Teoria dei Giochi. Teoria dei Giochi

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Teoria dei Giochi. Teoria dei Giochi"

Transcript

1 Teoria dei Giochi E uno strumento decisionale, utile per operare previsioni sul risultato quando un decisore deve operare in concorrenza con altri decisori. L ipotesi principale su cui si basa la TdG è che i giocatori siano intelligenti e razionali. Classificazione dei giochi: 1.-giochi competitivi ciascun giocatore sceglie la propria strategia e riceve una ricompensa, payoff, in funzione di scelte effettuate anche dagli altri giocatori. Non sono possibili accordi vincolanti tra i giocatori -giochi non cooperativi ciascun giocatore sceglie la propria strategia in funzione delle decisioni prese dagli altri giocatori. Sono possibili accordi tra i giocatori. 2.-giochi simultanei le strategie vengono giocate contemporaneamente -giochi sequenziali le strategie vengono giocate in modo sequenziale, ogni giocatore aspetta il suo turno 3.-giochi disputati una volta si ha la certezza che il gioco non verrà mai ripetuto -giochi ripetuti più volte il gioco si ripete (es cliente abituale) 4.-giochi ad informazione perfetta ogni giocatore conosce tutte le mosse eseguite dagli altri giocatori. Questi giochi sono necessariamente sequenziali, in questo modo la mossa del giocatore è basata su una conoscenza completa del contesto. -giochi ad informazione imperfetta ogni giocatore non conosce le mosse eseguite dagli altri giocatori. Questi giochi sono necessariamente simultanei. 5.-gioco ad informazione completa ogni giocatore conosce le regole del gioco e le funzioni utilità di ogni giocatore. -gioco ad informazione incompleta i giocatori conoscono le regole del gioco ma non le funzioni utilità. Questi giochi sono necessariamente bayesiani. Un gioco può essere rappresentato in due forme (è possibile ottenere l una dall altra): 1.forma strategica: un gioco strategico è definito da: - un insieme finito N di giocatori - per ogni giocatore esiste un insieme finito e non vuoto di mosse permesse - per ogni giocatore esiste una relazione di preferenza espressa dalla funzione utilità Un gioco strategico finito, con due giocatori, si può rappresentare con una tabella in cui le azioni di un giocatore sono definite dalle righe e le azioni dell altro giocatore sono definite dalle colonne. In ogni cella vi sono due numeri che rappresentano i payoff dei giocatori in corrispondenza delle rispettive scelte. Gioco a somma zero è un particolare caso di gioco strategico in cui per ogni terminazione del gioco, ogni cella, il valore dei due payoff sommato dà zero. Metodi di Supporto alle Decisioni Manageriali Appunti di DM Pagina 1

2 Per ottenere la soluzione ai giochi strategici, quindi individuare una situazione di equilibrio si usano diversi metodi: Eliminazione iterata di azioni dominate: questo procedimento si basa sul concetto di comportamento razionale da parte dei giocatori, infatti ogni giocatore crede che le azioni intraprese dall avversario siano la miglior risposta ai fini dei propri interessi. Non giocherà mai una strategia dominata. Una strategia è strettamente dominata dalla strategia se, per ogni combinazione ammissibile tra le possibili strategie dei giocatori, per i payoff vale. Equilibrio MaxMin: questo procedimento si basa sul concetto che ogni giocatore scelga la propria azione assumendo che l avversario sceglierà l azione che lo contrasterà il più possibile. E un metodo utile per decisori avversi al rischio e si riassume come segue - il giocatore 1 risolve individuando una strategia - il giocatore 2 risolve individuando una strategia - l equilibrio corrisponde alle due strategie che risultano minimizzare i danni Equilibrio di Nash: questo procedimento si basa sul concetto che ogni giocatore scelga la propria strategia come miglior risposta alla migliore mossa dell avversario. Quindi la soluzione risulta massimizzare funzione di utilità di ogni giocatore, tenendo conto delle migliori mosse possibili degli avversari. In forma compatta si ha con = miglior mossa di i. L inefficienza di questo metodo porta a non individuare alcun equilibrio, oppure a trovare equilibri multipli. 2.forma estesa: un gioco in forma estesa è composto da: -un insieme finito N di giocatori -un albero finito T=(V,L) con radice. Connesso e privo di cicli V è l insieme finito di nodi ad ognuno dei quali si associa una possibile situazione di gioco L è l insieme finito di archi che rappresentano le mosse che si possono effettuare in una determinata situazione Z è l insieme dei nodi terminali ai quali è associata l utilità finale -una funzione etichetta che assegna ad ogni nodo il giocatore a cui spetta giocare in quella situazione -ogni nodo ha una seconda etichetta che rappresenta il livello informativo -ogni ramo uscente da un nodo ha un etichetta che sommata agli altri uscenti dallo stesso nodo dà 1 -ogni ramo uscente da un nodo deve soddisfare:.dati due nodi x,y con prima e seconda etichetta uguale, allora per ogni ramo uscente da x non esiste alcun ramo uscente da y con la stessa etichetta Metodi di Supporto alle Decisioni Manageriali Appunti di DM Pagina 2

