti; supponiamo ora, invece, di disporre di l bipoli e di collegarli tra

Dettagli

EFFICIENZA DEI MERCATI FINANZIARI

EFFICIENZA DEI MERCATI FINANZIARI EFFICIENZA DEI MERCATI FINANZIARI A.A. 2015/2016 Prof. Alberto Dreassi adreassi@units.it DEAMS Università di Trieste ARGOMENTI L ipotesi di mercato efficiente Evidenze empiriche pro e contro l EMH Altre

Dettagli

- LAVORO - - ENERGIA MECCANICA - - POTENZA -

- LAVORO - - ENERGIA MECCANICA - - POTENZA - Danilo Saccoccioni - LAVORO - - ENERGIA MECCANICA - - POTENZA - Indice Lavoro compiuto da una forza relativo ad uno spostamento pag. 1 Lavoro ed energia cinetica 3 Energia potenziale 4 Teorema di conservazione

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5 ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

Coniglietti Aurei. di Andrea Centomo e Lucia Gecchelin

Coniglietti Aurei. di Andrea Centomo e Lucia Gecchelin Coniglietti Aurei di Andrea Centomo e Lucia Gecchelin Con l'origami, l'arte del piegare la carta, si creano figure di qualunque tipo a partire da uno o più fogli di carta, senza incollare e senza mai tagliare.

Dettagli

Note su quicksort per ASD 2010-11 (DRAFT)

Note su quicksort per ASD 2010-11 (DRAFT) Note su quicksort per ASD 010-11 (DRAFT) Nicola Rebagliati 7 dicembre 010 1 Quicksort L algoritmo di quicksort è uno degli algoritmi più veloci in pratica per il riordinamento basato su confronti. L idea

Dettagli

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti

Dettagli

C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese

C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese Introduzione Nell articolo vengono mostrate vari possibili legami tra la costante di Archimede (pi greco) e la sezione aurea (phi).

Dettagli

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Strumenti di Valutazione di un Prodotto Finanziario

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Strumenti di Valutazione di un Prodotto Finanziario AREA FINANZA DISPENSA FINANZA Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto Strumenti di Valutazione di un Prodotto Finanziario ORGANISMO BILATERALE PER LA FORMAZIONE IN CAMPANIA Strumenti

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

IL RISCHIO DI INVESTIRE IN AZIONI DIMINUISCE CON IL PASSARE DEL TEMPO?

IL RISCHIO DI INVESTIRE IN AZIONI DIMINUISCE CON IL PASSARE DEL TEMPO? IL RISCHIO DI INVESTIRE IN AZIONI DIMINUISCE CON IL PASSARE DEL TEMPO? Versione preliminare: 1 Agosto 28 Nicola Zanella E-mail: n.zanella@yahoo.it ABSTRACT I seguenti grafici riguardano il rischio di investire

Dettagli

Vincere a testa o croce

Vincere a testa o croce Vincere a testa o croce Liceo B. Russell - Cles (TN) Classe 3D Insegnante di riferimento: Claretta Carrara Ricercatrice: Ester Dalvit Partecipanti: Alessio, Christian, Carlo, Daniele, Elena, Filippo, Ilaria,

Dettagli

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti L EQUIVALENZA FRA I NUMERI RAZIONALI (cioè le frazioni), I NUMERI DECIMALI (quelli spesso con la virgola) ED I NUMERI PERCENTUALI (quelli col simbolo %). Ora vedremo che ogni frazione (sia propria, che

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Finanza matematica - Lezione 01

Finanza matematica - Lezione 01 Finanza matematica - Lezione 01 Contratto d opzione Un opzione è un contratto finanziario stipulato al tempo, che permette di eseguire una certa transazione, d acquisto call o di vendita put, ad un tempo

Dettagli

I numeri almeno entro il venti.