3 .Dati due nodi x che precede y con prima etichetta uguale devono avere la seconda diversa.dati tre nodi x,y,z con la stessa prima etichetta, y,z con la stessa seconda etichetta, un qualsiasi ramo con etichetta b e con y che segue x e b. Allora esiste un nodo ω con prima e seconda etichetta uguale ad x, ed un ramo con uscente da ω, con etichetta c uguale a b e tale che z segue ω e c. Si dice insieme di informazione per il giocatore i l insieme di nodi con prima etichetta i, e seconda etichetta uguale. Strategie: la strategia di un giocatore è un piano d azione che specifica le mosse scelte per ogni storia dopo la quale tocca a lui giocare. Si hanno: -strategia pura specifica un azione da effettuare per il giocatore e determina univocamente lo svolgimento di un gioco. -strategia mista si introduce per ovviare ai limiti del metodo di Nash, e si costruisce un modello in cui le scelte dei partecipanti sono regolate da leggi probabilistiche. Quindi ad ogni strategia si associa la probabilità di giocarla. Giochi dinamici Un gioco dinamico è rappresentato con una struttura ad albero detta albero di gioco, grazie alla quale si ha una descrizione dettagliata della struttura sequenziale di problemi di decisione che i giocatori incontrano in situazioni strategiche. Il gioco è sequenziale, quindi ad informazione completa. Può essere rappresentato anche in forma strategica, ma si deve tenere conto di tutte le strategie giocabili dei giocatori. Un gioco dinamico può essere risolto utilizzando l EN, oppure il processo di induzione a ritroso. Induzione a ritroso: l idea di base è che la razionalità e l intelligenza di cui sono dotati i giocatori permette di poter prevedere il loro comportamento(ogni giocatore sceglierà la mossa che gli assicura maggiore payoff), e quindi prevedere la scelta della strategia dei giocatori. Nel caso in cui i payoff di due strategie per un giocatore siano uguali e questo adotta l alternativa che danneggia l avversario si adotta la cosiddetta strategia di minaccia. Sottogioco: un sottogioco di un gioco in forma estesa comincia da un single tone e comprende tutti i nodi decisionali e terminali successivi al single tone. Subgame Perfect Equilibrium SPE: Sono un raffinamento degli EN che sfruttano la forma estesa. Un EN è perfetto nei sottogiochi se le strategie dei giocatori costituiscono un EN per ogni sottogioco. Viene quindi calcolato con l induzione a ritroso. Lo SPE garantisce che se i giocatori si comporteranno razionalmente la soluzione trovata, ed il cammino corrispondente, costituiscono la soluzione di equilibrio. Metodi di Supporto alle Decisioni Manageriali Appunti di DM Pagina 3

4 Giochi ad informazione incompleta -informazione perfetta ogni giocatore conosce le mosse giocate dagli avversari prima di lui -informazione imperfetta un giocatore può non conoscere le mosse giocate in precedenza dagli avversari -informazione completa ogni giocatore conosce le regole del gioco ed i payoff di tutti gli avversari -informazione incompleta un giocatore conosce le regole del gioco ma non conoscere i payoff degli avversari, ciò significa che l altro giocatore è in possesso di un informazione privata ed avrà diverse strategie in base alla mossa che avrà giocato il giocatore prima di lui Per rappresentare un gioco ad informazione incompleta ci si avvale degli alberi di decisione che consentono di riassumere in modo chiaro tutti i possibili sviluppi del gioco. Si ricerca quindi una situazione di equilibrio, detto equilibrio bayesiano. Secondo la dottrina di Harsany per rappresentare questo tipo di gioco si introduce un altro giocatore, la natura. Introducendo le mosse fittizie della natura si riesce a descrivere il gioco ad informazione incompleta in un gioco ad informazione imperfetta e quindi risolvere un equilibrio bayesiano per il gioco ad informazione incompleta con un equilibrio di Nash per il gioco ad informazione imperfetta. Si definisce gioco bayesiano dove ogni giocatore dell insieme N può essere estratto da un insieme finito di tipi T i di giocatore in accordo ad una distribuzione di probabilità p(t 1,,t n ), e ricevere un payoff U i che dipende dalle strategie X i e dal profilo T i. Ciascun giocatore può inoltre calcolare la probabilità condizionata degli altri tipi t -i come Giochi cooperativi I giocatori possono stringere accordi di collaborazione e formare delle coalizioni. Di interesse è studiare il formarsi di accordi statici che possono essere di vantaggio ai singoli componenti. I giochi cooperativi che si studiano sono i giochi TU ossia ad utilità trasferibile, o con pagamenti laterali. Giochi TU sia N={1,,n} l insieme finito dei giocatori Sia v:p(n) R un applicazione detta funzione caratteristica tale che V(0)=0 La coppia (N,v) si dice gioco TU dove ogni gruppo di giocatori S (coalizione) è in grado di garantirsi una somma di denaro v(s) I giochi TU soddisfano le seguenti proprietà: -additività: -superadditività: -coesivo: Metodi di Supporto alle Decisioni Manageriali Appunti di DM Pagina 4

5 -definizione: preso un set di coalizioni si dice che: X è una preimputazione se X è una imputazione se E possibile risolvere i giochi TU in due modi: -Assiomatico: si considera il metodo del simplesso e si imposta il sistema considerando 1.efficienza 2.razionalità collettiva In questo modo si individua un NUCLEO delle possibili soluzioni -Algebrico: si calcolano gli indici di potere utilizzare il valore Shapley, il valore di Banzhaf-Coleman semplice e normalizzato. Dummy player: è quel giocatore che non apporta alcun contributo alla sua coalizione (x i =v(i)) gli viene assegnato solo quello che otterrebbe giocando da solo. Un gioco TU si dice semplice se le coalizioni possono assumere solo valori 0 e 1. In questo caso una coalizione si dimostra vincente se ottiene o meno di far passare la propria decisione ed avrà valore 1. Allocazione costi Si vuole determinare una ripartizione dei costi di un progetto tra diversi utenti, tenendo conto del ruolo che ogni utente ha avuto in esso. Ci si basa sul concetto della separazione dei costi. Un cost game si definisce come un gioco TU G(N,v) in cui la funzione caratteristica risulta v(s)<0 per cui si adotta la convenzione c(s) = -v(s). Nella divisione dei costi si devono seguire due criteri: -stand alone cost test che risulta la razionalità di coalizione -incremental cost test Per risolvere l allocazione dei costi si utilizza il metodo dei costi variabili. Metodo dei costi variabili Dato un cost game si definiscono: -costo separabile costo marginale di ogni giocatore m i =c(n)-c(n-{i}) -costo non separabile Si hanno quindi i valori ECA,ACA,CGA Metodo del nucleolo si basa sull idea di minimizzare il massimo malcontento. Si introduce una nuova misura, il rimpianto definito come e(s,x)=v(s)-x(s) per un gioco TU e e(s,x)=x(s)-v(s) per un cost game. Metodi di Supporto alle Decisioni Manageriali Appunti di DM Pagina 5

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 9 marzo 2010 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2010.html TEOREMI DI ESISTENZA TEOREMI DI ESISTENZA Teorema

Dettagli

INTRODUZIONE ALLA TEORIA DEI GIOCHI PER PROBLEMI DI DECISIONE

INTRODUZIONE ALLA TEORIA DEI GIOCHI PER PROBLEMI DI DECISIONE INTRODUZIONE ALLA TEORIA DEI GIOCHI PER PROBLEMI DI DECISIONE Vito Fragnelli Dipartimento di Scienze e Tecnologie Avanzate Università del Piemonte Orientale vito.fragnelli@mfn.unipmn.it Teoria dei Giochi

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

Concetti di soluzione in giochi dinamici a informazione perfetta in strategie pure (LEZIONE 4)

Concetti di soluzione in giochi dinamici a informazione perfetta in strategie pure (LEZIONE 4) Economia Industriale (teoria dei giochi) Concetti di soluzione in giochi dinamici a informazione perfetta in strategie pure (LEZIONE 4) Valerio Sterzi Università di Bergamo Facoltà di ingegneria 1 Cosa

Dettagli

Equilibrio bayesiano perfetto. Giochi di segnalazione

Equilibrio bayesiano perfetto. Giochi di segnalazione Equilibrio bayesiano perfetto. Giochi di segnalazione Appunti a cura di Stefano Moretti, Silvia VILLA e Fioravante PATRONE versione del 26 maggio 2006 Indice 1 Equilibrio bayesiano perfetto 2 2 Giochi

Dettagli

GIUSTIFICARE LE RISPOSTE. Non scrivere la soluzione di esercizi diversi su uno stesso foglio.

GIUSTIFICARE LE RISPOSTE. Non scrivere la soluzione di esercizi diversi su uno stesso foglio. Teoria dei giochi applicata alle scienze sociali Laurea Specialistica in Ingegneria Gestionale, Politecnico di MI, 2006/07 I prova intermedia, 19 dicembre 2006, foglio A Tempo: 2 ore e 1/2; risolvere 3

Dettagli

Corso di Politica Economica

Corso di Politica Economica Corso di Politica Economica Lezione 10: Introduzione alla Teoria dei Giochi David Bartolini Università Politecnica delle Marche (Sede di S.Benedetto del Tronto) d.bartolini@univpm.it (email) http://utenti.dea.univpm.it/politica

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 26 marzo 2015 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2015.html COOPERAZIONE Esempio: strategie correlate e problema

Dettagli

Esercizio 1 Dato il gioco ({1, 2, 3}, v) con v funzione caratteristica tale che:

Esercizio 1 Dato il gioco ({1, 2, 3}, v) con v funzione caratteristica tale che: Teoria dei Giochi, Trento, 2004/05 c Fioravante Patrone 1 Teoria dei Giochi Corso di laurea specialistica: Decisioni economiche, impresa e responsabilità sociale, A.A. 2004/05 Soluzioni degli esercizi

Dettagli

Giochi e decisioni strategiche

Giochi e decisioni strategiche Teoria dei Giochi Giochi e decisioni strategiche Strategie dominanti L equilibrio di Nash rivisitato Giochi ripetuti Giochi sequenziali Minacce impegni e credibilità Deterrenza all entrata 1 Giochi e decisioni

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 8 marzo 2012 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2012.html DECISORI RAZIONALI INTERAGENTI di Fioravante Patrone,

Dettagli

Teoria dei giochi Gioco Interdipendenza strategica

Teoria dei giochi Gioco Interdipendenza strategica Teoria dei giochi Gioco Interdipendenza strategica soggetti decisionali autonomi con obiettivi (almeno parzialmente) contrapposti guadagno di ognuno dipende dalle scelte sue e degli altri Giocatori razionali