I numeri almeno entro il venti. MATEMATICA CLASSE PRIMA Nucleo: IL NUMERO Competenza: L alunno si muove nel calcolo scritto e mentale con i numeri e usa le operazioni aritmetiche in modo opportuno entro il 20. 1.1 Contare associando

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

Un gioco con tre dadi

Un gioco con tre dadi Un gioco con tre dadi Livello scolare: biennio Abilità interessate Costruire lo spazio degli eventi in casi semplici e determinarne la cardinalità. Valutare la probabilità in diversi contesti problematici.

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Ministero dell Istruzione dell Università e della Ricerca Ufficio Scolastico Regionale del Veneto

Ministero dell Istruzione dell Università e della Ricerca Ufficio Scolastico Regionale del Veneto Ministero dell Istruzione dell Università e della Ricerca Ufficio Scolastico Regionale del Veneto Istituto Comprensivo di Bosco Chiesanuova Piazzetta Alpini 5 37021 Bosco Chiesanuova Tel 045 6780 521-

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di Capitalizzazione e attualizzazione finanziaria Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di interesse rappresenta quella quota di una certa somma presa

Dettagli

BASI NUMERICHE NON DECIMALI

BASI NUMERICHE NON DECIMALI BASI NUMERICHE NON DECIMALI Stefano Borgogni stfbrg@rocketmail.com SUNTO Il presente articolo tratta il tema della numerazione in basi diverse da quella decimale, con l intento di evidenziarne alcune regole,

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ icroeconomia Douglas Bernheim, ichael Whinston Copyright 009 The cgraw-hill Companies srl COE ASSIIZZARE UNA FUNZIONE DI UTILITÀ Supponiamo che il reddito mensile di Elena sia pari a Y e sia interamente

Dettagli

Franco Taggi Reparto Ambiente e Traumi Dipartimento Ambiente e connessa Prevenzione Primaria Istituto Superiore di Sanità

Franco Taggi Reparto Ambiente e Traumi Dipartimento Ambiente e connessa Prevenzione Primaria Istituto Superiore di Sanità Il metodo del Rispondente Cancellato (ERM) per i controlli su strada della guida sotto l influenza di alcol o sostanze (e non solo): un paradigma illustrativo. Franco Taggi Reparto Ambiente e Traumi Dipartimento

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

II.f. Altre attività sull euro

II.f. Altre attività sull euro Altre attività sull euro II.f È consigliabile costruire modelli in carta o cartoncino di monete e banconote, e farli usare ai bambini in varie attività di classe fin dal primo o al più dal secondo anno.

Dettagli

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1 MATEMATICA COMPETENZE Dimostra conoscenze matematiche che gli consentono di analizzare dati e fatti della realtà e di verificare l'attendibilità delle analisi quantitative e statistiche proposte da altri.

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso di Matematica - NUCT 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor, matematico

Dettagli

Misureremo e analizzeremo la distribuzione di intensità luminosa di diverse figure di diffrazione in funzione della posizione acquisite on- line.

Misureremo e analizzeremo la distribuzione di intensità luminosa di diverse figure di diffrazione in funzione della posizione acquisite on- line. 4 IV Giornata Oggi termineremo questo percorso sulla luce misurando l intensità luminosa della distribuzione di massimi e minimi delle figure di diffrazione e di interferenza. In particolare confronteremo

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

COEFFICIENTI BINOMIALI

COEFFICIENTI BINOMIALI COEFFICIENTI BINOMIALI Michele Impedovo micheleimpedovo@uni-bocconiit Una definizione insiemistica Se n è un numero naturale e è un numero naturale compreso tra e n, si indica con il simbolo il coefficiente

Dettagli

MATEMATICA LINEE GENERALI E COMPETENZE

MATEMATICA LINEE GENERALI E COMPETENZE MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso dei licei classico, linguistico, musicale coreutico e della scienze umane lo studente conoscerà i concetti e i metodi elementari della matematica,

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Un po di teoria dei numeri

Un po di teoria dei numeri Un po di teoria dei numeri Applicazione alla crittografia RSA Christian Ferrari Liceo di Locarno Matematica Sommario 1 L aritmetica modulare di Z n Le congruenze L anello Z n Le potenze in Z n e algoritmo