Dettagli

La teoria dei giochi non cooperativi

La teoria dei giochi non cooperativi La teoria dei giochi non cooperativi Kreps: "Microeconomia per manager" 1 Ci occuperemo soltanto di giochi non cooperativi: l unità d analisi è il singolo giocatore che cerca di compiere le scelte per

Dettagli

Esercizi TdG per PoliMI, parte 2

Esercizi TdG per PoliMI, parte 2 Esercizi TdG per PoliMI, parte 2 c Fioravante Patrone 1 Esercizi TdG per PoliMI, parte 2 Esercizio 1 I \ II L R T 2, 2 3, 3 B 3, 3 4, 4 Per il gioco in forma strategica sopra descritto: trovare gli equilibri

Dettagli

Introduzione alla Teoria dei Giochi

Introduzione alla Teoria dei Giochi Introduzione alla Teoria dei Giochi Giochi dinamici a informazione completa Lorenzo Rocco Scuola Galileiana - Università di Padova 01 aprile 2010 Rocco (Padova) Giochi 01 aprile 2010 1 / 24 Giochi in forma

Dettagli

Economia Pubblica Giochi con informazione incompleta e Selezione Avversa

Economia Pubblica Giochi con informazione incompleta e Selezione Avversa Economia Pubblica Giochi con informazione incompleta e Selezione Avversa Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2011-12 Outline Equilibrio di Nash

Dettagli

1 GIOCHI COOPERATIVI 1. 1 Giochi cooperativi. 1.1 Introduzione

1 GIOCHI COOPERATIVI 1. 1 Giochi cooperativi. 1.1 Introduzione 1 GIOCHI COOPERATIVI 1 1 Giochi cooperativi 1.1 Introduzione I giocatori possono associarsi per migliorare il proprio risultato Per realizzare la cooperazione: deve essere possibile stipulare accordi (ad

Dettagli

Giochi ripetuti. Gianmaria Martini

Giochi ripetuti. Gianmaria Martini Giochi ripetuti Gianmaria Martini INTRODUZIONE In molte situazioni strategiche l elemento temporale ha un ruolo rilevante, nel senso che le scelte vengono ripetute nel tempo. I giochi ripetuti studiano

Dettagli

Teoria dei giochi. Teoria che analizza in modo formale l interazione strategica di soggetti razionali che agiscono in modo strategico

Teoria dei giochi. Teoria che analizza in modo formale l interazione strategica di soggetti razionali che agiscono in modo strategico Teoria dei giochi Teoria che analizza in modo formale l interazione strategica di soggetti razionali che agiscono in modo strategico Situazione strategica Sette persone si recano insieme al ristorante

Dettagli

Sequestro di persona a scopo di estorsione: una nuova teoria di gioco

Sequestro di persona a scopo di estorsione: una nuova teoria di gioco www.xos.it : 2008 Osvaldo Duilio Rossi : SEQUESTRO DI PERSONA A SCOPO DI : 1 OSVALDO DUILIO ROSSI Sequestro di persona a scopo di estorsione: una nuova teoria di gioco Ho integrato con ulteriori riflessioni

Dettagli

Che cos è la politica?

Che cos è la politica? Che cos è la politica? Giovanni Carbone, Università degli Studi di Milano da: Clark Golder Golder, Principi di scienza politica, McGrawHill, 2011 Che cosa è la politica? Potere (sociale): capacità di un

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 5 marzo 25 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo25.html MODALITÀ DI ESAME È previsto un appello alla fine

Dettagli

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 2

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 2 Teoria dei Giochi Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 2 1 Concetti risolutivi per i giochi in forma normale I

Dettagli

TEORIA DEI GIOCHI Marco Alderighi

TEORIA DEI GIOCHI Marco Alderighi TEORIA DEI GIOCHI Marco Alderighi Esempio. La maggiore produttrice di autovetture italiane (Fiat) nel prendere le decisioni di quando introdurre un nuovo modello sul mercato, con quali accessori, con quali

Dettagli

Teoria dei Giochi. In generale è possibile distinguere i giochi in due classi principali:

Teoria dei Giochi. In generale è possibile distinguere i giochi in due classi principali: Teoria dei Giochi Dr. Giuseppe Rose (Ph.D., M.Sc., London) Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 1 1 Nozioni introduttive La teoria

Dettagli

Imprese e reti d impresa

Imprese e reti d impresa Imprese e reti d impresa 6. Elementi di teoria dei giochi non cooperativi Giuseppe Vittucci Marzetti 1 Corso di laurea triennale in Scienze dell Organizzazione Facoltà di Sociologia Università degli Studi

Dettagli

TEORIA DEI GIOCHI. Vito Fragnelli. Università del Piemonte Orientale Dipartimento di Scienze e Tecnologie Avanzate vito.fragnelli@mfn.unipmn.