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Capitolo 8. Ricerca del profitto e mano invisibile. Principi di economia (seconda edizione) Robert H. Frank, Ben S. Bernanke

Capitolo 8. Ricerca del profitto e mano invisibile. Principi di economia (seconda edizione) Robert H. Frank, Ben S. Bernanke Capitolo 8 Ricerca del profitto e mano invisibile Mercati e motivazioni personali Non è dalla benevolenza del macellaio, del birraio, o del fornaio che ci aspettiamo il nostro desinare, ma dalla considerazione

Dettagli

PRIMAVERA IN BICOCCA

PRIMAVERA IN BICOCCA PRIMAVERA IN BICOCCA 1. Numeri primi e fattorizzazione Una delle applicazioni più rilevanti della Teoria dei Numeri si ha nel campo della crittografia. In queste note vogliamo delineare, in particolare,

Dettagli

Costruire sistemi con il pigeonhole principle

Costruire sistemi con il pigeonhole principle Costruire sistemi con il pigeonhole principle Giacomo Ghilotti 1 - Giuseppe Isernia 2 Sunto: In questo lavoro viene mostrato come usare il principio del cassetto per costruire sistemi per superenalotto,

Dettagli

ALGORITMO PER GENERARE COSTANTI MATEMATICHE

ALGORITMO PER GENERARE COSTANTI MATEMATICHE ALGORITMO PER GENERARE COSTANTI MATEMATICHE di Zino Magri ino.magri@libero.it Copyright ZINO MAGRI 03 Vorrei porre alla vostra attenione un algoritmo in grado di generare una π quantità illimitata di costanti

Dettagli

ECONOMIA INTERNAZIONALE Biennio CLEM - Prof. B. Quintieri

ECONOMIA INTERNAZIONALE Biennio CLEM - Prof. B. Quintieri ECONOMIA INTERNAZIONALE Biennio CLEM - Prof. B. Quintieri IL TASSO DI CAMBIO Anno Accademico 2013-2014, I Semestre (Tratto da: Feenstra-Taylor: International Economics) Si propone, di seguito, una breve

Dettagli

Esercizi: i rendimenti finanziari

Esercizi: i rendimenti finanziari Esercizi: i rendimenti finanziari Operazioni algebriche elementari Distribuzione e dipendenza Teoria di probabilità Selezione portafoglio p. 1/25 Esercizio I Nella tabella sottostante relativa all indice

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Il SENTIMENT E LA PSICOLOGIA

Il SENTIMENT E LA PSICOLOGIA CAPITOLO 2 Il SENTIMENT E LA PSICOLOGIA 2.1.Cosa muove i mercati? Il primo passo operativo da fare nel trading è l analisi del sentiment dei mercati. Con questa espressione faccio riferimento al livello

Dettagli

STIMA PIU CHE PUOI Un gioco per diventare abili stimatori

STIMA PIU CHE PUOI Un gioco per diventare abili stimatori ISTITUTO COMPRENSIVO DI MONTALE ISTITUTO COMPRENSIVO B. da Montemagno DI QUARRATA a.s. 2012-2013 GRUPPO DI RICERCA-AZIONE DI MATEMATICA STIMA PIU CHE PUOI Un gioco per diventare abili stimatori Classi

Dettagli

Crittografia. Appunti a cura del prof. Ing. Mario Catalano

Crittografia. Appunti a cura del prof. Ing. Mario Catalano Crittografia Appunti a cura del prof. Ing. Mario Catalano La crittografia La crittografia è la scienza che studia la scrittura e la lettura di messaggi in codice. Solitamente, i meccanismi crittografici

Dettagli

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ;

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; Primo anno Secondo anno Terzo anno Primo anno MATEMATICA Scuola dell Infanzia Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; legge

Dettagli

I PROBLEMI ALGEBRICI

I PROBLEMI ALGEBRICI I PROBLEMI ALGEBRICI La risoluzione di problemi è una delle attività fondamentali della matematica. Una grande quantità di problemi è risolubile mediante un modello algebrico costituito da equazioni e

Dettagli

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA Indice Introduzione Il sistema decimale Il sistema binario Conversione di un numero da base 10 a base 2 e viceversa Conversione in altri sistemi di numerazione

Dettagli

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO PRIMA DELLA DISCIPLINA: MATEMATICA - CLASSE PRIMA L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali. Legge e comprende testi che coinvolgono aspetti logici e matematici.