TEORIA DEI GIOCHI. Vito Fragnelli. Università del Piemonte Orientale Dipartimento di Scienze e Tecnologie Avanzate vito.fragnelli@mfn.unipmn. TEORIA DEI GIOCHI Vito Fragnelli Università del Piemonte Orientale Dipartimento di Scienze e Tecnologie Avanzate vito.fragnelli@mfn.unipmn.it Università di Siena Dottorato in Ingegneria dell'informazione

Dettagli

Esercizi di Teoria dei Giochi

Esercizi di Teoria dei Giochi Esercizi di Teoria dei Giochi ultimo aggiornamento: 11 maggio 2010 1. Si consideri il gioco fra 2 giocatori rappresentato (con le notazioni standard) dalla seguente matrice: (3, 1) (5, 0) (1, 0) (2, 6)

Dettagli

Lezione IV: Giochi e Strategie

Lezione IV: Giochi e Strategie Lezione IV: Giochi e Strategie Una decisione può essere definita strategica se è basata su di un ipotesi relativa al comportamento di altri soggetti e/o mira ad influenzarlo. Ex: la scelta dei titoli di

Dettagli

Economia Pubblica Rischio e Incertezza

Economia Pubblica Rischio e Incertezza Economia Pubblica Rischio e Incertezza Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2011-12 Seconda parte del corso di Economia Pubblica I problemi dell

Dettagli

Teoria dei Giochi. Vito Fragnelli A.A. 2010-11

Teoria dei Giochi. Vito Fragnelli A.A. 2010-11 Teoria dei Giochi Vito Fragnelli A.A. 2010-11 Capitolo 1 Teoria dei giochi e utilità 1.1 Esempio preliminare (da Young, 1994) Due paesi A e B, aventi rispettivamente 3.600 e 1.200 abitanti, vogliono costruire

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) Un insieme è una collezione di oggetti. Il concetto di insieme è un concetto primitivo. Deve esistere un criterio chiaro, preciso, non ambiguo, inequivocabile,

Dettagli

Esercizi TdG per PoliMI

Esercizi TdG per PoliMI Esercizi TdG per PoliMI c Fioravante Patrone Esercizi TdG per PoliMI Esercizio Trovare gli equilibri di Nash (in strategie pure) dei giochi seguenti. I II L R T,, B,, I II L R T 99, 99, B, 98, 98 Quale

Dettagli

Economia Pubblica Informazione incompleta e Azzardo morale

Economia Pubblica Informazione incompleta e Azzardo morale Economia Pubblica Informazione incompleta e Azzardo morale Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2014-15 Outline Asimmetrie Informative Giochi

Dettagli

TEORIA DEI GIOCHI Parte 2 Matematica nella realtà Università Bocconi

TEORIA DEI GIOCHI Parte 2 Matematica nella realtà Università Bocconi TEORIA DEI GIOCHI Parte 2 Matematica nella realtà Università Bocconi Roberto Lucchetti - Politecnico di Milano 17 Dicembre 2010 Giochi in forma estesa, fino a Zermelo Un modo matematico per descrivere

Dettagli

2 RAFFINAMENTI DELL EQUILIBRIO DI NASH

2 RAFFINAMENTI DELL EQUILIBRIO DI NASH MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE 1 1 INDUZIONE A RITROSO Se un gioco è dato in forma estesa ed è finito e a informazione perfetta, un modo per trovare

Dettagli

Economia Politica Microeconomia (ECN0006) 10 CFU a.a. 2012-2013. Eleonora Pierucci eleonora.pierucci@unibas.it

Economia Politica Microeconomia (ECN0006) 10 CFU a.a. 2012-2013. Eleonora Pierucci eleonora.pierucci@unibas.it Economia Politica Microeconomia (ECN0006) 10 CFU a.a. 2012-2013 Eleonora Pierucci eleonora.pierucci@unibas.it Teoria dei giochi Cos è un gioco? Si definisce come gioco una situazione in cui ciascuno dei

Dettagli

Politecnico di Milano

Politecnico di Milano Politecnico di Milano Facoltà di Ingegneria dell Informazione Corso di laurea in Ingegneria Informatica COMPUTAZIONE DI EQUILIBRI PERFETTI NEI GIOCHI IN FORMA ESTESA A SOMMA ZERO CON DUE GIOCATORI: ALGORITMI

Dettagli

Esercizi di teoria dei giochi. Luca Correani

Esercizi di teoria dei giochi. Luca Correani Esercizi di teoria dei giochi Luca Correani Settembre 2006 Indice 1 Giochi Statici con informazione completa 2 1.1 Analisi formale dei giochi e calcolo dell equilibrio di Nash.... 2 2 Giochi Bayesiani

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Investimento per un singolo agente

Dettagli

Teoria dei Giochi. Anna Torre. Almo Collegio Borromeo 6 marzo 2012

Teoria dei Giochi. Anna Torre. Almo Collegio Borromeo 6 marzo 2012 Teoria dei Giochi Anna Torre Almo Collegio Borromeo 6 marzo 2012 UN PO DI STORIA UN PO DI STORIA Von Neumann, Morgenstern Theory of Games and Economic Behavior (Princeton, 1944); UN PO DI STORIA Von Neumann,

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 3 marzo 2015 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2015.html MODALITÀ DI ESAME È previsto un appello alla fine

Dettagli

Pensare Strategicamente: La Teoria dei Giochi e l Oligopolio. Cap. 10

Pensare Strategicamente: La Teoria dei Giochi e l Oligopolio. Cap. 10 Pensare Strategicamente: La Teoria dei Giochi e l Oligopolio Cap. 10 Fino a ora abbiamo considerato le variabili che potevano influenzare il comportamento degli individui dati loro obiettivi (max utilità

Dettagli

Indice generale. Presentazione dell edizione italiana XIII Presentazione della terza edizione XV Prefazione XVII Ringraziamenti XXI