Dettagli

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche . Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

MATEMATICA OBIETTIVI DI APPRENDIMENTO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE

MATEMATICA OBIETTIVI DI APPRENDIMENTO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE Il bambino raggruppa e ordina oggetti e materiali secondo criteri diversi. Identifica alcune proprietà dei materiali. Confronta e valuta quantità. Utilizza simboli per registrare materiali e quantità.

Dettagli

Firenze, 30 maggio 2012

Firenze, 30 maggio 2012 Firenze, 30 maggio 2012 specchio Specchio, specchio delle mie brame, chi è il fondo più bello del reame? Come selezionate i fondi dei vostri clienti? Quali parametri usate per selezionare i fondi? I rendimenti

Dettagli

Internet può aprire nuove strade di

Internet può aprire nuove strade di LA PARTECIPAZIONE VA ON LINE Internet può moltiplicare le possibilità di coinvolgersi nelle cause e di prendere iniziative, ma va usato con intelligenza di Paola Springhetti Internet può aprire nuove strade

Dettagli

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE 1. Proporzionalità diretta e proporzionalità inversa Analizziamo le seguenti formule Peso Lordo = Peso Netto + Tara Ricavo = Utile + Costo Rata = Importo + Interesse

Dettagli

Successioni ricorsive. Unità 60

Successioni ricorsive. Unità 60 Prerequisiti: - Operare con i numeri reali - Rappresentare punti e curve elementari in un piano cartesiano L unità è rivolta al 2 biennio del Liceo Scientifico, compresa l opzione Scienze applicate. OBIETTIVI

Dettagli

TNT IV. Il Diavolo è meno brutto di come ce lo dipingono!!! (Guarda il video)

TNT IV. Il Diavolo è meno brutto di come ce lo dipingono!!! (Guarda il video) TNT IV Il Diavolo è meno brutto di come ce lo dipingono!!! (Guarda il video) Al fine di aiutare la comprensione delle principali tecniche di Joe, soprattutto quelle spiegate nelle appendici del libro che

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

DEFINIZIONE Una grandezza fisica è una classe di equivalenza di proprietà fisiche che possono essere misurate mediante un rapporto.

DEFINIZIONE Una grandezza fisica è una classe di equivalenza di proprietà fisiche che possono essere misurate mediante un rapporto. «Possiamo conoscere qualcosa dell'oggetto di cui stiamo parlando solo se possiamo eseguirvi misurazioni, per descriverlo mediante numeri; altrimenti la nostra conoscenza è scarsa e insoddisfacente.» (Lord

Dettagli

PROGETTO LAUREE SCIENTIFICHE -MATEMATICA 2006/2007 Modelli Matematici per la Società Incontro del 15.02.07

PROGETTO LAUREE SCIENTIFICHE -MATEMATICA 2006/2007 Modelli Matematici per la Società Incontro del 15.02.07 PROGETTO LAUREE SCIENTIFICHE -MATEMATICA 2006/2007 Modelli Matematici per la Società Incontro del 15.02.07 CODICI MONOALFABETICI E ANALISI DELLE FREQUENZE (organizzata da Francesca Visentin) Riprendiamo

Dettagli

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 24 Il mercato dei beni

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 24 Il mercato dei beni UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 24 Il mercato dei beni Prof. Gianmaria Martini Domanda ed offerta Uno degli schemi logici fondamentali dell analisi economica

Dettagli