Indice generale. Presentazione dell edizione italiana XIII Presentazione della terza edizione XV Prefazione XVII Ringraziamenti XXI Pagine di apertura VII XXII 26-05-2003 14:45 Pagina VII Presentazione dell edizione italiana XIII Presentazione della terza edizione XV Prefazione XVII Ringraziamenti XXI Capitolo 1 L economia di mercato

Dettagli

Teoria dei giochi. a.a. 2009/2010. Dott. Laura Vici

Teoria dei giochi. a.a. 2009/2010. Dott. Laura Vici Teoria dei giochi a.a. 2009/2010 Dott. Laura Vici Dipartimento di Scienze Economiche Università di Bologna E-mail: laura.vici@unibo.it Home page: http://www2.dse.unibo.it/lvici Esercitazione per il corso

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 14 marzo 2013 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2013.html IL PARI O DISPARI I II S T S (-1, 1) (1, -1)

Dettagli

Logiche e strumenti per la valutazione degli investimenti

Logiche e strumenti per la valutazione degli investimenti Finanza Aziendale Analisi e valutazioni per le decisioni aziendali Logiche e strumenti per la valutazione degli investimenti Capitolo 13 Indice degli argomenti 1. Definizioni e modalità di classificazione

Dettagli

INTRODUZIONE ALLA TEORIA DEI GIOCHI

INTRODUZIONE ALLA TEORIA DEI GIOCHI Corso di Identificazione dei Modelli e Controllo Ottimo Prof. Franco Garofalo INTRODUZIONE ALLA TEORIA DEI GIOCHI A cura di Elena Napoletano elena.napoletano@unina.it Teoria dei Giochi Disciplina che studia

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME

Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME 5 luglio 2006 RIGA COLONNA MATRICOLA Il presente plico pinzato, composto di quattro

Dettagli

Equilibri di Nash e di tipo Leadership con applicazione ai Patrolling Games

Equilibri di Nash e di tipo Leadership con applicazione ai Patrolling Games POLITECNICO DI MILANO FACOLTÀ DI INGEGNERIA INDUSTRIALE E DELL INFORMAZIONE CORSO DI STUDI IN INGEGNERIA MATEMATICA Equilibri di Nash e di tipo Leadership con applicazione ai Patrolling Games Stefania

Dettagli

Giochi stocastici polinomiali a somma zero con Switching Control

Giochi stocastici polinomiali a somma zero con Switching Control POLITECNICO DI MILANO Facoltà di Ingegneria dell Informazione Corso di Laurea Specialistica in Ingegneria Informatica Dipartimento di Elettronica e Informazione Giochi stocastici polinomiali a somma zero

Dettagli

2.1.1 Giochi di coordiamento 3 2.1.2 Giochi competitivi 4 2.1.3 Giochi di coesistenza 4

2.1.1 Giochi di coordiamento 3 2.1.2 Giochi competitivi 4 2.1.3 Giochi di coesistenza 4 Università degli studi di Padova DIPARTIMENTO DELL INGEGNRIA DELL INFORMAZIONE Corso di laurea in Ingegneria dell Informazione TESI DI LAUREA TRIENNALE Fondamenti di Teoria dei Giochi e Applicazioni nell

Dettagli

Intelligenza Artificiale. Lezione 6bis. Intelligenza Artificiale Daniele Nardi, 2004 Lezione 6bis 0

Intelligenza Artificiale. Lezione 6bis. Intelligenza Artificiale Daniele Nardi, 2004 Lezione 6bis 0 Intelligenza Artificiale Lezione 6bis Intelligenza Artificiale Daniele Nardi, 2004 Lezione 6bis 0 Sommario CSP RN 3.8, 4.3, 4.5 Giochi RN 5 Intelligenza Artificiale Daniele Nardi, 2004 Lezione 6bis 1 Problemi

Dettagli

Riferimenti: Capitolo 3 Dispense Facchinei, seguite in modo quasi pedissequo.

Riferimenti: Capitolo 3 Dispense Facchinei, seguite in modo quasi pedissequo. AVVERTENZA: Di seguito trovate alcuni appunti, poco ordinati e poco formali, che uso come traccia durante le lezioni. Non sono assolutamente da considerarsi sostitutivi del materiale didattico. Riferimenti:

Dettagli

Teoria dei Giochi Prova del 30 Novembre 2012

Teoria dei Giochi Prova del 30 Novembre 2012 Cognome, Nome, Corso di Laurea, email: Teoria dei Giochi Prova del 30 Novembre 2012 Esercizio 1. Si consideri il seguente gioco. Il primo giocatore può scegliere un numero tra {1,3,,6}; il secondo giocatore

Dettagli

Computational Game Theory

Computational Game Theory Computational Game Theory Vincenzo Bonifaci 24 maggio 2012 5 Regret Minimization Consideriamo uno scenario in cui un agente deve selezionare, più volte nel tempo, una decisione tra un insieme di N disponibili:

Dettagli

Incentivi alla cooperazione Introduzione

Incentivi alla cooperazione Introduzione Incentivi alla cooperazione dellamico@disi.unige.it Sistemi Distribuiti P2P A.A. 2007-08 6-7 dicembre 2007 Outline 1 Cooperazione e free riding Free riding Reciprocità 2 Eliminazione iterata 3 Forma iterata

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

Informazione e mercati competitivi. Lezione 29. Infomazione asimmetrica. Infomazione asimmetrica. Infomazione asimmetrica.

Informazione e mercati competitivi. Lezione 29. Infomazione asimmetrica. Infomazione asimmetrica. Infomazione asimmetrica. Lezione 9 Informazione Asimmetrica Informazione e mercati competitivi Mercati perfettamente competitivi: tutti gli agenti sono pienamente informati circa i beni scambiati e sul funzionamento del mercato.

Dettagli

1 Estensione in strategia mista di un gioco

1 Estensione in strategia mista di un gioco AVVERTENZA: Di seguito trovate alcuni appunti, poco ordinati e poco formali, che uso come traccia durante le lezioni. Non sono assolutamente da considerarsi sostitutivi del materiale didattico. Riferimenti:

Dettagli

Come misurare altruismo, reciprocità e fiducia.

Come misurare altruismo, reciprocità e fiducia. Come misurare altruismo, reciprocità e fiducia. Stefano Papa Università di Teramo 1. L altruismo: Il gioco del dittatore. Il gioco del dittatore è il modello utilizzato per determinare l altruismo. Si

Dettagli

Lezione 1 Introduzione

Lezione 1 Introduzione Lezione 1 Introduzione Argomenti Cosa è l Economia politica I principi fondamentali dell Economia politica Cosa studia l Economia politica Perché studiare l Economia politica 1.1 COSA È L ECONOMIA POLITICA

Dettagli

Valutazione degli investimenti aziendali

Valutazione degli investimenti aziendali Finanza Aziendale Analisi e valutazioni per le decisioni aziendali Valutazione degli investimenti aziendali Capitolo 18 Indice degli argomenti 1. Definizione e classificazione degli investimenti 2. I profili

Dettagli

Giochi semplici, indici di potere e scelte sociali.

Giochi semplici, indici di potere e scelte sociali. Giochi semplici, indici di potere e scelte sociali. Parte 1: giochi semplici S. Moretti 1 Istituto per la Matematica Applicata, Consiglio Nazionale delle Ricerche Via De Marini 6 (Torre di Francia), 16149

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

2) Codici univocamente decifrabili e codici a prefisso.

2) Codici univocamente decifrabili e codici a prefisso. Argomenti della Lezione ) Codici di sorgente 2) Codici univocamente decifrabili e codici a prefisso. 3) Disuguaglianza di Kraft 4) Primo Teorema di Shannon 5) Codifica di Huffman Codifica di sorgente Il

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

3.1 Definizione di gioco cooperativo

3.1 Definizione di gioco cooperativo Capitolo 3 Giochi Cooperativi In questo capitolo esponiamo alcune nozioni fondamentali sulla teoria dei giochi cooperativi. Abbiamo già accennato nel capitolo precedente a cosa sia un gioco cooperativo.

Dettagli

Oligopolio. G. Degli Antoni 26/2/2014 (Economia Applicata/Industriale)

Oligopolio. G. Degli Antoni 26/2/2014 (Economia Applicata/Industriale) Oligopolio G. Degli Antoni 26/2/2014 (Economia Applicata/Industriale) Oligopolio In Oligopolio le imprese possono produrre beni sostanzialmente omogenei, oppure differenziati (automobili, bibite, giornali)

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

La decisione. Claudia Casadio Logica e Psicologia del Pensiero Laurea Triennale - Indirizzo Gruppi A.A. 2004-05. Contents First Last Prev Next

La decisione. Claudia Casadio Logica e Psicologia del Pensiero Laurea Triennale - Indirizzo Gruppi A.A. 2004-05. Contents First Last Prev Next La decisione Claudia Casadio Logica e Psicologia del Pensiero Laurea Triennale - Indirizzo Gruppi A.A. 2004-05 Contents 1 Dimensioni della decisione................................... 3 2 Modalità della

Dettagli

Introduzione teoria dei giochi pt. 2. Corso di Scienza Politica 10/11 Luca Pinto

Introduzione teoria dei giochi pt. 2. Corso di Scienza Politica 10/11 Luca Pinto Introduzione teoria dei giochi pt. 2 Corso di Scienza Politica 10/11 Luca Pinto Soluzioni es. 1 (2, 1), (B, A) Soluzioni es. 2 1, (A, A), (sx, dx) Es. 3: ordinamento preferenze Terroristi: violenza 3 negoziazione,

Dettagli

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ icroeconomia Douglas Bernheim, ichael Whinston Copyright 009 The cgraw-hill Companies srl COE ASSIIZZARE UNA FUNZIONE DI UTILITÀ Supponiamo che il reddito mensile di Elena sia pari a Y e sia interamente

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

Implementazione del gioco del Bantumi Corso di Intelligenza Artificiale 2012

Implementazione del gioco del Bantumi Corso di Intelligenza Artificiale 2012 Implementazione del gioco del Bantumi Corso di Intelligenza Artificiale 2012 Nicola Febbrari Università degli Studi di Verona Facoltà MM.FF.NN. nicola.febbrari@studenti.univr.it 22 gennaio 2013 1 Introduzione

Dettagli

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi.

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. Algoritmi 1 Sommario Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. 2 Informatica Nome Informatica=informazione+automatica. Definizione Scienza che si occupa dell

Dettagli

Università degli Studi di Perugia A.A. 2014/2015 Dipartimento di Economia. ECONOMIA INDUSTRIALE Prof. Davide Castellani (davide.castellani@unipg.

Università degli Studi di Perugia A.A. 2014/2015 Dipartimento di Economia. ECONOMIA INDUSTRIALE Prof. Davide Castellani (davide.castellani@unipg. Università degli Studi di Perugia A.A. 2014/2015 Dipartimento di Economia ECONOMIA INDUSTRIALE Prof. Davide Castellani (davide.castellani@unipg.it) Reti e standard Introduzione Aspettative dei consumatori

Dettagli

1 Inefficienza degli equilibri

1 Inefficienza degli equilibri Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 8: 9 Aprile 2010 Inefficienza degli equilibri Docente Prof. Vincenzo Auletta Note redatte da: Carmine Giordano Abstract In questa

Dettagli

Equilibrio economico generale e benessere

Equilibrio economico generale e benessere Scambio Equilibrio economico generale e benessere Equilibrio economico generale e benessere (KR 12 + NS 8) Dipartimento di Economia Politica Università di Milano Bicocca Outline Scambio 1 Scambio 2 3 4

Dettagli

Rapporto Tecnico IMA N. 11/2001 Giochi semplici, indici di potere e scelte sociali.

Rapporto Tecnico IMA N. 11/2001 Giochi semplici, indici di potere e scelte sociali. Rapporto Tecnico IMA N. 11/2001 Giochi semplici, indici di potere e scelte sociali. S. Moretti Istituto per la Matematica Applicata, Consiglio Nazionale delle Ricerche Via De Marini 6 (Torre di Francia),

Dettagli

Microeconomia Settima edizione

Microeconomia Settima edizione Robert S. Pindyck Daniel L. Rubinfeld Microeconomia Settima edizione Edizione italiana a cura di Emanuele Bacchiega Sommario breve PARTE I Introduzione: mercati e prezzi Capitolo 1 Concetti di base 3 Capitolo

Dettagli

Corso di Politica Economica

Corso di Politica Economica Corso di Politica Economica Lezione 12: Introduzione alla Teoria dei Giochi (part 3) David Bartolini Università Politecnica delle Marche (Sede di S.Benedetto del Tronto) d.bartolini@univpm.it (email) http://utenti.dea.univpm.it/politica

Dettagli

Esercizi d esame di Teoria dei Giochi

Esercizi d esame di Teoria dei Giochi Esercizi d esame di Teoria dei Giochi Dario Bauso Esempio Svolto Dato il seguente gioco a due giocatori a somma zero si calcolino P P 1 0-3 3 1. il loss ceiling J,. il gain floor J, 3. l equilibrio di

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra quelle riportate). Se

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

Tiddle-Wink. Regola generale Scopo del gioco è di sbarazzarsi il più presto possibile delle proprie tessere piazzandole con abilità.

Tiddle-Wink. Regola generale Scopo del gioco è di sbarazzarsi il più presto possibile delle proprie tessere piazzandole con abilità. I Il regolamento Regola generale Scopo del gioco è di sbarazzarsi il più presto possibile delle proprie tessere piazzandole con abilità. Regole di base Le tessere disposte a faccia in giù vengono mischiate

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE.

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. Lezione 5 Castellanza, 17 Ottobre 2007 2 Summary Il costo del capitale La relazione rischio/rendimento

Dettagli

Economia Pubblica il Monopolio Naturale

Economia Pubblica il Monopolio Naturale Economia Pubblica il Monopolio Naturale Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2011-12 Outline il Monopolio Naturale Il problema del Monopolio Naturale

Dettagli

CENNI DI TEORIA DEI GIOCHI (Cap. 13 del libro di testo di micro)

CENNI DI TEORIA DEI GIOCHI (Cap. 13 del libro di testo di micro) CENNI DI TEORIA DEI GIOCHI (Cap. 13 del libro di testo di micro) CHI NE E' IL PADRE FONDATORE? J. Von Neumann COSA STUDIA? La Teoria dei giochi analizza matematicamente l interazione tra individui che

Dettagli

Corso di Politica Economica

Corso di Politica Economica Corso di Politica Economica Lezione 18: Informazione incompleta (moral hazard) David Bartolini Università Politecnica delle Marche (Sede di S.Benedetto del Tronto) d.bartolini@univpm.it (email) http://utenti.dea.univpm.it/politica

Dettagli

Esercitazione 23 maggio 2016

Esercitazione 23 maggio 2016 Esercitazione 5 maggio 016 Esercitazione 3 maggio 016 In questa esercitazione, nei primi tre esercizi, analizzeremo il problema del moral hazard nel mercato. In questo caso prenderemo in considerazione

Dettagli

Una breve introduzione alla Teoria dei Giochi

Una breve introduzione alla Teoria dei Giochi Una breve introduzione alla Teoria Stefano GAGLIARDO Dipartimento di Matematica - Università degli studi di Genova Stage DIMA - 19/04/2011 (DIMA, UNIGE) 19/04/2011 1 / 74 Outline 1 Un po di storia 2 La

Dettagli

Indice Statistiche Univariate Statistiche Bivariate

Indice Statistiche Univariate Statistiche Bivariate Indice 1 Statistiche Univariate 1 1.1 Importazione di un file.data.............................. 1 1.2 Medie e variabilità................................... 6 1.3 Distribuzioni di frequenze...............................

Dettagli